

Abstract—In this paper a comparison between three different
types of trained VGG convolutional neural networks (CNNs) is
proposed for the classification of a pediatric chest X-ray image
data set. A deep convolutional neural network with an
architecture resembling the VGGNet is presented using dropout,
decay and data scaling. Since the dataset had a class imbalance,
this was solved using a simple method called data scaling. The
training of the neural network was done using small batches with
a binary cross entropy loss function. The same neural network
was then implemented adding batch normalization layers, and
comparisons were made. Furthermore, the chest X-ray dataset
was also trained using transfer learning with a pre-trained
neural network VGG16 on the ImageNet dataset. Later on
juxtapositions were made on using both techniques. Additionally,
in applying these methods we were able to achieve a classification
with the accuracy higher than 0.95 and 0.97 for the training and
validation datasets, whilst incorporating only 30 epochs.

Index Terms—convolutional neural networks; deep learning;

transfer learning; batch normalization; chest X-ray dataset;
image classification; dropout.

I. INTRODUCTION

Convolutional neural networks (CNNs) are a subset of deep
neural networks, which are used for classifying images. The
main idea is to take a set of images correctly labeled as the
input data and used them to train our neural network so as to
achieve an output with an appropriate categorization. The
inspiration for CNNs comes from the observation of the
animal visual cortex. Conversely, the flourishing of these
networks only came recently due to the increase of
computational power and the development of many possible
libraries that could be used to battle complex mathematically
based problems, such as back propagation. The first paper that
introduced the convolutional neural networks as we have
come to know them today has [1] demonstrated that a model
which consists of a multilayered network can be successfully
used for recognition of stimulus patterns according to the

Lara Laban is with the Faculty of Mechanical Engineering, University of

Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia (e-mail:
llaban@mas.bg.ac.rs)

Radiša Jovanović is with the Faculty of Mechanical Engineering,
University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia (e-mail:
rjovanovic@mas.bg.ac.rs)

Mitra Vesović is with the Faculty of Mechanical Engineering, University
of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia (e-mail:
mvesovic@mas.bg.ac.rs)

Vladimir Zarić is with the Faculty of Mechanical Engineering, University
of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia (e-mail:
vzaric@mas.bg.ac.rs)

differences in their shapes. However, there is some debate that
the true begging was when a paper in 1990 [2] demonstrated
that a CNN model which aggregates simpler features into
progressively more complicated features can be successfully
used for handwritten character recognition. In 2012 the
ImageNet Large Scale Visual Recognition Challenge [3], at
that moment consisting of he 1000 categories and 1.2 million
images received a submission that would propel the CNNs
development once again. AlexNet [4] achieved a top-5 error
of 15.3% , which at the moment surpassed by an astonishing
10% all of the other submissions, and had a much faster
training time as it was implemented on a GPU. The following
year, the same challenge, now with a larger dataset was won
by ZFNet [5]. It had the top-5 error of 14.8%, however even
more so important is that it was able to reduce the first layer
filter size from 11 11 to 7 7 and had a stride of 2, rather
than 4 in the pooling layer.

VGG16 is a convolutional neural network model proposed
in the paper [6]. This model achieved 92.7% top-5 test
accuracy. The main contribution of this model was that it used
3 3 kernel sized filters, instead of the 7 7 . It was trained
for weeks using GPUs, and had a huge computational cost.
However, it introduced a new idea using the same kernels
throughout the entire architecture, this aided in generalization
for classification problems outside of what they were
originally trained on. If for a second we go back to LeNet [7]
that was the foundation for all of these previously mentioned
CNNs we can observe the main sequence of three layers
convolution, pooling and non-linearity still play the key part,
and sometimes it is beneficial not to import to many layers
when training a smaller dataset [8]. Finally, in recent years
transfer learning [9], which addresses crossdomain learning
problems by extracting useful information from data in a
related domain and transferring them for being used in target
tasks, has been demonstrating a significant impact.

Pneumonia is one of the main causes of death amongst
children, it was stated that 19% of all deaths of kids aged 5
years and less is connected with a viral or bacterial pneumonia
[10]. Today, pneumonia is the single leading cause of
mortality in young children according to the World Health
Organization (WHO). An even scarier report made by WHO
says that 95% of new-onset childhood clinical pneumonia
occurs in developing countries, many of them located in
Africa and South Asia [11].

The lungs of humans are made up of small sacs called
alveoli, which fill with air when a healthy person breathes, in
turn when a person with pneumonia breathes the alveoli
which are filled in this case with pus and fluid, blocking the

Classification of Chest X-Ray Images Using
Deep Convolutional Neural Networks

Lara Laban, Radiša Jovanović, Mitra Vesović and Vladimir Zarić

AII 2.1.1

oxygen from arriving to the lungs, limit the capacity to intake
oxygen. One of the main ways to have a proper diagnosis is
radiographic data. X-rays can help in distinguishing between
different types of pneumonia. However, since rapid
interpretation of images is sometimes very hard, especially in
developing countries, new methods are always sought after
and proposed.

For that reason, an idea to battle this kind of a problem was
proposed in a brilliant paper [12] published in 2018 which
suggested image-based deep learning to identify various
medical diagnoses, including the chest X-ray images from
children. Using convolutional neural networks, transfer
learning to be precise, they achieved an accuracy of 92.8% in
distinguishing between normal and pneumonia images, over
the course of 100 epochs. Moreover, in stating this the central
goal of this paper is to try and implement a simpler CNN to
combat this classification problem, all the while by using less
epochs and if possible obtaining a slightly better classification
accuracy.

This paper is organised in the following manner: section 2
represents a description of a dataset which is used in the
training and validation of the proposed neural network. In
section 3 the main methods which are used are explained in
detail, as well as the architecture of the CNN. As a result, in
section 4 we discuss the results and compare the methods,
based on accuracy and loss functions. In section 5, following a
short summary a conclusion is made and future work and
possible directions are stated.

II. DATASET AND ITS IMPLEMENTATION

The dataset which is used in this paper consists of 5856
chest X-Ray images from children [13], including 4392
pneumonia ray (bacterial and viral) and 1464 normal. Being
that the dataset consist of a couple of thousand pictures, there
is no need to take an approach of data augmentation, where
we increase the diversity of data by altering the original
samples using translation, rotation, shearing, flips and adding
them to the training set. However, we observe that the
pneumonia part of the dataset is much larger than the part of
the normal set, almost 4 times as big, resulting in a class
imbalance. One way to correct this, so that our neural network
may learn appropriately and not pick the pneumonia label
naturally is to scale the data. This can be done by computing a
weight for each class during the training, resulting in an array
[1, 3] , and as an outcome amplifying the loss by a larger

weight when we approach normal data. In this example
treating an instance of normal as 3 instance of pneumonia,
aids in this disproportion.

During the preprocessing of images we resized all the
images to a fixed size 64 64 , and in doing so we also
maintained the aspect ratio. The reasoning behind this being
that all the images in a dataset need to have a fixed feature
vector size. This means all the images will have identical
widths and heights, making it easier to quickly load and
preprocess a dataset and briskly move through our
convolutional neural network. The aspect ratio will enable us

to resize the images along the shorter dimension, be it width
or height, and in cropping it, will maintain the ratio. It is
important to note that this step is not necessary if you are not
working with a difficult dataset. Notwithstanding its benefits,
it was implemented in this particular dataset.

A. ImageNet dataset

ImageNet is a dataset consisting of over 14 million images,
which belong to one thousand classes. It was used as the
dataset in the highly respected convolutional neural network
model VGG16 which was proposed by Oxford scientists. In
this paper the VGG16 network was used as a pre-trained
convolutional neural network, in order to incorporate transfer
learning and compare it to the original paper [12], mentioned
beforehand, as well as the architecture that we propose.

III. METHODS DESCRIPTION

In order to try and reduce overfitting and increase our
classification accuracy on the chest X-ray dataset we endeavor
in performing two types of neural network training
techniques:

- dropout and decay (with and without batch
normalization),

- transfer learning (neural networks as feature extractors)
The first technique that is used in order to improve the
generalization error in the convolutional neural network is
dropout [14]. Dropout is nothing more than a form of
regularization, which succors us in controlling the model
capacity. The dropout layers are arranged in the network in
such a manner that we have randomly disconnected nodes by
a probability of 0.25 in the first few layers; and with a double
increase in probability in the last layer. The reason for this is
that if the first layers are dropped by a higher probability, then
that will later affect the training. The dropout is implemented
after the pooling layer, and before the next convolutional layer
(or last flatten and dense layers). Decay that is used in this
neural network is a standard decay that can be obtained using
the Keras library in Python. Since the learning rate controls
the step that is made along the gradient, larger steps are
usually used in the beginning to make sure that we do not
stagnate in the local optima, while smaller steps are used
deeper in the network and near the end of the convolution in
order to converge to a global minimum. We have initialized
the learning rate to be 0.05, and applied the following formula
to adjust it after each epoch,

1 1
i

i k i

 (1)

where is the current learning rate, i is the epoch and k is
the decay calculated as the division between the learning rate
and the number of epochs. This type of adjustment of the
learning rate each epoch, can increase accuracy, as well as
reduce the loss function and the time necessary to train a
network. Batch normalization [15] is used to normalize the
activations of a given layer’s inputs by applying mean and
standard deviation before passing it onto the next layer. In
addition, the covariate shift refers to a change in the

AII 2.1.2

distribution of the input variables which are present in the
training and validation data. Since it has been proven that the
training of the neural network is the most coherent when the
inputs to each layer are alike, the main intention is that even
when the explicit values of inputs layers to hidden layers
change, their mean and standard deviation will still remain
relatively the same, thus reducing the covariate shift. Batch
normalization has demonstrated an immensely effective
approach to reducing the number of epochs necessary for
training by allowing each layer to learn independently. Here
the idea that differs from the original paper and is first
proposed in [16] states that the batch normalization should be
implemented after the activation layer. The main reasoning
behind this is that we want to avoid setting the negative values
coming out of the convolution layer to zero. Instead we pass
them through the batch normalization layer, right after the
activation (ReLU) layer, and assure that some of the features
that otherwise would not have made it do. This yields a higher
accuracy and lower loss, and is to this day a debate amongst
the creators of Keras.

Finally, the second technique is transfer learning [17], a
machine learning technique where networks can behave as
feature extractors. Transfer learning is nothing more than the
ability to use a pre-trained model to learn patterns from data,
on which the original network was not trained on. As
previously stated deep neural networks trained on a large scale
dataset ImageNet have demonstrated to be superb at this task.

When treating networks as feature extractors we choose a
point, in this case before the fully connected layer and remove
it. Subsequently, in this particular example while using the
VGGNet pre-trained on the ImageNet we removed the fully
connected layer and stopped at the last pooling layer where
the output shape is 7 7 512 , 512 filters with the size 7 7 .
Now, our feature vector has 7 7 512 25088 values and it
will be used to quantify the contents of the images, which
were not included in the original training process. The format
which allows us to extract these features is the hierarchical
data format version 5 (hdf5), which is used to store and
organize large amount of data.

Transfer learning is an optimization, which has been proven
to yield a better performance and drastically save time. This is
precisely why we used it in this paper, to see if we could
obtain a higher classification, and perform faster. Transfer
learning relaxes the hypothesis that the training data must be
independent and identically distributed with the test data,
which we clearly stated as a must in the beginning of this
chapter. Moreover, transfer learning is able to solve the
problem of insufficient training data. Furthermore, there is the
option to remove the fully connected layers of the existing
network in order to add a new fully connected layer to the
CNN and fine tune the weights to recognize object classes.
However, here it was not implemented since treating networks
as arbitrary feature extractors was enough.

In the following sections we will demonstrate the
architecture of a CNN that is based on VGGNet, its
implementation with and without batch normalization, and

additionally transfer learning will be presented instead of the
CNN that was previously explained.

A. Convolutional Neural Network architecture

Into the bargain all that was explained, we picked the
following CNN architecture shown in Fig. 1. It is consisted of
multiple convolutional and pooling layers, as well as the fully
connected layers. The first two convolutional layers learn 32
filter each with a size 3 3 .

Fig. 1. A schematic of the convolutional neural network without batch
normalization, that resembles the VGGNet. All of the convolutional layers
that precede the fully connected layers have filters 32, 64, 128 that are the
same size 3 3 . The probability distribution is applied in the last layer using
Softmax and the output yields two class labels normal and pneumonia.

Sequentially, the fourth and the fifth layers learn 64 filters

with the size 3 3 and the last two learn 128 filters with the

AII 2.1.3

size 3 3 . The pool layer is used to reduce the computational
load and the number of parameters, thus reducing the risk of
overfitting. We used a max pooling layer with a pool size
2 2 and a stride 2. Finally, we have the fully connected layer
which consists of 8192 parameters, input values which learn
512 nodes. The activation layers which were used are
Rectified Linear Unit (ReLU) defined as,

() max(0,)f x x (2)

where x is the input into the neuron.
Softmax or the normalized exponential function assigns
normalized class probabilities for each prediction, and is
represented by,

()

1

yie
S yi yk j

e
j

 (3)

for 1, ...,i k and (, ...,)1
kz zk z .

Softmax takes an input vector and normalizes it into a
probability distribution between [0,1] . Therefore the sum of

all output values is equal to 1, which in turn makes the
training converge more quickly. In order to achieve this,
before training we must include one hot encoding in order to
convert the labels from integers to vectors.

In addition, later when we want to add the batch
normalization layer, we can apply it after each activation
layer, as discussed previously.

B. Implementation and training of a much simpler version of
the VGGNet

Taking into the bargain all that was explained before, the
implementation of this CNN was done by using the Python
programming language. We used Keras [18] which is mainly
used for implementing of activation functions, optimizers,
convolutional and pooling layers, and is actually able to do
backpropagation automatically.

Right after we load and preprocess our images dataset it is
necessary to use one hot encoding. This is done by using a
part of the Sklearn library LabelBinarizer. However
beforehand we must split the training data and the validation
data, here we opted to split it 75% and 25%, sequentially. The
next step is the implementation of an optimizer, here we used
the stochastic gradient descent (SGD) optimizer. The SGD
optimizer was set to a learning rate of 0.05 , with a decay
in order to slowly reduce the learning rate over time and
converge to the global solution more efficiently. Decaying the
learning rate is beneficial in reducing overfitting and
obtaining a higher classification accuracy. The smaller the
learning rates are, the smaller the weight update will be
enabling us to converge. The gradient descent method is an
iterative optimization algorithm that operates over an
optimization surface. It is a simple modification to the
standard algorithm of gradient descent. The main purpose of
SGD is to calculate the gradient and adjust the weights of the
training data (but not on the whole dataset, but rather on a
mini batch). The mini batch method is a blend of the SGD and

batch methods were the neural network selects a part of the
training data and updates the weights, but trains the network
with the average weight update. Usually the smallest standard
batch size which is used is 32, however we opted to use 24, as
it complemented our data. The reasoning behind this is that
present research confirms that using small batch sizes
achieves the best training stability and generalization
performance, for a given computational cost, across a wide
range of experiments. The loss function which was used is the
binary_crossentropy function. This was done because we only
had two classes, if there were more we would have had to use
categorical_cross_entropy, but have in mind we could have
used categorical as well, but studies show that binary is much
more efficient in this case.

The training was done on 30 epochs since it was enough to
achieve satisfying results. After the training we implemented
a method that takes the weights and the state of the optimizer
and serializes them to the disc in a hdf5 format, in order to
load them and test the labeling.

C. Implementation using transfer learning

The first step in this process is to extract features from
VGG16, in doing so we are forward propagating the images
until a given layer, and then taking those activations and
treating them as feature vectors. Here the main two
differences are that we used the standard a batch size of 32
and the training and test split is done at the same time as
training, we again split it into 75% training data and 25% test
data. Once the extraction of the features was done, we trained
the classifier on those features. We also implement the
GridSearchCV class to assists us to turn the parameters to the
LogisticRegression classifier.

The final results are presented in the following chapter,
comparisons are made and a visual representation of the
graphs is shown using Matplotlib in order to estimate if there
is overfitting.

IV. RESULTS AND COMPARISONS

The results of the CNN without batch normalization are
presented in Table 1. We clearly see that our neural network
has classification accuracy of 95%. In the following table we
use the term precision which represents true positive divided
by a sum of true positive and false positive, recall which
represents true positive divided by a sum of true positive and
false negative.

Therefore, precision is good to determine when the cost of
false positives is high, on the other hand recall tells us the
number of correctly labeled data. Ultimately, we have the f1-
score used to find the weighted average of recall and
precision. In analyzing the curves shown in Fig. 2 we see that
our network learned until the 30 epoch, beyond that was
simply not necessary since we already had excellent results.
We can also observe that our loss and accuracy curves both
almost match for training and validation, with slight
deviations.

AII 2.1.4

Fig. 2. A graph depicting a convolutional neural network without batch
normalization, that resembles the VGGNet – training and validation loss and
accuracy curves

In Fig. 3 we can see how the labeling looks, when we use
the trained and saved model to label the data with this
obtained accuracy.

Fig. 3. The pre-trained CNN weights are loaded from the disk and make
predictions for 30 randomly selected images. In the upper left and right corner
we have an example of normal lungs, and in the lower left and right corner an
example of pneumonia lungs.

In Table 1 we see that the CNN with batch normalization
obtained the same classification accuracy of 95% after 30
epochs.

TABLE I
EXPERIMENTAL RESULTS

 precision recall f1-score
CNN without batch normalization

macro avg 0.95 0.94 0.95
CNN with batch normalization

macro avg 0.95 0.95 0.95
Transfer learning using VGG16

macro avg 0.97 0.96 0.96

However, in analyzing the curves shown in Fig. 4 we see that
our network learned until the 30 epoch, because further
training past epoch 30 would result in overfitting and a wider

generalization gap (loss function - the gap between the
training loss and validation loss).

Fig. 4. A graph depicting a convolutional neural network with batch
normalization, that resembles the VGGNet – training and validation loss and
accuracy curves

In Table 1 we can see the results obtained by using transfer
learning have a classification accuracy of 97%, which is by far
the best. Furthermore, we observe that the CNN with batch
normalization had a higher recall and a problem with
overfitting past epoch 30, therefore the CNN without it seems
like a better choice. Nevertheless, it is clear then when taking
into account all three approaches we shall choose transfer
learning, because not only does it yield a higher classification
accuracy, but it also wasted less computational time. In
addition when compared with the results of the paper [12],
where transfer learning is also used and the acquired accuracy
is 92.8% over the course of 100 epochs, a higher classification
accuracy is obtained over the course of 30 epochs by
implementing simpler CNNs and transfer learning.

V. CONCLUSION

In this paper we described three different approaches of
using convolutional neural networks to classify a dataset
consisting of normal and pneumonia infected lungs. We used
a CNN that we constructed based on the VGGNet and
implemented it with and without batch normalization.
Furthermore, we used a transfer learning technique by
extracting features of the neural network VGG16 trained on
the ImageNet dataset. The main idea of this paper was to see
if a different approach can have better results on this
particular dataset, as well as see if a smaller neural network
could have almost as good classification as transfer learning.
The final results, when compared had a higher classification
accuracy by a couple of percentages, and also achieved so in
just 30 epochs, as opposed to 100 epochs, so we can conclude
the goal was obtained.

Further research will focus on implementing different types
of optimizers, including metaheuristic algorithms as
optimizers. Also, we will focus on battling larger datasets and
obtaining high classification accuracy using various methods.

AII 2.1.5

ACKNOWLEDGMENT

This research was supported by the Science Fund of the
Republic of Serbia, grant No. 6523109, AI- MISSION4.0,
2020-2022.

This paper was conceived within the research on the
project: “Integrated research in the field of macro, micro and
nano mechanical engineering - Deep machine learning of
intelligent technological systems in production engineering”,
The Ministry of Education, Science and Technological
Development of the Republic of Serbia (contract no. 451-03 -
68 / 2020-14 / 200105), 2020.

This work was financially supported by the Ministry of
Education, Science and Technological Development of the
Serbian Government, Grant TR-35029 (2018-2020).

REFERENCES

[1] K. Fukushima, S. Miyake, “Neocognitron: A new algorithm for pattern
recognition tolerant of deformations and shifts in position,” Pattern
Recognition, vol. 15, no. 6, pp. 455-469, 1982.

[2] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
E. Hubbard, L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” Advances in Neural Information Processing
Systems 2, pp. 396-404, June, 1990.

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Haung, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei,
“ImageNet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, April, 2015.

[4] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, vol. 25, no. 2, pp. 1097-1105, 2012.

[5] M. D. Zeiler, R. Fergus, “Visualizing and understanding convolutional
networks,” 13th European Conference, Zurich, Switzerland, pp. 818-833,
September 6-12, 2014.

[6] K. Simonyan, A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[7] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, n.
11, pp. 2278-2324, November, 1998.

[8] Z. Li, W. Yang, S. Peng, F. Liu, “A survey of convolutional neural
networks: Analysis, applications and prospects,” arXiv preprint
arXiv:2004.02806, 2020.

[9] L. Shao, F. Zhu, X. Li, “Transfer learning for visual Categorization: A
survey,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 26, no. 5, pp. 1019-1034, May, 2015.

[10] I. Rudan, C. Boschi-Pinto, Z. Biloglav, K. Mulholland, H. Campbell,
“Epidemiology and etiology of childhood pneumonia.”, Bulletin of the
World Health Organization, vol. 86, no. 5, pp. 408–416, May, 2008.

[11] World Health Organization, Pneumonia, https://www.who.int/news-
room/fact-sheets/detail/pneumonia, (last accessed 06/07/2020).

[12] D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang, S.
L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K.
Prasadha, J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I.
Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi, X. Fu, Y. Duan, V.
A. N. Huu, C. Wen, E. D. Zhang, C. L. Zhang, O. Li, X. Wang, M. A.
Singer, X. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. Xia, K. Zhang,
“Identifying medical diagnoses and treatable diseases by image-based
deep learning,” Cell, vol. 172, no. 5, pp. 1122-1131, February, 2018.

[13] Public datasets; Chest X-Ray Images (Pneumonia), Version 2
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia,
(last accessed 09/03/2020).

[14] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors”, arXiv preprint arXiv:1207.0580, Jul, 2012.

[15] S. Ioffe, C.Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”, Proceedings of the 32nd
International Conference on Machine Learning, vol. 37, pp. 448-456,
July, 2015.

[16] A. Rosebrock, Deep Learning for computer vision with Pyhton: Starter
Bundle, 1st ed. PyImageSearch, 2017.

[17] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, “A survey on deep
transfer learning,” 27th International Conference on Artificial Neural
Networks, Rhodes, Greece, October 4-7, 2018.

[18] Keras; Python Deep Learning Library https://keras.io, (last accessed
09/03/2020).

AII 2.1.6

