

Abstract—While complex algorithms for NLP (Natural

language processing) are being developed, base tasks such as

tagging remain very important and still challenging. NLTK

(Natural Language Toolkit) is a powerful Python library for

developing programs based on NLP. We try to leverage this

library to create a PoS (Part of Speech) tagger for a contemporary

Serbian language. Eleven different models were created by using

NLTK tagging API. The best models are transformed with the

Brill tagger to improve the accuracy. We trained the models on

the tagged dataset counting 180,000 tokens. The best results on the

test set of 20,000 tokens were demonstrated with the Perceptron

tagger: 92,52 – 95,76% accuracy for the different tagsets.

Index Terms—Natural Language Processing; Machine

Learning; Neural Network.

I. INTRODUCTION

In the last couple of years, a big advancement in the field of

Natural Language Processing has occurred. There are state-of-

the-art language models that perform exceptionally in various

language tasks [1-3]. The applications are getting broader, the

algorithms are more complex [4]. Beneath the surface, there is

a limited set of the tasks that still pose challenges to the

researchers. Small improvements in the basic tasks pose

immediate benefits to the tasks which are performed later in the

pipeline.

One basic task is PoS (Part of Speech) tagging, a process of

assigning a part of speech category to each token in the text.

The program that performs tagging is called tagger. The taggers

can be created in multiple ways. In this paper, we will create a

tagger for Serbian with a help of a Python library NLTK

(Natural Language Toolkit). Besides just exposing more than

50 corpora and lexical resources, NLTK is used for making

programs that handle human language data, ranging from

tokenization to semantic reasoning. NLTK API makes it

possible to create multiple standalone tagger models as well as

to combine them. We are going to try and test every model

available in the version 3.5 released in March 2020. Having a

plethora of different algorithms makes this library a good

choice for a research.

Serbian language belongs to a group of low-resource

languages so there’s a modest research on this topic. First

attempts to create an automatic PoS tagger for Serbian relied

on a dictionary. Delić et al. used custom transformations and

rules [5]. Utvić created a parameter file TT11 for a TreeTagger

Boro Milovanović is a PhD student attending Intelligent Systems, an interdisciplinary program at the University of Belgrade, Studentski trg 1, 11000 Belgrade,

Serbia (e-mail: bmilovanovic@tesla.rcub.bg.ac.rs).
Ranka Stanković is with the Faculty of Mining and Geology, University of Belgrade, Djušina 7, 11000 Belgrade, Serbia (e-mail: ranka.stankovic@rgf.bg.ac.rs).

[6]. Later attempts relied on CRF (Conditional Random Fields)

[7-8] which is among supported technologies by NLTK and

will be used for training one of the taggers.

Introducing the dataset and the tagset will be done in the

Section 2. The creation of multiple taggers is presented in

Section 3. The results will be shown in Section 4 and briefly

discussed in Section 5. We will conclude with Section 6.

II. RESOURCES

An automated tagger is created by training on an annotated

dataset. These resources are extremely valuable because they

are expensive to produce. Dataset used in this paper is

composed of different annotated text collections (Table I). All

texts are either originally written in Serbian or translated to it.

1984 is a novel by George Orwell, part of MULTEXT-East

resources [9]. INTERA (Integrated European language data

Repository Area) is a project that produced multilingual corpus

on law, health and education [10]. Around the world in 80 days

is a novel by Jules Verne annotated during SEE-ERA.net

project [11]. ELTeC (European Literary Text Collection) is a

multilingual collection of the novels written between 1840 and

1920 [12]. ELTeC-srp is the Serbian part of the ELTeC.

History, Floods and Švejk are three short collections originated

during the same research [7]. History is made of several

chapters from a History textbook for elementary schools.

Floods is a newspaper collection reporting on floods in Serbia

in 2014. Švejk is an excerpt from a novel The Good Soldier

Schweik by Jaroslav Hašek.

TABLE I

DATASET STRUCTURE

Collection Tokens Words

1984 108,133 69,706

INTERA 65,767 55,725

Around the world in 80 days 7,382 5,970

History 5,277 4,230

ELTeC-srp 5,118 4,236

Floods 4,671 3,813

Švejk 3,298 2,678

In total there are 199,646 tokens. Among them, 31,139

tokens are unique. An example of tagged tokens is given in the

Part of Speech Tagging for Serbian language

using Natural Language Toolkit

Boro Milovanović, Ranka Stanković

AII 1.1.1

Table II. Every row contains 5 tab-separated values, that are

described below.
TABLE II

DATASET EXAMPLE ROWS

SentenceId Token N_POS UD_POS Lemma

5 velikog A:am ADJ velik

5 doba N:n NOUN doba

5 . SENT PUNCT .

There are 10,890 sentences in the data set, labeled by the

SentenceId, a first value in the row. Actual word that is tagged

is contained in the Token column. Its respective Lemma is in

the last column. There are two PoS tags for every token,

originated from two different tagsets. Tagset is a collection of

tags. UD_POS is a Universal Dependency tagset [13]. N_POS

is a tagset used in Serbian Morphology Dictionary [14]

expanded with a gender category. From the given data we

extracted token, N_POS and UD_POS tag. We stripped gender

from the N_POS and got a third tagset which we called

SMD_POS. All three tagsets are used in a further research.

There are 31139 unique tokens in the dataset and 17 UD PoS

categories: adjective (ADJ), adposition (ADP), adverb (ADV),

auxiliary verb (AUX), coordinating conjunction (CCONJ),

determiner (DET), interjection (INTJ), noun (N), numeral

(NUM), particle (PART), pronoun (PRON), proper noun

(PROPN), punctuation (PUNCT), subordinating conjunction

(SCONJ), symbol (SYM), verb (VERB) and other (X). The

tags are distributed as shown in the Table III.

TABLE III

PART-OF-SPEECH CATEGORY DISTRIBUTION AND MAPPING

UD_POS COUNT % N_POS

NOUN 42936 21.51% N, N:m, N:f, N:n

PUNCT 31477 15.77% PUNCT, SENT

VERB 20599 10.32% V, V:m, V:f, V:n

ADJ 18949 9.49% A, A:am, A:an, A:af

ADP 16540 8.28% PREP

AUX 13592 6.81% V, V:m, V:f, V:n

CCONJ 9374 4.70% CONJ

ADV 8998 4.51% ADV

DET 8599 4.31%
PRO, PRO:m,

PRO:f, PRO:n

PART 7976 4.00% PAR

SCONJ 6304 3.16% CONJ

PRON 5751 2.88%
PRO, PRO:m,

PRO:f, PRO:n

PROPN 3949 1.98% N, N:m, N:f, N:n

NUM 3634 1.82%
NUM, NUM:m,

NUM:f, NUM:n

X 858 0.43% X, PREF

INTJ 110 0.06% INT

Table III also shows mapping between UD_POS and N_POS

tags. In most cases it is one-to-one relation but there are some

differences between tagsets. N_POS doesn’t differentiate

between VERB and AUX, CCONJ and SCONJ, NOUN and

PROPN. On the other hand, it separates SENT from PUNCT

and PREF from X.

The most frequent word category is Noun, followed by a

Punctuation and a Verb. Cumulative distribution of PoS

categories is shown in Figure 1. First five categories account to

57% of all tokens. These numbers help us in creating the

taggers and interpreting their performance.

Fig. 1. Word PoS category cumulative distribution

 For a complete evaluation of the taggers, we need a data from

a different domain and origin. It will be exempted from the

training and validation phases and will be used at the end of the

evaluation phase to test generalization potential of the created

models. We took this data from a ParCoTrain dataset [15] and

mapped their tagset (which we called PCT_POS) to the

SMD_POS tagset, which is shown in Table IV. This is an

excerpt from a novel Enciklopedija Mrtvih [16], having 23,886

tokens in 946 sentences.

III. TAGGING

After the resources are ready, the process of tagging is made

simple with the help of NLTK. There are a plenty of tagger

models packaged in NLTK that can be trained. Every tagger

has an evaluation procedure that strips down the tags from the

given text, tags the text with the newly created tagger and

reports the accuracy on all tokens. This measure will be used

for comparing different taggers.

The simplest model in NLTK is Default tagger which tags

every token with one selected PoS category [17]. Because the

noun is by far the most represented PoS tag, the accuracy for

this model on all tokens will be exactly 21,51%. This is the

baseline tagger, point of reference for all other tagger models.

By applying more rules regarding the token format, a

RegExp tagger is produced. It is initialized with the list of regex

rules which are executed in the defined order. If one pattern

doesn’t match the given token, a next one is picked. At the end

of the chain, there is a rule which states that the word is of Noun

category – same as for Default tagger. Obviously, this model

AII 1.1.2

will perform better than the baseline tagger, but making the

right rules demands significant effort. We did not invest much

time in producing the rules, because we had not seen significant

improvements after adding new regular expressions.

TABLE IV

MAPPING BETWEEN SMD_POS AND PCT_POS TAGSETS

SMD_POS PCT_POS

N
NOM:com, NOM: col, NOM:nam,

NOM:num, NOM:approx

V VER, VER:aux

PRO
PRO:per, PRO:intr, PRO:dem, PRO:ind,

PRO:pos, PRO:rel, PRO:ref

NUM
NUM, NUM:car, NUM:ord, NUM:cal,

PRO:num

A
ADJ:comp, ADJ:sup, ADJ:intr, ADJ:dem,

ADJ:ind, ADJ:pos, ADJ:rel

ADV
ADV:comp, ADV:sup, ADV:intr,

ADV:rel, ADV:ind

CONJ CONJ:coor, CONJ:sub

PREP PREP

PAR PAR

INT INT

SENT SENT

PUNCT PONC, PONC:cit

X STR, ABR, LET, PAGE, ID

Affix tagger takes only prefixes or suffixes of fixed length in

consideration. It learns the most frequent tag in the dataset for

a given affix. If the word is shorter than 5 characters, tagger

returns tag “None”.

The most frequent PoS category is Noun but there are plenty

of other words with high frequency that are not nouns. This is

the idea for the Lookup tagger (implemented through

UnigramTagger class). It remembers the tags for the most

frequent words, while marking all the other words as None. A

number of the most frequent words for which the tags should

be stored is configurable. Figure 2 shows how accuracy of the

model measured on the whole dataset improves with the

number of the stored tags.

It is also seen that the best accuracy is achieved when the

tags are remembered for all the words. This is how Unigram

tagger behaves. It stores the most frequent PoS tag for all the

tokens and marks every appearance of that token with it.

The taggers mentioned above determined the tags solely on

the given token. N-gram tagger takes the context of the token

in consideration. Bigram tagger takes that token and the one

preceding it. Trigram tagger takes the two tokens before the

observed one. N-gram taggers are most effective when

combined with lower-level models.

While constructing the sequential tagger, it is possible to

define a back off tagger which will take over when the current

tagger is not able to determine a tag for a token (returning tag

1 Code for training and evaluation, example dataset and results are available at: https://github.com/bmilovanovic/pos-tagging-serbian.

None). This is the back off chain that we tested: Trigram –

Bigram – Affix – Unigram – Default.

Fig. 2. Dependence of the Lookup tagger accuracy on the number of the

stored tags

Aside embedded sequential tagger models available in the

nltk.tag.sequential package, there are custom made models

available in separate subpackages. CRF tagger is based on

Conditional Random Fields [18]. HMM tagger is based on

Hidden Markov Models [19]. Training on an averaged, one-

layer neural network produces Perceptron tagger [20]. TnT

tagger is short of Trigrams'n'Tags and it uses a second order

Markov model to produce tags for an input sequence [21]. We

declared the Unigram tagger as a back off tagger because TnT

does not automatically work with unseen words.

Any of the mentioned taggers can be improved with the help

of Brill tagger [22]. It uses a configurable set of rules to correct

the errors and improve the total accuracy. Best performance is

shown by a brill24 set of rules. We apply Brill to the top

performing models to try to increase the accuracy.

IV. RESULTS

All tagger models except Default and RegExp tagger are

created by training on an annotated dataset. We were training

on the 90% size of the original dataset size and measured

accuracy on a remaining 10% size with 10-fold evaluation1.

Results of the trained tagger models can be seen in Table V,

with the accuracy calculated as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑎𝑔𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑎𝑔𝑠
 (1)

The taggers are trained on an Intel® Core™ i7-8750H CPU

@ 2.20Ghz with 16 GB RAM. It can be seen from the table that

training all taggers for N_POS tagset took much more time due

to the added gender information. When the processor had a task

in parallel, other than training, the training times were twice as

high.

Accuracy scores, for all taggers, are very close between the

UD_POS and SMD_POS tagsets. This is expected because the

number of the tag categories and their distribution is similar.

AII 1.1.3

However, taggers performed remarkably worse for the N_POS

tagset. Information about the gender added complexity so

simpler taggers could not deal with it easily. However, the best

tagger models, CRF and Perceptron, kept the accuracy over 90

percent even with the gender information. We took these two

taggers to the additional evaluation.

TABLE V

ACCURACY OF TAGGERS FOR EACH TAGSET

Tagger UD_POS SMD_POS N_POS

Default 21.50 23.50 12.15

RegExp 23.20 25.33 13.06

Affix 88.34 87.12 81.64

Lookup 43.26 40.87 40.70

Unigram 90.56 88.79 84.87

Bigram 91.56 90.17 86.58

Trigram 91.50 90.01 86.38

CRF 93.77 93.72 90.16

HMM 44.28 49.80 45.58

Perceptron 95.61 95.76 92.52

TnT 90.83 90.51 86.95

Training Time 1143s 1343s 3074s

Useful tagger model is one which generalizes well to the text

from the other domains. That’s why we tested our best taggers

on the text that stayed out of the training and validation phases.

Results can be seen in Figure 3.

Fig. 3. Accuracy of the CRF and Perceptron variants on the test and unseen

data

Taggers shown in the Figure 3 are trained on the SMD_POS

tagset because it was the most like the one in unseen data so we

could map between two easily. CRF and Perceptron taggers

saw a small improvement with the corrections from Brill

tagger. However, all four models saw a fall of about 8% in

accuracy for the unseen data.

For an additional insight into the performance of the taggers,

we calculate precision, recall and F1 at a tag level for the

Perceptron + Brill tagger, as followed

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝

 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

 (3)

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

The scores are calculated by iterating over all tokens,

comparing the predicted tag versus actual tag and then

aggregating the cases. True positive (𝑇𝑝) is when these tags are

identical. False positive (𝐹𝑝) is the tag that is predicted but is

different than actual tag. The actual tag, that is not predicted

correctly, is determined as false negative (𝐹𝑛). Table VI

displays the results.

TABLE VI

TAG-LEVEL METRICS FOR PERCEPTRON + BRILL TAGGER

EVALUATED ON UNSEEN DATA

SMD_POS Precision Recall F1

N 0.91 0.99 0.92

PUNCT 0.99 0.99 0.99

V 0.91 0.93 0.92

A 0.79 0.53 0.64

PREP 0.99 0.98 0.98

CONJ 0.91 0.93 0.92

ADV 0.80 0.68 0.73

PRO 0.53 0.91 0.67

PAR 0.75 0.93 0.83

NUM 0.63 0.65 0.64

SENT 1.00 0.99 1.00

X 0.53 0.04 0.07

INTJ 0.38 0.33 0.35

Total 0.87 0.87 0.87

Many tags have low F1 scores, with X having the lowest one.

Recall for X is only 0.04 which means that there are a lot of

tokens with actual tag X, that the tagger did not predict as

such. However, overall accuracy (87.31) is higher than most

tags have because the precision is high for N and PUNCT

tags which are the most frequent.

V. DISCUSSION

Looking again at the Table VI, we can notice fluctuation in

performance between various tags. This is probably due to the

differences in the tagging practice for the training and

evaluation sets. In the process of preparing data, there are

multiple tagsets and annotators. This is too many factors for an

automated tagger to have the performance near maximum.

Although no research is conducted using different NLP tool

and the exact same resources, there is an evidence of better

AII 1.1.4

performance in PoS tagging a contemporary Serbian language

[23]. Their performance on unseen data shows 0.88 precision

with Spacy tagger and 0.93 with TreeTagger19 while the best

tagger produced in this research achieves 0.87. The

technologies in this research are not able to produce us a

generalized, multi-purpose, all-around PoS tagger that can be a

standard for a Serbian language.

Best performance in this research is achieved with the

Perceptron tagger, a neural network which is more than a

decade old. Since then, a breakthrough with deep learning has

happened, so there’s a strong belief that further improvements

can be made with the latest neural network models [24].

However, there is a doubt if these models, because of their

complexity, will ever be available in NLTK.

VI. CONCLUSION

We used NLTK, a Python library, to create 11 automated

PoS taggers for a contemporary Serbian language. Models were

trained on 180,000 tokens and evaluated on 20,000 tokens. The

top performing models were improved with the help of Brill

tagger and then tested on both familiar and an unfamiliar text.

Best performance is shown by the Perceptron tagger: 92,52 –

95,76% accuracy for the different tagsets.

ACKNOWLEDGMENT

B.M. would like to thank BSc Gorana Marković for

proofreading the manuscript.

REFERENCES

[1] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding,” Oct.

2018
[2] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,

“ALBERT: A Lite BERT for Self-supervised Learning of Language

Representations,” Feb. 2020
[3] Z. Zhang, J. Yang, and H. Zhao, “Retrospective Reader for Machine

Reading Comprehension,” Jan. 2020

[4] B. Li, N. Jiang, J. Sham, H. Shi, and H. Fazal, “Real-world
Conversational AI for Hotel Bookings,” Proc. International Conference

on Artificial Intelligence for Industries, Laguna Hills, California, USA,

Sep. 2019
[5] V. Delić, M. Sečujski, and A. Kupusinac, “Transformation-based part-of-

speech tagging for Serbian language,” Proc. 8th WSEAS International
Conference on Computational intelligence, man-machine systems and

cybernetics, Tenerife, Spain, Dec. 2009

[6] M. Utvić, “Annotating the Corpus of Contemporary Serbian,”
INFOtheca, vol. 12 no. 2 pp 36a-47a, Dec. 2011

[7] M. Constant, C. Krstev, and D. Vitas “Lexical Analysis of Serbian with

Conditional Random Fields and Large-Coverage Finite-State Resources”,

Proc. 7th Language and Technology Conference (LTC), Poznan, Poland,

Nov. 2015

[8] N. Ljubešić, F. Klubička, Ž. Agić, and I. Jazbec, “New inflectional
lexicons and training corpora for improved morphosyntactic annotation

of Croatian and Serbian“, Proc. 10th International Conference on

Language Resources and Evaluation (LREC’16) pp. 4264-4270,
Portorož, Slovenia, May 2016

[9] C. Krstev, D. Vitas, and T. Erjavec, “MorphoSyntactic Descriptions in

MULTEXT-East | the Case of Serbian,” Informatica, vol. 28 no. 4 pp.
431–436, Dec. 2004.

[10] M. Gavrilidou, P. Labropoulou, S. Piperidis, V. Giouli, N. Calzolari, M.

Monachini, C. Soria, and K. Choukri, “Language Resources Production
Models: the Case of the INTERA Multilingual Corpus and

Terminology,” Proc. Fifth International Conference on Language

Resources and Evaluation (LREC’06), Genoa, Italy, May 2006
[11] D. l. Tufis, S. Koeva, T. Erjavec, M. Gavrilidou, and C. Krstev, (2009).

“Building Language Resources and Translation Models for Machine

Translation focused on South Slavic and Balkan Languages”. Scientific
results of the SEE-ERA.NET pilot joint call, pp 5, Oct. 2009

[12] Distant Reading for European Literary History, a COST Action funded

by the Horizon 2020 Framework. https://www.distant-reading.net/, Mar.
2020

[13] M. d. Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. Nivre,

and C. D. Manning, “Universal Dependencies: A cross-linguistic
typology,” Proc. Ninth International Conference on Language Resources

and Evaluation (LREC'14), Reykjavik, Iceland, May 2014

[14] C. Krstev and D. Vitas, “Serbian Morphological Dictionary – SMD,”
University of Belgrade, HLT Group and Jerteh, Lexical resource, 2.0,

2015

[15] A. Balvet, D. Stošić, and A. Miletić, (2014). TALC-Sef a Manually-
revised POS-Tagged Literary Corpus in Serbian, English and French.

Proceedings of the Ninth International Conference on Language

Resources and Evaluation (LREC'14), pp. 4105-4110, Reykjavik,

Iceland. May 2014

[16] D. Kiš, Enciklopedija mrtvih, Beograd, Jugoslavija, Globus, 1983

[17] S. Bird, E. Klein, and E. Loper, “Automatic Tagging” in Natural
Language Processing with Python, Sebastopol, California, USA:

O’Reilly, 2009, ch. 5, sec. 4, pp. 198

[18] T. Peng and M. Korobov, pythoncrfsuite. https://python-
crfsuite.readthedocs.io, 2014

[19] X. Huang, A. Acero, H. Hon, “Hidden Markov Models” in Spoken

Language Processing, Upper Saddle River, New Jersey: USA, ch. 8, sec.
2, pp. 378-391

[20] H. Daume III, “Frustratingly Easy Domain Adaptation,” Proc. 45th

Annual Meeting of the Association for Computational Linguistics,
Prague, Czech Republic, June 2007

[21] T. Brant, “A Statistical Part-of-Speech Tagger,” Proc. Sixth Applied

Natural Language Processing Conference, Seattle, Washington, USA,
2000

[22] E. Brill, “A simple rule-based part of speech tagger”, Proc. Third

conference on Applied natural language processing (ANLC '92),

Stroudsburg, Pennsylvania, USA, Mar. 1992.

[23] R. Stanković, B. Šandrih, C. Krstev, M. Utvić, and M. Škorić, “Machine
Learning and Deep Neural Network-Based Lemmatization and

Morphosyntactic Tagging for Serbian,” Proc. International Conference

on Language Resources and Evaluation, pp. 3954‑3962, May 2020
[24] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual String Embeddings for

Sequence Labeling,” Proc. 27th International Conference on

Computational Linguistics, Santa Fe, New Mexico, USA Aug. 2018

AII 1.1.5

