
 

 

Abstract—In this paper a comparison between three different 
types of trained VGG convolutional neural networks (CNNs) is 
proposed for the classification of a pediatric chest X-ray image 
data set. A deep convolutional neural network with an 
architecture resembling the VGGNet  is presented using dropout, 
decay and data scaling. Since the dataset had a class imbalance, 
this was solved using a simple method called data scaling. The 
training of the neural network was done using small batches with 
a binary cross entropy loss function. The same neural network 
was then implemented adding batch normalization layers, and 
comparisons were made. Furthermore, the chest X-ray dataset 
was also trained using transfer learning with a pre-trained 
neural network VGG16 on the ImageNet dataset. Later on 
juxtapositions were made on using both techniques. Additionally, 
in applying these methods we were able to achieve a classification 
with the accuracy higher than 0.95 and 0.97 for the training and 
validation datasets, whilst incorporating only 30 epochs.  

 
Index Terms—convolutional neural networks; deep learning; 

transfer learning; batch normalization; chest X-ray dataset; 
image classification; dropout. 

 

I. INTRODUCTION 

Convolutional neural networks (CNNs) are a subset of deep 
neural networks, which are used for classifying images. The 
main idea is to take a set of images correctly labeled as the 
input data and used them to train our neural network so as to 
achieve an output with an appropriate categorization. The 
inspiration for CNNs comes from the observation of the 
animal visual cortex. Conversely, the flourishing of these 
networks only came recently due to the increase of 
computational power and the development of many possible 
libraries that could be used to battle complex mathematically 
based problems, such as back propagation. The first paper that 
introduced the convolutional neural networks as we have 
come to know them today has [1] demonstrated that a model 
which consists of a multilayered network can be successfully 
used for recognition of stimulus patterns according to the 
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differences in their shapes. However, there is some debate that 
the true begging was when a paper in 1990 [2] demonstrated 
that a CNN model which aggregates simpler features into 
progressively more complicated features can be successfully 
used for handwritten character recognition. In 2012 the 
ImageNet Large Scale Visual Recognition Challenge [3], at 
that moment consisting of he 1000 categories and 1.2 million 
images received a submission that would propel the CNNs 
development once again. AlexNet [4] achieved a top-5 error 
of 15.3% , which at the moment surpassed by an astonishing 
10% all of the other submissions, and had a much faster 
training time as it was implemented on a GPU. The following 
year, the same challenge, now with a larger dataset was won 
by ZFNet [5]. It had the top-5 error of 14.8%, however even 
more so important is that it was able to reduce the first layer 
filter size from 11 11 to 7 7 and had a stride of 2, rather 
than 4 in the pooling layer.  

VGG16 is a convolutional neural network model proposed 
in the paper [6]. This model achieved 92.7% top-5 test 
accuracy. The main contribution of this model was that it used 
3 3 kernel sized filters, instead of the 7 7 . It was trained 
for weeks using GPUs, and had a huge computational cost. 
However, it introduced a new idea using the same kernels 
throughout the entire architecture, this aided in generalization 
for classification problems outside of what they were 
originally trained on. If for a second we go back to LeNet [7] 
that was the foundation for all of these previously mentioned 
CNNs we can observe the main sequence of three layers 
convolution, pooling and non-linearity still play the key part, 
and sometimes it is beneficial not to import to many layers 
when training a smaller dataset [8]. Finally, in recent years 
transfer learning [9], which addresses crossdomain learning 
problems by extracting useful information from data in a 
related domain and transferring them for being used in target 
tasks, has been demonstrating a significant impact. 

Pneumonia is one of the main causes of death amongst 
children, it was stated that 19% of all deaths of kids aged 5 
years and less is connected with a viral or bacterial pneumonia 
[10]. Today, pneumonia is the single leading cause of 
mortality in young children according to the World Health 
Organization (WHO). An even scarier report made by WHO 
says that 95% of new-onset childhood clinical pneumonia 
occurs in developing countries, many of them located in 
Africa and South Asia [11].  

The lungs of humans are made up of small sacs called 
alveoli, which fill with air when a healthy person breathes, in 
turn when a person with pneumonia breathes the alveoli 
which are filled in this case with pus and fluid, blocking the 
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oxygen from arriving to the lungs, limit the capacity to intake 
oxygen. One of the main ways to have a proper diagnosis is 
radiographic data. X-rays can help in distinguishing between 
different types of pneumonia. However, since rapid 
interpretation of images is sometimes very hard, especially in 
developing countries, new methods are always sought after 
and proposed.  

For that reason, an idea to battle this kind of a problem was 
proposed in a brilliant paper [12] published in 2018 which 
suggested image-based deep learning to identify various 
medical diagnoses, including the chest X-ray images from 
children. Using convolutional neural networks, transfer 
learning to be precise, they achieved an accuracy of 92.8% in 
distinguishing between normal and pneumonia images, over 
the course of 100 epochs. Moreover, in stating this the central 
goal of this paper is to try and implement a simpler CNN to 
combat this classification problem, all the while by using less 
epochs and if possible obtaining a slightly better classification 
accuracy.  

This paper is organised in the following manner: section 2 
represents a description of a dataset which is used in the 
training and validation of the proposed neural network. In 
section 3 the main methods which are used are explained in 
detail, as well as the architecture of the CNN. As a result, in 
section 4 we discuss the results and compare the methods, 
based on accuracy and loss functions. In section 5, following a 
short summary a conclusion is made and future work and 
possible directions are stated.  

II. DATASET AND ITS IMPLEMENTATION 

The dataset which is used in this paper consists of 5856 
chest X-Ray images from children [13], including 4392 
pneumonia ray (bacterial and viral) and 1464 normal. Being 
that the dataset consist of a couple of thousand pictures, there 
is no need to take an approach of data augmentation, where 
we increase the diversity of data by altering the original 
samples using translation, rotation, shearing, flips and adding 
them to the training set. However, we observe that the 
pneumonia part of the dataset is much larger than the part of 
the normal set, almost 4 times as big, resulting in a class 
imbalance. One way to correct this, so that our neural network 
may learn appropriately and not pick the pneumonia label 
naturally is to scale the data. This can be done by computing a 
weight for each class during the training, resulting in an array 
[1, 3] , and as an outcome amplifying the loss by a larger 

weight when we approach normal data. In this example 
treating an instance of normal as 3 instance of pneumonia, 
aids in this disproportion.  

During the preprocessing of images we resized all the 
images to a fixed size 64 64 , and in doing so we also 
maintained the aspect ratio. The reasoning behind this being 
that all the images in a dataset need to have a fixed feature 
vector size. This means all the images will have identical 
widths and heights, making it easier to quickly load and 
preprocess a dataset and briskly move through our 
convolutional neural network. The aspect ratio will enable us 

to resize the images along the shorter dimension, be it width 
or height, and in cropping it, will maintain the ratio. It is 
important to note that this step is not necessary if you are not 
working with a difficult dataset. Notwithstanding its benefits, 
it was implemented in this particular dataset. 

A. ImageNet dataset 

ImageNet is a dataset consisting of over 14 million images, 
which belong to one thousand classes. It was used as the 
dataset in the highly respected convolutional neural network 
model VGG16 which was proposed by Oxford scientists. In 
this paper the VGG16 network was used as a pre-trained 
convolutional neural network, in order to incorporate transfer 
learning and compare it to the original paper [12], mentioned 
beforehand, as well as the architecture that we propose. 

III. METHODS DESCRIPTION 

In order to try and reduce overfitting and increase our 
classification accuracy on the chest X-ray dataset we endeavor 
in performing two types of neural network training 
techniques: 

- dropout and decay (with and without batch 
normalization),  

- transfer learning (neural networks as feature extractors) 
The first technique that is used in order to improve the 
generalization error in the convolutional neural network is 
dropout [14]. Dropout is nothing more than a form of 
regularization, which succors us in controlling the model 
capacity. The dropout layers are arranged in the network in 
such a manner that we have randomly disconnected nodes by 
a probability of 0.25 in the first few layers; and with a double 
increase in probability in the last layer. The reason for this is 
that if the first layers are dropped by a higher probability, then 
that will later affect the training. The dropout is implemented 
after the pooling layer, and before the next convolutional layer 
(or last flatten and dense layers). Decay that is used in this 
neural network is a standard decay that can be obtained using 
the Keras library in Python. Since the learning rate  controls 
the step that is made along the gradient, larger steps are 
usually used in the beginning to make sure that we do not 
stagnate in the local optima, while smaller steps are used 
deeper in the network and near the end of the convolution in 
order to converge to a global minimum. We have initialized 
the learning rate to be 0.05, and applied the following formula 
to adjust it after each epoch, 

1 1
i

i k i


   

                 (1) 

where  is the current learning rate, i is the epoch and k is 
the decay calculated as the division between the learning rate 
and the number of epochs. This type of adjustment of the 
learning rate each epoch, can increase accuracy, as well as 
reduce the loss function and the time necessary to train a 
network. Batch normalization [15] is used to normalize the 
activations of a given layer’s inputs by applying mean and 
standard deviation before passing it onto the next layer. In 
addition, the covariate shift refers to a change in the 
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distribution of the input variables which are present in the 
training and validation data. Since it has been proven that the 
training of the neural network is the most coherent when the 
inputs to each layer are alike, the main intention is that even 
when the explicit values of inputs layers to hidden layers 
change, their mean and standard deviation will still remain 
relatively the same, thus reducing the covariate shift. Batch 
normalization has demonstrated an immensely effective 
approach to reducing the number of epochs necessary for 
training by allowing each layer to learn independently. Here 
the idea that differs from the original paper and is first 
proposed in [16] states that the batch normalization should be 
implemented after the activation layer. The main reasoning 
behind this is that we want to avoid setting the negative values 
coming out of the convolution layer to zero. Instead we pass 
them through the batch normalization layer, right after the 
activation (ReLU) layer, and assure that some of the features 
that otherwise would not have made it do. This yields a higher 
accuracy and lower loss, and is to this day a debate amongst 
the creators of Keras. 

Finally, the second technique is transfer learning [17], a 
machine learning technique where networks can behave as 
feature extractors. Transfer learning is nothing more than the 
ability to use a pre-trained model to learn patterns from data, 
on which the original network was not trained on. As 
previously stated deep neural networks trained on a large scale 
dataset ImageNet have demonstrated to be superb at this task.  

When treating networks as feature extractors we choose a 
point, in this case before the fully connected layer and remove 
it. Subsequently, in this particular example while using the 
VGGNet pre-trained on the ImageNet we removed the fully 
connected layer and stopped at the last pooling layer where 
the output shape is 7 7 512  , 512 filters with the size 7 7 . 
Now, our feature vector has 7 7 512 25088   values and it 
will be used to quantify the contents of the images, which 
were not included in the original training process. The format 
which allows us to extract these features is the hierarchical 
data format version 5 (hdf5), which is used to store and 
organize large amount of data.  

Transfer learning is an optimization, which has been proven 
to yield a better performance and drastically save time. This is 
precisely why we used it in this paper, to see if we could 
obtain a higher classification, and perform faster. Transfer 
learning relaxes the hypothesis that the training data must be 
independent and identically distributed with the test data, 
which we clearly stated as a must in the beginning of this 
chapter. Moreover, transfer learning is able to solve the 
problem of insufficient training data. Furthermore, there is the 
option to remove the fully connected layers of the existing 
network in order to add a new fully connected layer to the 
CNN and fine tune the weights to recognize object classes. 
However, here it was not implemented since treating networks 
as arbitrary feature extractors was enough. 

In the following sections we will demonstrate the 
architecture of a CNN that is based on VGGNet, its 
implementation with and without batch normalization, and 

additionally transfer learning will be presented instead of the 
CNN that was previously explained. 

A. Convolutional Neural Network architecture 

Into the bargain all that was explained, we picked the 
following CNN architecture shown in Fig. 1. It is consisted of 
multiple convolutional and pooling layers, as well as the fully 
connected layers. The first two convolutional layers learn 32 
filter each with a size 3 3 . 

 
 
Fig. 1.  A schematic of the convolutional neural network without batch 
normalization, that resembles the VGGNet. All of the convolutional layers 
that precede the fully connected layers have filters 32, 64, 128 that are the 
same size 3 3 . The probability distribution is applied in the last layer using 
Softmax and the output yields two class labels normal and pneumonia.  

 
Sequentially, the fourth and the fifth layers learn 64 filters 

with the size 3 3  and the last two learn 128 filters with the 
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size 3 3 . The pool layer is used to reduce the computational 
load and the number of parameters, thus reducing the risk of 
overfitting. We used a max pooling layer with a pool size  
2 2 and a stride 2. Finally, we have the fully connected layer 
which consists of 8192 parameters, input values which learn 
512 nodes. The activation layers which were used are 
Rectified Linear Unit (ReLU) defined as, 

( ) max(0, )f x x                  (2) 

where x is the input into the neuron. 
Softmax or the normalized exponential function assigns 
normalized class probabilities for each prediction, and is 
represented by, 

( )

1

yie
S yi yk j

e
j





                 (3) 

for 1, ...,i k and ( , ..., )1
kz zk z  . 

Softmax takes an input vector and normalizes it into a 
probability distribution between [0,1] . Therefore the sum of 

all output values is equal to 1, which in turn makes the 
training converge more quickly. In order to achieve this, 
before training we must include one hot encoding in order to 
convert the labels from integers to vectors. 

In addition, later when we want to add the batch 
normalization layer, we can apply it after each activation 
layer, as discussed previously. 

B. Implementation and training of a much simpler version of 
the VGGNet  

Taking into the bargain all that was explained before, the 
implementation of this CNN was done by using the Python 
programming language. We used Keras [18] which is mainly 
used for implementing of activation functions, optimizers, 
convolutional and pooling layers, and is actually able to do 
backpropagation automatically.  

Right after we load and preprocess our images dataset it is 
necessary to use one hot encoding. This is done by using a 
part of the Sklearn library LabelBinarizer. However 
beforehand we must split the training data and the validation 
data, here we opted to split it 75% and 25%, sequentially. The 
next step is the implementation of an optimizer, here we used 
the stochastic gradient descent (SGD) optimizer. The SGD 
optimizer was set to a learning rate of 0.05  , with a decay 
in order to slowly reduce the learning rate over time and 
converge to the global solution more efficiently. Decaying the 
learning rate is beneficial in reducing overfitting and 
obtaining a higher classification accuracy. The smaller the 
learning rates are, the smaller the weight update will be 
enabling us to converge. The gradient descent method is an 
iterative optimization algorithm that operates over an 
optimization surface. It is a simple modification to the 
standard algorithm of gradient descent. The main purpose of 
SGD is to calculate the gradient and adjust the weights of the 
training data (but not on the whole dataset, but rather on a 
mini batch). The mini batch method is a blend of the SGD and 

batch methods were the neural network selects a part of the 
training data and updates the weights, but trains the network 
with the average weight update. Usually the smallest standard 
batch size which is used is 32, however we opted to use 24, as 
it complemented our data. The reasoning behind this is that 
present research confirms that using small batch sizes 
achieves the best training stability and generalization 
performance, for a given computational cost, across a wide 
range of experiments. The loss function which was used is the 
binary_crossentropy function. This was done because we only 
had two classes, if there were more we would have had to use 
categorical_cross_entropy, but have in mind we could have 
used categorical as well, but studies show that binary is much 
more efficient in this case. 

The training was done on 30 epochs since it was enough to 
achieve satisfying results. After the training we implemented 
a method that takes the weights and the state of the optimizer 
and serializes them to the disc in a hdf5 format, in order to 
load them and test the labeling.  

C. Implementation using transfer learning 

The first step in this process is to extract features from 
VGG16, in doing so we are forward propagating the images 
until a given layer, and then taking those activations and 
treating them as feature vectors. Here the main two 
differences are that we used the standard a batch size of 32 
and the training and test split is done at the same time as 
training, we again split it into 75% training data and 25% test 
data. Once the extraction of the features was done, we trained 
the classifier on those features. We also implement the 
GridSearchCV class to assists us to turn the parameters to the 
LogisticRegression classifier.  

The final results are presented in the following chapter, 
comparisons are made and a visual representation of the 
graphs is shown using Matplotlib in order to estimate if there 
is overfitting. 

IV. RESULTS AND COMPARISONS 

The results of the CNN without batch normalization are 
presented in Table 1. We clearly see that our neural network 
has classification accuracy of 95%. In the following table we 
use the term precision which represents true positive divided 
by a sum of true positive and false positive, recall which 
represents true positive divided by a sum of true positive and 
false negative.  

Therefore, precision is good to determine when the cost of 
false positives is high, on the other hand recall tells us the 
number of correctly labeled data. Ultimately, we have the f1-
score used to find the weighted average of recall and 
precision. In analyzing the curves shown in Fig. 2 we see that 
our network learned until the 30 epoch, beyond that was 
simply not necessary since we already had excellent results. 
We can also observe that our loss and accuracy curves both 
almost match for training and validation, with slight 
deviations.  
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Fig. 2.  A graph depicting a convolutional neural network without batch 
normalization, that resembles the VGGNet – training and validation loss and 
accuracy curves 
 

In Fig. 3 we can see how the labeling looks, when we use 
the trained and saved model to label the data with this 
obtained accuracy. 
 

 
 

Fig. 3.  The pre-trained CNN weights are loaded from the disk and make 
predictions for 30 randomly selected images. In the upper left and right corner 
we have an example of normal lungs, and in the lower left and right corner an 
example of pneumonia lungs. 
 
In Table 1 we see that the CNN with batch normalization 
obtained the same classification accuracy of 95% after 30 
epochs.  
 

TABLE I 
EXPERIMENTAL RESULTS 

 

 precision recall f1-score 
CNN without batch normalization 

macro avg 0.95 0.94 0.95 
CNN with batch normalization 

macro avg 0.95 0.95 0.95 
Transfer learning using VGG16 

macro avg 0.97 0.96 0.96 
 
However, in analyzing the curves shown in Fig. 4 we see that 
our network learned until the 30 epoch, because further 
training past epoch 30 would result in overfitting and a wider 

generalization gap (loss function - the gap between the 
training loss and validation loss). 
 

 
 

Fig. 4.  A graph depicting a convolutional neural network with batch 
normalization, that resembles the VGGNet – training and validation loss and 
accuracy curves 
 
In Table 1 we can see the results obtained by using transfer 
learning have a classification accuracy of 97%, which is by far 
the best. Furthermore, we observe that the CNN with batch 
normalization had a higher recall and a problem with 
overfitting past epoch 30, therefore the CNN without it seems 
like a better choice. Nevertheless, it is clear then when taking 
into account all three approaches we shall choose transfer 
learning, because not only does it yield a higher classification 
accuracy, but it also wasted less computational time. In 
addition when compared with the results of the paper [12], 
where transfer learning is also used and the acquired accuracy 
is 92.8% over the course of 100 epochs, a higher classification 
accuracy is obtained over the course of 30 epochs by 
implementing simpler CNNs and transfer learning. 

V. CONCLUSION 

In this paper we described three different approaches of 
using convolutional neural networks to classify a dataset 
consisting of normal and pneumonia infected lungs. We used 
a CNN that we constructed based on the VGGNet and 
implemented it with and without batch normalization. 
Furthermore, we used a transfer learning technique by 
extracting features of the neural network VGG16 trained on 
the ImageNet dataset.  The main idea of this paper was to see 
if a different approach can have better results on this 
particular dataset, as well as see if a smaller neural network 
could have almost as good classification as transfer learning. 
The final results, when compared had a higher classification 
accuracy by a couple of percentages, and also achieved so in 
just 30 epochs, as opposed to 100 epochs, so we can conclude 
the goal was obtained. 

Further research will focus on implementing different types 
of optimizers, including metaheuristic algorithms as 
optimizers. Also, we will focus on battling larger datasets and 
obtaining high classification accuracy using various methods.  
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