
  

Abstract—Widespread usage of wavelets in signal analysis 
places this method in a very high position in many researches, 
especially when audio signal classification is in focus. Wavelets 
have become an unavoidable segment in signal processing whose 
nature leads to more comprehensive results in comparison with 
standard methods, like Fourier transform. There are many 
wavelet families that have been developed in quite different 
forms for different purposes. In this paper, a selected set of 
wavelets is used in the decomposition of direct current (DC) 
motor sounds to detail and approximation coefficients for the 
purposes of finding the most suitable wavelets for audio feature 
analysis. Selection of wavelets is done according to the obtained 
results, taking into account all available wavelets in Matlab 
software package. DC motor sounds are recorded in two 
different conditions: laboratory condition and factory condition, 
although only those from the laboratory are presented here. 

 
Index Terms— Wavelet families; Detail coefficients; 

Approximation coefficients; Audio features; DC motor sounds.  
 

INTRODUCTION 
Considering the applicability of wavelets, they have been 

used in many of scientific fields including mathematics, 
signals processing, acoustics, telecommunications, biomedical 
engineering, etc [1]. Due to their nature and potentials, we can 
say that the wavelets are quite widespread today. The 
wavelets are able to overcome some important problems of 
standard signal processing methods, such as Fourier 
transform. Consequently, the wavelets are located high on the 
scale of signal processing algorithms [2].  

Almost every programing language has built in the 
wavelets algorithms for different purposes, like C, C++, 
Python, Java and many others [3,4]. It is also important to 
stress that functions related to wavelets are typically 
compatible in different programming platforms. Recently, the 
most popular programs for implementing wavelets are Matlab, 
LabVIEW, SciLab, Octave, etc [3,4].  

De-noising using wavelets is widespread nowadays. It can 
be found in speech, audio signal and image processing. 
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Methods of wavelets decomposition into detail and 
approximation coefficients lead to applications like feature 
extraction, classification, focus stabilization in video signals, 
image compression, motion detection and others [4,5]. The 
results obtained with wavelets are in most cases better than 
using other algorithms.  

Looking from the historical point of view, wavelets take 
roots in Fourier’s researches, but Alfred Haar first mentioned 
real term and mathematical representation of wavelets, after 
which this wavelet was named Haar wavelet family [6]. After 
that, a number of scientist have researched and “upgraded” the 
existing algorithm to its new and more advanced forms, which 
have spread to many areas as mentioned above. Some of the 
proposed wavelets are named after the scientists who invented 
them like: Gabor, Morlet, Daubechies, etc. Many of new 
wavelets are just upgraded version of the old ones. From the 
perspective of the Matlab software package, there are several 
wavelets that are the most common in different processing 
tasks like: Haar, Daubechies, Coiflets, Symlet, biorthogonal, 
reverse biorthogonal and Meyer [7]. 

In this paper, focus is on usage of different wavelet families 
in audio feature extraction of direct current (DC) motor 
sounds. For this purpose, more than 60 DC motor sounds are 
investigated, both faulty and non-faulty ones, recorded in the 
laboratory condition. Analysis is done in accordance with the 
wavelet nature, and the recorded audio signals are 
decomposed into detail and approximation coefficients. These 
coefficients have strong relation to audio features, since they 
can be treated as wavelet-based features that can be used for 
future classification [8]. One of the main goals of this research 
is to create potentials to make a difference between faulty and 
non-faulty motors using sound that they generate. Impact of 
using different wavelet families in extraction of wavelet-based 
features is analyzed here. The analysis is done in Matlab 
software package, and the most representative examples are 
presented in this paper. 

WAVELETS 
It is well known that wavelets are developed during the past 

century. All started with Haar, as it was mentioned, but a 
number of different wavelet functions have emerged in the 
meantime, developed from the existing ones or developed as 
completely new ones [6,9]. The basic wavelet function is 
given in (1): 
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where a and b are the scaling and translation parameter, 
respectively [10]. Appropriate selection of parameter’s (a and 
b) values is very important for the correct purpose of the 
wavelet function [10,11]. 

The most applications based on wavelets functions 
basically use the discrete wavelet transformation (DWT), 
whose algorithm is developed on signal decomposition into 
detail and approximation coefficients using high-pass and 
low-pass filters, as it was presented in Fig. 1 [7,8]. where, LP 
is low-pass filter, HP is high-pass filter, A stands for 
approximation coefficients, D stands for detailed coefficients 
and 2↓ is down-sampling. 

 

 
Fig 1. Block diagram of wavelet decomposition. 

 
From the group of wavelet families, Haar (haar in Matlab) 

is the simplest in mathematical form. It is identical to 
Daubechies 1 (db1 in Matlab) [6,11]. Equations (2) and (3) 
give the analytic form of Daubechies 1 or Haar wavelet 
function: 
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If the order of Daubechies wavelet is increased, its analytic 

form becomes more complicated. It is worth mentioning that 
extension of the Daubechies wavelet family by introducing 
new functions of higher order leads to a wider usage of this 
wavelet family in various applications [6,11]. 

In collaboration with Ingrid Daubechie, Ronald Coifman 
invented wavelet families named Coiflets (coif in Matlab). 
These wavelets are more symmetric and have more vanishing 
moments than the Daubechies wavelets. From the application 
point of view, both (Coiflets and Daubechies wavelets) give 
good results, especially when feature extraction is in focus 
[6,11]. 

Symlets are proposed by I. Daubechie as modification of 
Daubechies wavelets (properties are nearly the same), and in 
the most cases they provide similar results as Daubechies 
wavelets [6,12]. Comparing the shapes of these wavelets 
(their wave presentation), they can be seen as reflections of 
each other. 

Group of wavelets that are different from orthogonal 
wavelets (Daubechies, Coiflets, Symlets, Meyer) contains 
biorthogonal compactly supported spline wavelets [6,11]. 
These wavelets are grouped in biorthogonal and reverse 
biorthogonal wavelets (bior and rbio in matlab, respectively). 
Main features of these wavelets are symmetry and exact 
reconstruction, which is possible with finite impulse response 
filters (FIR filters) [6,11]. 

Yves Meyer proposed Meyer wavelet (dmey in Matlab) as 
another orthogonal wavelet family. The most common usage 
of this wavelet is in multi-fault classification, adaptive 
filtering and fractal random fields [11,13]. 

METHODS OF ANALYSIS 
More than 60 DC motor sounds are recorded in the 

laboratory environment, while only some representative 
examples are chosen for presentation here. Approximately 
half of them are faulty motors, and other half belongs to non-
faulty motors. The motors are driven in two directions of 
rotation. Due to simplicity and having in mind that the results 
for these two directions are similar, only the results for one 
direction of rotation (direction 1) are presented in this paper. 
All sounds are recorded with microphone which is placed in 
the vicinity of motors, sampled at 16 kHz. Length of the 
recorded signals is around 2 s. 

Investigation process starts with segmentation of each 
signal, as explained in some of previous papers of the authors 
[8]. Segmentation is done using the segment size of 50 ms and 
overlap between segments of 50% (25 ms). In the literature, it 
can be found that different authors use different size of 
segments and overlap [12,14]. There is no any formal rule 
what segment and overlap size to apply, although in a number 
of studies the segment and overlap size are the same as 
implemented her [14]. 

Next step is wavelet-based feature extractions. It involves 
wavelet decomposition process described in Fig. 1. Here, each 
segment is decomposed with the wavelets into detail and 
approximation coefficients (high and low frequency 
components) at each level of decomposition. In this research, 
the decomposition level varies from 1 up to 8. So, in that 
manner, the obtained detail coefficients are observed at 8 
different levels. Besides the level of decomposition, different 
wavelet families are applied in this research in order to 
analyze their effects on the extracted wavelet-based audio 
features, that is, the detail coefficients. Haar and Meyer 
wavelets have only one its kind in Matlab, while other 
wavelets (Daubechies, Coiflets, Symlet, biorthogonal and 
reverse biorthogonal) have many different types that can be 
chosen. For instance, Daubechies has more than 45 types in 
Matlab [7]. In this research, all of the mentioned wavelet 
families are used, however not all the types, but only the 
chosen ones.  

From the obtained detail coefficients at each level and for 
every segment, absolute value is first calculated, and then the 
mean value is applied. Standard deviation (std) of the absolute 
value of detail coefficients is also calculated and used in this 
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research. However, since the results obtained with standard 
deviation and mean value generally show similar trends, and 
the results obtained using the mean value are more consistent 
and stable, focus is only on those results here. 

Besides the analysis carried out in the domain of wavelet-
based features, the recorded signals for non-faulty and faulty 
motors are compared also in the time and frequency. All 
processing is done in Matlab software package with standard 
commands for wavelet analysis: wavedec for wavelet 
decomposition, appcoef and detcoef for obtaining the 
approximation and detail coefficients, abs and mean for 
calculating absolute and mean values, respectively [7,8]. 

Special attention is paid to differences between non-faulty 
and faulty motors in all used domains - time and frequency 
domain, but also in the domain of wavelet-based features 
(detail coefficients and values calculated from them). 

RESULTS 
Several different cases of correlation between the results in 

time/frequency domain and wavelet-based features domain 
are identified in this research. Two of them, considered to be 
the most common ones, are presented here. The first case is 
related to scenario where there are visible differences between 
non-faulty and faulty motors in both spectra and detail 
coefficients. The second scenario is opposite to the first one, 
and consists of samples where differences between non-faulty 
and faulty motors are negligible in all considered domains. In 
other words, there are no significant differences between them 
in time signals, spectra or detail coefficients. 

A. Prominent differences between non-faulty and faulty motors 
The first domains that are observed are time and frequency 

domains. Characteristic examples of time domain signals and 
spectra for one non-faulty and one faulty motor are shown in 
Fig. 2. In this and other figures given in the rest of the paper, 
the style of lines is the same: blue solid line for non-faulty 
motors, and red dashed line for faulty motors. 
 

 
 

Fig. 2. Characteristic example of prominent differences between signals 
(sounds) of non-faulty (blue) and faulty (red) DC motors: a) time domain, b) 
frequency domain 

Comparing these two domains, time domain is the one 
where it is the most difficult to notice difference between the 
motors. The amplitude of the motor sound typically shows 
some fluctuations in time. Since most of energy is located at 
low frequency, the slower fluctuations that corresponds to 
these low frequency components are more prominent in the 
time domain signal. 

On the other hand, frequency domain analysis can provide 
visible differences between compared motors (non-faulty and 
faulty ones), see, for example Fig. 2(b). In this particular 
example, more prominent differences exist at mid and high 
frequencies (above 500 Hz). 

In order to understand in an easier way, the ratio standing 
behind the correlation between differences in the considered 
domains, especially in the frequency and wavelet-based 
features domains, the decomposition process using the 
wavelets is explained here from another perspective. All 
signals are sampled at 16 kHz, so the maximum frequency in 
signals is 8 kHz. At the first level of decomposition, signal 
passes through a high pass and low pass filter. Signals at the 
filters’ output are down sampled by 2, generating the detail 
and approximation coefficients (the procedure is illustrated in 
Fig. 1). In the frequency domain, this decomposition 
corresponds to dividing the frequency range by 2 in two 
subranges. Thus, the detail coefficients at decomposition level 
1 correspond to frequency range from 4 kHz to 8 kHz. In this 
manner, the detail coefficients at decomposition level 2 
correspond to the frequency range from 2 kHz to 4 kHz, etc 
[15]. 

The next step in signal processing is the segmentation and 
calculation of wavelet-based features (the detail coefficients 
and their mean and std values from the segments). Fig. 3 
presents the detail coefficients of the signals from Fig. 2 
generated using Daubechies 2 wavelet after applying the 
absolute values to the detail coefficients and mean values of 
those absolute values from the segments. 

 

 
Fig. 3. Detail coefficients obtained after applying Daubechies 2 wavelet to 
segmented signals (with taking coefficient absolute value and mean value) for 
non-faulty (blue) and faulty motor (red), and using the decomposition levels 
from 1 to 8. 
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Now, the differences between non-faulty and faulty motors 
can be compared observing both frequency domain, see Fig 
2(b), and features domain, see Fig. 3. In both domains, the 
differences are prominent at the decomposition levels from 1 
to 4, that is, in the spectra, in the frequency range from 
500 Hz to 8 kHz. In order to clarify the relation between the 
frequency ranges and the decomposition levels, the vertical 
lines are shown in Fig. 2(b) splitting the frequency range. 
Daubechies 2 wavelet provides good results in this case, and 
the differences between the motors are prominent. Other 
wavelet families need to be considered in this regard, too. 

It is already mentioned that the Daubechies wavelet family 
consists of more than 45 types. Several of them are applied in 
this research (Daubechies 4, 5, 6, 8, 15), and all of them give 
similar results as Daubechies 2. In Fig. 4, the wavelet-based 
features for the decomposition levels 1 and 3 calculated using 
the wavelet families Symlet, Coiflets, Meyer, biorthogonal 
and reverse biorthogonal are presented. 

 

 
Fig. 4. Detail coefficients of segmented signals (with taking coefficient 
absolute value and mean value) obtained for non-faulty (blue) and faulty 
motor (red), and using the decomposition levels from 1 and 3, after applying 
wavelet: a) Haar, b) Symlet 4, c) Coiflet 3, d) Meyer, e) biorthogonal 1.1 and 
f) reverse biorthogonal 6.8; the case where differences between motors are 
prominent. 

 
All the results presented in Fig. 4 are very similar with 

those ones obtained using the Daubechies 2 wavelet at the 
decomposition levels 1 and 3. This means that the shapes of 
the wavelet-based features obtained using different wavelets 
are not completely the same, but there are significant 
differences between non-faulty and faulty motors. For all 

other levels, the situation is almost the same. For some 
wavelets, the differences between the motors are somewhat 
larger, while for some other they are somewhat smaller. 

Another comparison of effects of using different wavelets is 
given in Fig. 5, where detail coefficients at the decomposition 
level 2 are presented for several wavelets. Daubechies 2 is 
chosen as the reference one to be compared with the others. 
The results (wavelet-based features) for the Symlet 15 wavelet 
are rather similar to the ones for the Daubechies 2, since these 
two algorithms are rather similar to each other in the 
mathematical representation [6]. The results for other two 
wavelets are more interesting to analyze. Biorthogonal 3.9 
leads to smaller differences between coefficients for the non-
faulty and faulty motor in the first half of the segments (in the 
first part of the wavelet-based feature). The differences get 
larger in the second part of the feature. In the case of reverse 
biorthogonal 6.8 wavelet, the differences are even greater than 
those obtained with Daubechies 2 and Symlet 15 wavelets.  

 

 
Fig. 5. Detail coefficients of segmented signals (with taking coefficient 
absolute value and mean value) for non-faulty (blue) and faulty motor (red) 
and using the decomposition level 2, after applying wavelet: a) Daubechies 2, 
b) Symlet 15, c) biorthogonal 3.9, d) reverse biorthogonal 6.8; the case where 
differences between motors are prominent. 

 
Generally speaking, all wavelet families whose results are 

presented here provide useful results in the feature separation 
(distinction between non-faulty and faulty motors). The 
literature proposes usage of some wavelets more than others 
[12,16]. In similar manner, here several promising wavelet 
families are identified for a particular task of making a 
difference between non-faulty and faulty DC motors. 

B. Negligible differences between non-faulty and faulty motors 
In the second analyzed case, the differences between non-

faulty and faulty motors are either small or do not exist at all. 
A few facts can be attributed to this phenomenon. One is that 
faulty motor do not have serious faults in their construction 
and work. If it is so, its sound can be very close to the non-
faulty motors. Another option is that a motor is characterized 
as faulty by mistake.  

An illustrative example of a pair of non-faulty and faulty 
motor from this case (scenario) is given in Fig. 6, where time 
and frequency domain of motor sounds are presented. In both 
domains, the differences between these motors are negligible. 

When these signals are segmented and decomposed into 
detail and approximation coefficients, the obtained results 
using the Daubechies 2 wavelets are presented in Fig. 7. In 
this case, there are some minor differences at the levels 1 and 
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2. However, they are much smaller than those given in Fig. 3. 
At the other decomposition levels (from 3 to 8), the trends for 
the wavelet-based features are very similar for non-faulty and 
faulty motors. This means that wavelet-based features for the 
non-faulty motor coincide very well with the features for the 
faulty motor. There are certain differences in the feature 
values in particular segments, but they are not large enough 
and consistent to make a distinction between these motors. 
 

 
Fig. 6. Signals (sounds) of non-faulty (blue) and faulty (red) DC motors and 
negligible differences between them: a) time domain, b) frequency domain. 

 

 
Fig. 7. Detail coefficients after applying Daubechies 2 wavelet to segmented 
signals (with taking coefficient absolute value and mean value) for non-faulty 
(blue) and faulty motor (red), and using the decomposition levels from 1 to 8; 
the case where differences between motors are negligible. 

 
The analysis continues using different wavelet families for 

signal decomposition and features extraction. In Fig. 8, some 
characteristic results for wavelet-based features from this case 
are shown at the decomposition levels 2 and 3. Here, the same 
wavelets are used as in Fig. 4. The results are similar for all 
these wavelet families, where differences between non-faulty 
and faulty motors are generally small again. For some 
wavelets, they are slightly larger, such as Meyer and reverse 
biorthogonal 6.8 at the decomposition level 3, while for the 
other wavelets the differences are slightly smaller.  

 

 
Fig. 8. Detail coefficients of segmented signals (with taking coefficient 
absolute value and mean value) for non-faulty (blue) and faulty motor (red), 
and using the decomposition levels 2 and 3, after applying wavelet: a) Haar, 
b) Symlet 4, c) Coiflet 3, d) Meyer, e) biorthogonal 1.1 and f) reverse 
biorthogonal 6.8; the case where differences between motors are negligible. 

 
The level 4 in the decomposition process with Daubechies 

2 wavelet (Fig. 7) shows somehow interesting behavior. In the 
beginning of the wavelet-based feature, there is a peak for the 
faulty motor leading to a certain difference between motors in 
this part of the feature. This is why, and similar as done in 
Fig. 5, the results for different wavelets (Daubechies 2, 
Symlet 15, biorthogonal 3.9 and reverse biorthogonal 6.8) and 
only decomposition level 4 are presented in Fig. 9. The 
mention peak is present in all given features. It is also noticed 
that the features of the non-faulty motor obtained using 
Symlet 15 and biorthogonal 3.9 wavelets has somewhat larger 
fluctuations than in other two cases. 

For this case (scenario) of negligible differences between 
motors, it is important to emphasize that wavelet-based 
features (the detail coefficients) behave in similar manner as 
the spectra of corresponding signals meaning that the 
differences between non-faulty and faulty motors are either 
not present or they are rather small. Another observation is 
that there are no significant differences among the wavelets 
whose results are presented here. 

To quantify the differences between the wavelet-based 
features for non-faulty and faulty motors, a quantity named 
feature difference is calculated in two ways. This quantity is 
obtained as the mean of differences between the features from 
all segments normalized by the mean feature value. This mean 
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of differences is calculated taking into account either signed 
differences between features (difference A) or absolute value 
of the differences (difference B). The results for the analyzed 
cases (prominent and negligible differences between non-
faulty and faulty motors) are presented in Fig. 10. Both 
differences A and B are larger at the decomposition levels 
from 1 to 4 in Fig. 10(a). Larger values of difference A show 
consistent trend of having larger feature values for one of the 
motors in most of the segments. This is not the case with the 
difference B showing larger values wherever there are larger 
differences in feature values for most of segments 
independently of the sign of these differences. 

 

 
Fig. 9. Detail coefficients of segmented signals (with taking coefficient 
absolute value and mean value) for non-faulty (blue) and faulty motor (red) 
and using the decomposition level 4, after applying wavelet: a) Daubechies 2, 
b) Symlet 15, c) biorthogonal 3.9, d) reverse biorthogonal 6.8; the case where 
differences between motors are negligible. 

 

 
Fig. 10. Differences A and B between wavelet-based features for non-faulty 
and faulty motors at different decomposition levels for (a) prominent and (b) 
negligible differences between these motors 

CONCLUSION 
Wavelets usage in different fields of research becomes 

more spread every day. The exemplary applications include 
feature extraction and classification. This is enabled by its 
ability to decompose a signal into detail and approximation 
coefficients that could be used as features. 

Two typical cases of correlation between the results for the 
DC motor sounds in frequency and feature domain are 
investigated in this research, the one where there are obvious 
differences between non-faulty and faulty motors and another 
one where differences are either very small or they are not 
present at all. More than 60 motors are included in the 
analysis using various wavelet families: Haar, Daubechies, 
Coiflets, Symlet, biorthogonal, reverse biorthogonal and 
Meyer. The decomposition is done from the level 1 to the 
level 8, and all processing is done in Matlab software 
package. Besides in the feature domain, the signals also are 
observed in the time and frequency domain. Special attention 
is paid to the relation between the results in different domains. 

The presented results show that wavelets can be used for 

obtaining the audio features from DC motor sounds. The 
features are calculated applying the segmentation first, then 
wavelet decomposition, and some basic operations such as 
absolute and mean value on the generated detail coefficients. 

Regarding the wavelets applied for the purpose of feature 
extraction, the effects of changing the wavelet function on the 
extracted features are not that large if the function belongs to 
the set used in this research.  
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