
  

Abstract— Chest X-rays are one of the first medical imaging 
tools used for correctly assessing different causes of pneumonia. 
With the recent spread of the SARS-CoV-2 virus, fast diagnostics 
and differentiation of the COVID-19 disease from other causes 
(bacterial or viral) is important. In this study we evaluated four 
different neural network architectures and applied transfer 
learning in order to try to detect and classify pneumonia in 
patient images in a 4-class problem (normal, viral, bacterial and 
COVID-19). We applied data augmentation on the outnumbered 
COVID-19 class and compared the effects of single end-to-end 
network training to a two-stage variant. The best results were 
obtained using the ResNet50 model with an average cross-
validation accuracy of 89.97%. Across all models the COVID-19 
and normal X-ray images showed very high precision and 
sensitivity scores. 

 
Index Terms—Chest X-ray, Deep Learning, Convolutional 

Neural Networks, COVID-19, SARS-CoV-2, Pneumonia 
 

I. INTRODUCTION 
The increase and spread of registered cases of COVID-19 

has accentuated the importance and accelerated development 
of efficient and reliable methods for diagnosis of this viral 
disease [1]. The fast commonly used diagnostic technique is 
real-time reverse transcription-polymerase chain reaction (RT-
PCR) [2]. However, low sensitivity of RT-PCR test (60%–
70%), and the deficit of the tests in developing countries 
emphasize the role of chest radiology (computed tomography 
and X-ray) and blood analysis in diagnostics and timely 
treatment [3]. The main features of pneumonia caused by 
SARS-CoV-2 on the X-ray images are peripheral and lower 
lobe predominant rounded airspace opacities and multifocal 
rounded opacities and nodules [4] with multifocal non-
peripheral airspace opacities being less pronounced as a 
feature.   

The urgency created by the COVID-19 pandemic requires 
fast diagnostics and differentiation of the COVID-19 caused 
pneumonia cases from other such as bacterial or viral). Early 
detection of pneumonia development is another goal, as it 
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largely influences the flow and consequences of the disease. 
Even before the COVID-19 cases, pneumonia was one of the 
leading causes of death among children under 5 years old and 
lower respiratory tract infections (LRTI) responsible for 2.8 
million deaths annually [5]. As one of the first examinations 
when COVID-19 or LRTI are suspected, both X-ray or CT 
scans provide useful resources for a machine learning 
approach to pneumonia detection and classification. The 
abundance of new cases facilitate data gathering purposes and 
support further improvements towards development of an 
automatic diagnostic support model.  

Deep learning techniques have already been applied to the 
problem of pneumonia detection in X-ray images [6] showing 
that an accurate deep learning model can assist in diagnosis, 
especially when medical expertise or experience are 
insufficient. COVID-19 has been an incentive to speed up the 
progress in this area. The literature review from 2020 exhibits 
the performance of many well-known pre-trained 
architectures in pneumonia detection and classification tasks. 
ResNet50, InceptionV3 and InceptionResNetV2 pre-trained 
models with ImageNet [7] data were used in [8] with an 
average accuracy of 98%, 97% and 87% for the three models 
respectively for a binary classification problem between 
normal and COVID-19 cases with only 50 samples per class. 
In [9] the pretrained 121-DenseNet model was used, as in [6], 
achieving an accuracy of 87.2% for a 4-class classification 
problem between normal chest X-ray scans and 3 different 
pneumonia cases caused by bacteria, viruses or COVID-19. 
However, the dataset used in [9] was heavily imbalanced with 
155 sample images of the COVID-19 class whereas the 
images for other classes were taken from [10]. Regarding the 
same 4-class classification problem with a balanced dataset of 
around 300 samples per class, authors in [11] used the 
Xception model pre-trained on the ImageNet data, where they 
achieved an accuracy of 89.5%. In these works, a small set of 
COVID-19 image data was available, both [8] and [11] 
focused mainly on end-to-end training of the used pre-trained 
models without resorting to data augmentation techniques.  

In this work we evaluate several ImageNet pretrained 
models on the 4-class classification task using an expanded 
chest X-ray dataset from healthy patients and patients with 
bacterial, viral and COVID-19 induced pneumonia. 
Additionally, we compare the results obtained from end-to-
end training of the models and a two-stage training process 
associated with transfer learning and fine-tuning. 
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II. MATERIALS AND METHODS 

A. Database 
In this study two publicly available databases were used. 

Images representing classes of normal X-rays, viral X-rays 
and bacterial X-rays were collected from the Chest X-Ray 
Images (Pneumonia) database [10], while the COVID-19 
images class were collected from the COVID-19 Radiography 
Database [12]. 

The databases contain a total of 5669 samples, of which: 
1575 samples from the class of normal X-rays, 2530 samples 
from the class of bacterial images and 1345 from the class of 
viral images. The COVID-19 class, however, only had 219 
samples which were taken from 137 patients. The initial 
database used in this research was designed so that 15% of the 
patients with COVID-19 were moved to the validation and 
test set with only 1 unique image per patient. The same 
number of X-ray images are taken from other classes for the 
validation and test set as well. The rest of the image samples 
were used as the training set. The number of samples by class 
is shown in Table I. As the number of samples of the COVID-
19 disease class was significantly smaller than the number of 
samples in other classes, the COVID-19 samples were 
augmented using random rotation by 15⁰, zooming in the 
range from 0.8 to 1.2 pixels, image rotation around the 
vertical axis and translation by up to 0.1 fraction of total width 
and height of the image. This resulted in a database with 
approximately balanced classes. All of the input images were 
scaled to 224x224 pixels. A sample image for each class is 
presented in Fig. 1.  

B. Baseline deep learning models 
Deep learning is a powerful framework for supervised 

learning which benefits from adding more layers and more 
units to achieve excellent performance in modeling complex 
functions, given sufficiently large labeled dataset [13]. Large 
datasets facilitate the use of larger models, offer better 
generalization, with the burden placed on the training process 
in terms of time and computational power, which is balanced 
by advances in hardware, software and parallelization [14].  
For smaller data sets, overfitting can be prevented using pre-
trained network models [15], which are usually trained on 
very large datasets, such as the ImageNet database, and used 
for feature extraction. 

In this study, 4 different pretrained models were evaluated: 
ResNet50 [16], InceptionV3 [17], InceptionResNetV2 [18] 
and Xception [19].  

 
TABLE I 

NUMBER OF SAMPLES PER CLASS FOR THE INITIAL DATABASE 

Set 
Class      

Training Test  Valid. 

Bacterial 1308 21 21 
COVID19 
augmented 1304 21 21 

Normal 1310 21 21 
Viral 1290 21 21 

 
 

Fig. 1.  Sample input from a) bacterial, b) COVID-19, c) viral and d) normal 
X-ray images. 
 

The ResNet50 [16] model is based on a residual training 
mode to simplify the learning of deep neural networks. The 
network architecture involves reformulating the layers so that 
they learn the residual functions depending on the input 
layers. The depth of the residual network is 8 times larger than 
the VGG [20] network, but it is less complex. 

The InceptionV3 [17] model allows for an expansion of 
depth and width of deep neural networks in a way that does 
not require more computing power. The model generates 
features on several levels using 1x1, 3x3 and 5x5 convolution 
filters. 

InceptionResNetV2 [18] is a model that combines 
Inception models and residual models. It has been shown that 
training with residual connections significantly speeds up 
training compared to the Inception model itself. It has also 
been proven that the combination of these two models gives 
better results compared to the individual models. 

The Xception [19] model represents such an architecture of 
a convolutional neural network in which the convolutional 
layers are completely separated. Specifically, the hypothesis 
behind the Xception model architecture is as follows: 
mapping correlations between channels and spatial 
correlations in feature maps can be completely separated. 
Network architecture consists of linearly arranged separable 
convolutional layers with residual connections. 

All of the models show exceptional results on the ImageNet 
dataset classification problem, making them powerful feature 
extractors and classifiers. Using the stored model weights as 
the learned knowledge, the networks can be applied on a new 
set of data using transfer learning by detaching the original 
classification layers and training only the specific 
classification layers needed for the required 4-class problem.  
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Fig. 2.  Deep network architecture used for the experiments. 
 

The models’ performance can then be additionally improved 
by fine-tuning the original baseline model weights to the input 
data, as the original set of classes didn’t include X-ray images. 
This allows the network to adjust its original weights to the 
new data, thus enabling it to better suit the new classification 
problem. This is usually done with a lower learning rate to 
prevent the model from completely forgetting the valuable 
knowledge initially learned on the large dataset. 

C. Network architecture and model training 
The network architecture used in this work is presented in 

Fig 2. After one of the mentioned base models, a classification 
layer is added which consists of a global average pooling 
(GAP) and two fully connected (FC) layers. The models were 
constructed using the Tensorflow 2.0 library. 

Three different strategies were used to train the classifier 
with each baseline model: 

- the first approach involved unlocking all layers of the 

pre-trained model.  
- the second involved a two-step training procedure: in the 

first step, the layers of the base model were frozen, 
while in the second step, these layers were fully 
trainable. 

- the third additionally introduced a dropout layer before 
the classification layers and performed two-step 
training as in the second experiment.  

All models were trained using all three strategies. In the 
first experiment for all baseline models, the parameters for the 
Adam [21] optimizer, the learning speed and the epsilon 
parameter were set to 10-5 and 0.1, determined empirically. 
For the two-step training methods, the initial training of 
classification layers was done with a default learning rate of 
0.001, while the second training was done with a learning rate 
of 10-5 and epsilon of 0.1. The size of the batch was 32. In the 
training process the early stopping method was used, which 
monitored the validation loss and stopped the training if the 
validation loss didn’t improve for 15 epochs. With the 
obtained optimal epoch number, new models and datasets 
were constructed from the original images in a cross-
validation fashion. The number of folds was 5 and the split 
between the new training and test sets was 80%-20% with 
data augmentation being applied to the COVID-19 class in a 
similar way as with the initial training. In this case, there 
wasn’t a need for a validation set as model parameters were 
already determined in advance.  

 
TABLE II 

AVERAGE MODEL EVALUATION METRICS 
 

 Experiment 1 Experiment 2 Experiment 3 

Model Class Accuracy 
[%] 

Precision 
[%] 

Sensitivity 
[%] F1 Accuracy 

[%] 
Precision 

[%] 
Sensitivity 

[%] F1 Accuracy 
[%] 

Precision 
[%] 

Sensitivity 
[%] F1 

R
es

N
et

50
 0 

87.75 
 

71.53 83.49 0.77 

87.41 

74.37 82.62 0.78 

89.97 
 

80.26 84.90 0.82 
1 98.52 97.26 0.98 97.04 98.62 0.98 97.78 99.31 0.99 
2 96.32 97.22 0.97 96.38 93.07 0.95 99.26 95.19 0.97 
3 84.63 75.31 0.79 81.85 77.12 0.79 82.57 81.42 0.82 

In
ce

pt
io

nV
3 0 

87.96 
 

75.21 81.92 0.78 

86.07 
 

72.46 82.37 0.77 

87.43 
 

76.64 83.77 0.80 
1 96.30 97.88 0.97 96.32 97.83 0.97 96.32 98.60 0.97 
2 96.32 93.17 0.95 94.89 91.98 0.93 95.61 91.81 0.94 
3 84.02 79.49 0.81 80.32 74.21 0.77 81.14 77.15 0.79 

In
ce

pt
io

n 
R

es
N

et
V

2 

0 

87.41 
 

73.02 85.82 0.79 

85.40 
 

73.76 77.52 0.76 

87.96 
 

74.42 85.49 0.79 
1 95.61 97.83 0.97 95.58 98.51 0.97 95.58 99.31 0.97 
2 95.58 93.74 0.95 94.07 92.91 0.93 94.84 94.23 0.94 
3 85.42 74.59 0.80 78.17 73.84 0.76 87.01 76.32 0.81 

X
ce

pt
io

n 

0 

89.48 
 

78.23 87.77 0.82 

87.86 
 

76.80 86.42 0.81 

87.51 
 

73.76 87.13 0.80 
1 97.78 97.11 0.97 94.84 98.60 0.97 96.30 98.62 0.97 
2 95.66 93.91 0.95 97.12 91.17 0.94 98.52 89.96 0.94 
3 86.27 80.80 0.83 82.67 78.03 0.80 81.77 76.19 0.79 
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A new model is then trained for each variant of the 
baseline network and for each of the three strategies and for 
each testing fold of the cross-validation. 

III. RESULTS 
Table II presents the average evaluation results for 

different architectures and training strategies over different 
folds using accuracy, precision, sensitivity and F1 measure. 
The classes numbers from 0 to 3, correspond to bacterial, 
COVID-19, normal and viral class respectively. In the case 
of the ResNet50 and InceptionResNetV2 models, the 
performance of the models indicated the improved 
performance when the two-step training strategy was used. 
The pre-trained ResNet50 model has achieved the overall 
best results with an accuracy of 89,97%, whereas the 
InceptionResNetV2 had an accuracy of 87,96%. In most 
cases, adding the dropout layer before the classifier 
improved the two-step training process. The Xception and 
InceptionV3 models achieved their best score of 89,48% and 
87,96% using the first training strategy. Overall, the best 
precision and sensitivity is obtained on the COVID-19 class, 
with the normal class following it. The most difficult task 
proved to be distinguishing between the bacterial and viral 
classes. 

IV. CONCLUSION 
From an engineering point of view, the research showed 

that it is possible to use pre-trained architectures in order to 
detect and classify different types of pneumonia, including 
COVID-19. In general, the two-stage training strategy 
provided better results in almost all of the baseline models. 
The analysis of confusion matrices indicated COVID-19 X-
ray scans can successfully be differentiated from images of 
viral pneumonia. As the network is trained and tested on a 
limited input of COVID-19 cases, improvements are 
expected by including more patient images to the current 
database. Additionally, further testing can be done on other 
non-explored pretrained deep neural models such as the 
EfficientNet series, NASNet or DenseNet models, as well as 
trying out simpler models.  
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