
  

Abstract—While complex algorithms for NLP (Natural 

language processing) are being developed, base tasks such as 

tagging remain very important and still challenging. NLTK 

(Natural Language Toolkit) is a powerful Python library for 

developing programs based on NLP. We try to leverage this 

library to create a PoS (Part of Speech) tagger for a contemporary 

Serbian language. Eleven different models were created by using 

NLTK tagging API. The best models are transformed with the 

Brill tagger to improve the accuracy. We trained the models on 

the tagged dataset counting 180,000 tokens. The best results on the 

test set of 20,000 tokens were demonstrated with the Perceptron 

tagger: 92,52 – 95,76% accuracy for the different tagsets. 

 
Index Terms—Natural Language Processing; Machine 

Learning; Neural Network.  

 

I. INTRODUCTION 

In the last couple of years, a big advancement in the field of 

Natural Language Processing has occurred. There are state-of-

the-art language models that perform exceptionally in various 

language tasks [1-3]. The applications are getting broader, the 

algorithms are more complex [4]. Beneath the surface, there is 

a limited set of the tasks that still pose challenges to the 

researchers. Small improvements in the basic tasks pose 

immediate benefits to the tasks which are performed later in the 

pipeline. 

One basic task is PoS (Part of Speech) tagging, a process of 

assigning a part of speech category to each token in the text. 

The program that performs tagging is called tagger. The taggers 

can be created in multiple ways. In this paper, we will create a 

tagger for Serbian with a help of a Python library NLTK 

(Natural Language Toolkit). Besides just exposing more than 

50 corpora and lexical resources, NLTK is used for making 

programs that handle human language data, ranging from 

tokenization to semantic reasoning. NLTK API makes it 

possible to create multiple standalone tagger models as well as 

to combine them. We are going to try and test every model 

available in the version 3.5 released in March 2020. Having a 

plethora of different algorithms makes this library a good 

choice for a research. 

Serbian language belongs to a group of low-resource 

languages so there’s a modest research on this topic. First 

attempts to create an automatic PoS tagger for Serbian relied 

on a dictionary. Delić et al. used custom transformations and 

rules [5]. Utvić created a parameter file TT11 for a TreeTagger 
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[6]. Later attempts relied on CRF (Conditional Random Fields) 

[7-8] which is among supported technologies by NLTK and 

will be used for training one of the taggers.  

Introducing the dataset and the tagset will be done in the 

Section 2. The creation of multiple taggers is presented in 

Section 3. The results will be shown in Section 4 and briefly 

discussed in Section 5. We will conclude with Section 6. 

II. RESOURCES 

An automated tagger is created by training on an annotated 

dataset. These resources are extremely valuable because they 

are expensive to produce. Dataset used in this paper is 

composed of different annotated text collections (Table I). All 

texts are either originally written in Serbian or translated to it. 

1984 is a novel by George Orwell, part of MULTEXT-East 

resources [9]. INTERA (Integrated European language data 

Repository Area) is a project that produced multilingual corpus 

on law, health and education [10]. Around the world in 80 days 

is a novel by Jules Verne annotated during SEE-ERA.net 

project [11]. ELTeC (European Literary Text Collection) is a 

multilingual collection of the novels written between 1840 and 

1920 [12]. ELTeC-srp is the Serbian part of the ELTeC. 

History, Floods and Švejk are three short collections originated 

during the same research [7]. History is made of several 

chapters from a History textbook for elementary schools. 

Floods is a newspaper collection reporting on floods in Serbia 

in 2014. Švejk is an excerpt from a novel The Good Soldier 

Schweik by Jaroslav Hašek. 

 
TABLE I 

DATASET STRUCTURE 

 

Collection Tokens Words 

1984 108,133 69,706 

INTERA 65,767 55,725 

Around the world in 80 days 7,382 5,970 

History 5,277 4,230 

ELTeC-srp 5,118 4,236 

Floods 4,671 3,813 

Švejk 3,298 2,678 

 

In total there are 199,646 tokens. Among them, 31,139 

tokens are unique. An example of tagged tokens is given in the 
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Table II. Every row contains 5 tab-separated values, that are 

described below. 
TABLE II 

DATASET EXAMPLE ROWS 

 

SentenceId Token N_POS UD_POS Lemma 

5 velikog A:am ADJ velik 

5 doba N:n NOUN doba 

5 . SENT PUNCT . 

 

There are 10,890 sentences in the data set, labeled by the 

SentenceId, a first value in the row. Actual word that is tagged 

is contained in the Token column. Its respective Lemma is in 

the last column. There are two PoS tags for every token, 

originated from two different tagsets. Tagset is a collection of 

tags. UD_POS is a Universal Dependency tagset [13]. N_POS 

is a tagset used in Serbian Morphology Dictionary [14] 

expanded with a gender category. From the given data we 

extracted token, N_POS and UD_POS tag. We stripped gender 

from the N_POS and got a third tagset which we called 

SMD_POS. All three tagsets are used in a further research. 

There are 31139 unique tokens in the dataset and 17 UD PoS 

categories: adjective (ADJ), adposition (ADP), adverb (ADV), 

auxiliary verb (AUX), coordinating conjunction (CCONJ), 

determiner (DET), interjection (INTJ), noun (N), numeral 

(NUM), particle (PART), pronoun (PRON), proper noun 

(PROPN), punctuation (PUNCT), subordinating conjunction 

(SCONJ), symbol (SYM), verb (VERB) and other (X). The 

tags are distributed as shown in the Table III. 

 
TABLE III 

PART-OF-SPEECH CATEGORY DISTRIBUTION AND MAPPING 

 

UD_POS COUNT % N_POS 

NOUN 42936 21.51% N, N:m, N:f, N:n 

PUNCT 31477 15.77% PUNCT, SENT 

VERB 20599 10.32% V, V:m, V:f, V:n 

ADJ 18949 9.49% A, A:am, A:an, A:af 

ADP 16540 8.28% PREP 

AUX 13592 6.81% V, V:m, V:f, V:n 

CCONJ 9374 4.70% CONJ 

ADV 8998 4.51% ADV 

DET 8599 4.31% 
PRO, PRO:m, 

PRO:f, PRO:n 

PART 7976 4.00% PAR 

SCONJ 6304 3.16% CONJ 

PRON 5751 2.88% 
PRO, PRO:m, 

PRO:f, PRO:n 

PROPN 3949 1.98% N, N:m, N:f, N:n 

NUM 3634 1.82% 
NUM, NUM:m, 

NUM:f, NUM:n 

X 858 0.43% X, PREF 

INTJ 110 0.06% INT 

 

Table III also shows mapping between UD_POS and N_POS 

tags. In most cases it is one-to-one relation but there are some 

differences between tagsets. N_POS doesn’t differentiate 

between VERB and AUX, CCONJ and SCONJ, NOUN and 

PROPN. On the other hand, it separates SENT from PUNCT 

and PREF from X. 

The most frequent word category is Noun, followed by a 

Punctuation and a Verb. Cumulative distribution of PoS 

categories is shown in Figure 1. First five categories account to 

57% of all tokens. These numbers help us in creating the 

taggers and interpreting their performance. 

 

 
 

Fig. 1.  Word PoS category cumulative distribution 

  

 For a complete evaluation of the taggers, we need a data from 

a different domain and origin. It will be exempted from the 

training and validation phases and will be used at the end of the 

evaluation phase to test generalization potential of the created 

models. We took this data from a ParCoTrain dataset [15] and 

mapped their tagset (which we called PCT_POS) to the 

SMD_POS tagset, which is shown in Table IV. This is an 

excerpt from a novel Enciklopedija Mrtvih [16], having 23,886 

tokens in 946 sentences.  

III. TAGGING 

After the resources are ready, the process of tagging is made 

simple with the help of NLTK. There are a plenty of tagger 

models packaged in NLTK that can be trained. Every tagger 

has an evaluation procedure that strips down the tags from the 

given text, tags the text with the newly created tagger and 

reports the accuracy on all tokens. This measure will be used 

for comparing different taggers. 

The simplest model in NLTK is Default tagger which tags 

every token with one selected PoS category [17]. Because the 

noun is by far the most represented PoS tag, the accuracy for 

this model on all tokens will be exactly 21,51%. This is the 

baseline tagger, point of reference for all other tagger models. 

By applying more rules regarding the token format, a 

RegExp tagger is produced. It is initialized with the list of regex 

rules which are executed in the defined order. If one pattern 

doesn’t match the given token, a next one is picked. At the end 

of the chain, there is a rule which states that the word is of Noun 

category – same as for Default tagger. Obviously, this model 
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will perform better than the baseline tagger, but making the 

right rules demands significant effort. We did not invest much 

time in producing the rules, because we had not seen significant 

improvements after adding new regular expressions. 

 
TABLE IV 

MAPPING BETWEEN SMD_POS AND PCT_POS TAGSETS 

 

SMD_POS PCT_POS 

N 
NOM:com, NOM: col, NOM:nam, 

NOM:num, NOM:approx 

V VER, VER:aux 

PRO 
PRO:per, PRO:intr, PRO:dem, PRO:ind, 

PRO:pos, PRO:rel, PRO:ref 

NUM 
NUM, NUM:car, NUM:ord, NUM:cal, 

PRO:num 

A 
ADJ:comp, ADJ:sup, ADJ:intr, ADJ:dem, 

ADJ:ind, ADJ:pos, ADJ:rel  

ADV 
ADV:comp, ADV:sup, ADV:intr, 

ADV:rel, ADV:ind 

CONJ CONJ:coor, CONJ:sub 

PREP PREP 

PAR PAR 

INT INT 

SENT SENT 

PUNCT PONC, PONC:cit 

X STR, ABR, LET, PAGE, ID 

 

Affix tagger takes only prefixes or suffixes of fixed length in 

consideration. It learns the most frequent tag in the dataset for 

a given affix. If the word is shorter than 5 characters, tagger 

returns tag “None”. 

The most frequent PoS category is Noun but there are plenty 

of other words with high frequency that are not nouns. This is 

the idea for the Lookup tagger (implemented through 

UnigramTagger class). It remembers the tags for the most 

frequent words, while marking all the other words as None. A 

number of the most frequent words for which the tags should 

be stored is configurable. Figure 2 shows how accuracy of the 

model measured on the whole dataset improves with the 

number of the stored tags. 

It is also seen that the best accuracy is achieved when the 

tags are remembered for all the words. This is how Unigram 

tagger behaves. It stores the most frequent PoS tag for all the 

tokens and marks every appearance of that token with it. 

The taggers mentioned above determined the tags solely on 

the given token. N-gram tagger takes the context of the token 

in consideration. Bigram tagger takes that token and the one 

preceding it. Trigram tagger takes the two tokens before the 

observed one. N-gram taggers are most effective when 

combined with lower-level models. 

While constructing the sequential tagger, it is possible to 

define a back off tagger which will take over when the current 

tagger is not able to determine a tag for a token (returning tag 

1 Code for training and evaluation, example dataset and results are available at: https://github.com/bmilovanovic/pos-tagging-serbian. 

None). This is the back off chain that we tested: Trigram – 

Bigram – Affix – Unigram – Default. 

 

 
 
Fig. 2.  Dependence of the Lookup tagger accuracy on the number of the 

stored tags 

  

Aside embedded sequential tagger models available in the 

nltk.tag.sequential package, there are custom made models 

available in separate subpackages. CRF tagger is based on 

Conditional Random Fields [18]. HMM tagger is based on 

Hidden Markov Models [19]. Training on an averaged, one-

layer neural network produces Perceptron tagger [20]. TnT 

tagger is short of Trigrams'n'Tags and it uses a second order 

Markov model to produce tags for an input sequence [21]. We 

declared the Unigram tagger as a back off tagger because TnT 

does not automatically work with unseen words. 

Any of the mentioned taggers can be improved with the help 

of Brill tagger [22]. It uses a configurable set of rules to correct 

the errors and improve the total accuracy. Best performance is 

shown by a brill24 set of rules. We apply Brill to the top 

performing models to try to increase the accuracy. 

IV. RESULTS 

All tagger models except Default and RegExp tagger are 

created by training on an annotated dataset. We were training 

on the 90% size of the original dataset size and measured 

accuracy on a remaining 10% size with 10-fold evaluation1. 

Results of the trained tagger models can be seen in Table V, 

with the accuracy calculated as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑎𝑔𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑎𝑔𝑠
 (1) 

 

The taggers are trained on an Intel® Core™ i7-8750H CPU 

@ 2.20Ghz with 16 GB RAM. It can be seen from the table that 

training all taggers for N_POS tagset took much more time due 

to the added gender information. When the processor had a task 

in parallel, other than training, the training times were twice as 

high.  

Accuracy scores, for all taggers, are very close between the 

UD_POS and SMD_POS tagsets. This is expected because the 

number of the tag categories and their distribution is similar. 
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However, taggers performed remarkably worse for the N_POS 

tagset. Information about the gender added complexity so 

simpler taggers could not deal with it easily. However, the best 

tagger models, CRF and Perceptron, kept the accuracy over 90 

percent even with the gender information. We took these two 

taggers to the additional evaluation. 

 
TABLE V 

ACCURACY OF TAGGERS FOR EACH TAGSET 

 

Tagger UD_POS SMD_POS N_POS 

Default 21.50 23.50 12.15 

RegExp 23.20 25.33 13.06 

Affix 88.34 87.12 81.64 

Lookup 43.26 40.87 40.70 

Unigram 90.56 88.79 84.87 

Bigram 91.56 90.17 86.58 

Trigram 91.50 90.01 86.38 

CRF 93.77 93.72 90.16 

HMM 44.28 49.80 45.58 

Perceptron 95.61 95.76 92.52 

TnT 90.83 90.51 86.95 

Training Time 1143s 1343s 3074s 

 

Useful tagger model is one which generalizes well to the text 

from the other domains. That’s why we tested our best taggers 

on the text that stayed out of the training and validation phases. 

Results can be seen in Figure 3. 

 

 
 

Fig. 3.  Accuracy of the CRF and Perceptron variants on the test and unseen 

data 

 

Taggers shown in the Figure 3 are trained on the SMD_POS 

tagset because it was the most like the one in unseen data so we 

could map between two easily. CRF and Perceptron taggers 

saw a small improvement with the corrections from Brill 

tagger. However, all four models saw a fall of about 8% in 

accuracy for the unseen data.  

For an additional insight into the performance of the taggers, 

we calculate precision, recall and F1 at a tag level for the 

Perceptron + Brill tagger, as followed 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝

 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

 (3) 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

The scores are calculated by iterating over all tokens, 

comparing the predicted tag versus actual tag and then 

aggregating the cases. True positive (𝑇𝑝) is when these tags are 

identical. False positive (𝐹𝑝) is the tag that is predicted but is 

different than actual tag. The actual tag, that is not predicted 

correctly, is determined as false negative (𝐹𝑛). Table VI 

displays the results. 

 
TABLE VI 

TAG-LEVEL METRICS FOR PERCEPTRON + BRILL TAGGER 

EVALUATED ON UNSEEN DATA 

 

SMD_POS Precision Recall F1 

N 0.91 0.99 0.92 

PUNCT 0.99 0.99 0.99 

V 0.91 0.93 0.92 

A 0.79 0.53 0.64 

PREP 0.99 0.98 0.98 

CONJ 0.91 0.93 0.92 

ADV 0.80 0.68 0.73 

PRO 0.53 0.91 0.67 

PAR 0.75 0.93 0.83 

NUM 0.63 0.65 0.64 

SENT 1.00 0.99 1.00 

X 0.53 0.04 0.07 

INTJ 0.38 0.33 0.35 

Total 0.87 0.87 0.87 

 

Many tags have low F1 scores, with X having the lowest one. 

Recall for X is only 0.04 which means that there are a lot of 

tokens with actual tag X, that the tagger did not predict as 

such. However, overall accuracy (87.31) is higher than most 

tags have because the precision is high for N and PUNCT 

tags which are the most frequent. 

V. DISCUSSION 

Looking again at the Table VI, we can notice fluctuation in 

performance between various tags. This is probably due to the 

differences in the tagging practice for the training and 

evaluation sets. In the process of preparing data, there are 

multiple tagsets and annotators. This is too many factors for an 

automated tagger to have the performance near maximum. 

Although no research is conducted using different NLP tool 

and the exact same resources, there is an evidence of better 
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performance in PoS tagging a contemporary Serbian language 

[23]. Their performance on unseen data shows 0.88 precision 

with Spacy tagger and 0.93 with TreeTagger19 while the best 

tagger produced in this research achieves 0.87. The 

technologies in this research are not able to produce us a 

generalized, multi-purpose, all-around PoS tagger that can be a 

standard for a Serbian language. 

Best performance in this research is achieved with the 

Perceptron tagger, a neural network which is more than a 

decade old. Since then, a breakthrough with deep learning has 

happened, so there’s a strong belief that further improvements 

can be made with the latest neural network models [24]. 

However, there is a doubt if these models, because of their 

complexity, will ever be available in NLTK. 

 

VI. CONCLUSION 

We used NLTK, a Python library, to create 11 automated 

PoS taggers for a contemporary Serbian language. Models were 

trained on 180,000 tokens and evaluated on 20,000 tokens. The 

top performing models were improved with the help of Brill 

tagger and then tested on both familiar and an unfamiliar text. 

Best performance is shown by the Perceptron tagger: 92,52 – 

95,76% accuracy for the different tagsets. 
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