
  

Abstract—Performance of previously developed maximally 
orthogonalized higher order basis functions implemented in the 
large-domain finite element method are additionally evaluated in 
two numerical examples. In our previous work these basis 
functions were used only for non-radiating problems. In order to 
expand their scope, and make them suitable for radiating 
problems also, in this work these basis functions are combined 
with the first order absorbing boundary condition. It is shown 
that this does not degrade their superiority regarding the 
condition number. 

 
Index Terms—Condition number; finite element method; 

higher-order basis functions; higher-order modeling; numerical 
analysis; orthogonal functions.  

 

I. INTRODUCTION 
TWO most popular numerical techniques for solving 

general linear electromagnetic (EM) problems in the 
frequency domain are the finite element method (FEM) [1, 2] 
and the method of moments (MoM) [3, 4]. After expanding 
EM quantities in terms of basis functions and unknown 
coefficients, the final system of linear equations must be 
solved, which can represent a significant percentage of the 
total simulation execution time. There are several algorithms 
for solving systems of linear equations (iterative methods 
being some of them). In any case, larger systems of equations 
require more computational recourses and more time to be 
solved. 

It is generally accepted that div- and curl-conforming 
higher-order basis functions are more efficient then low-order 
functions [5, 6], i.e., that they yield a smaller system of linear 
equations for the same accuracy, compared to low-order basis 
functions. Unfortunately, in their original form, hierarchical 
higher-order basis functions possess significant linear 
dependence, which leads to ill-conditioned system-matrices. 
This, in turn, limits the maximal order of basis functions in 
the mesh [7], and disables the efficient usage of iterative 
solvers [8, 9]. 

Great amount of work has been done within the community 
in attempts to construct more orthogonal and linearly 
independent basis functions [10-14]. In [15] a general theory 
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of maximally orthogonal div- and curl-conforming 
higher-order basis functions is presented for generalized 
wires, quadrilaterals and hexahedra. Explicit expressions for 
these basis functions are presented up to the eight order and 
numerical results are presented for the MoM-SIE. In [16] 
maximally orthogonal basis functions where implemented in 
the higher-order large-domain FEM, and the novel two-term 
recurrent formulas for their calculation were developed.  

As a continuation of our work in [9], [15] and [16], here we 
evaluate the accuracy and orthogonality of the maximally 
orthogonal basis functions in the higher-order large-domain 
FEM in two numerical experiments. As an addition to the 
numerical experiments from [16], these examples cover 
problems frequently encountered in engineering practice.  

The rest of this paper is organized as follows. To keep the 
paper self-contained, the relevant theory of the higher order 
large-domain FEs is given in Section II. Three types of basis 
functions (classical, near-ortho and max-ortho), used in the 
higher-order FEM, are presented in Section III. Results of 
numerical experiments are presented in Section IV, and the 
concluding remarks are given in Section V. 

II. HIGHER ORDER LARGE-DOMAIN FINITE-ELEMENT 
TECHNIQUE 

As a basic element for the geometrical modeling of 
arbitrary shaped 3-D electromagnetic (EM) structures in the 
FEM, we use a generalized curved parametric hexahedron [6] 
whose geometry is defined as 

 
,1,,1

,)()()(),,(
0 0 0

≤≤−

= ∑∑∑
= = =

wvu

wLvLuLwvu
u v w

wvu

K

m

K

n

K

l

K
l

K
n

K
mmnlrr  (1) 

where mnlr  are the position vectors of the interpolation nodes, 

uK , vK , and wK  are the geometrical orders of the element 

along u-, v- and w-parametric coordinates, and uK
mL , vK

nL , and 
wK

lL  are the Lagrange interpolating polynomials [6]. 
Equation (1) defines a mapping from a cubical parent domain 
( 1,,1 ≤≤− wvu ) to the generalized hexahedron, as illustrated 
in Fig. 1. All parameters of a FE, such as its basis functions, 
are defined in the parent domain and mapped through (1) to 
the global domain, i.e., to the xyz-coordinate system in Fig. 1. 

In the FEM formulation, we start from the curl-curl electric 
field vector-wave equation [6] 
 0r
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1
r =ε−×∇µ×∇ − EE k , (2) 
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where rε  and rµ  are complex relative permittivity and 
permeability of the medium, E  is the electric-field complex 
intensity vector, 000 µεω=k  is the free-space wave 

number, 0ε  and 0µ  are permittivity and permeability of free 
space, and ω  is the angular frequency of the implied time-
harmonic excitation. Inside each element we approximate the 
electric-field intensity vector as 
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where uijkf , vijkf , and wijkf  are the curl-conforming vector 

basis functions, uN , vN , and wN  are adopted orders of the 
electric field expansion, and uijkα , vijkα , and wijkα  are 

unknown field-distribution coefficients to be determined by 
the FEM [6].  

 

 

Fig. 1.  Cube to hexahedron mapping defined by (1). 
 
A standard Galerkin-type weak-form discretization of (2) 

yields [9] 
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where V  is the volume of the element, kji ˆˆ̂f  stands for any of 

the testing functions, S  is the surface of the element, and n  
is the outward unit normal to the surface of the element. (In 
the Galerkin method, testing functions are the same as the 
basis functions.) Electric field expansion from (3) is 
substituted in (4), leading to the final system of linear 
equations with unknown coefficients uijkα , vijkα  and wijkα . 

In the final discretized form of (4) the first integral on the 
left-hand side produces the entries of the FEM stiffness 
matrix, whereas the second integral produces the entries of the 
FEM mass matrix [1]. 

In the higher-order finite-element technique we use, basis 
functions are constructed from polynomials [6]. For the same 
field-expansion orders [ uN , vN , and wN  in (3)], namely for 

the same degree of polynomial approximation of the EM field 
distribution, these polynomials can be arranged in different 
ways and different polynomials can be assigned to different 
basis functions [16]. Regardless of the way in which the 
polynomials are arranged, they span the same space and they 
equivalently approximate the EM field. On the other hand, 
they result in different stiffness and mass matrices and they 
produce different systems of linear equations. Because of this, 
by starting from one arrangement of polynomials in original 
basis functions, we can rearrange them in order to get the 
system of linear equations best suited for solving by standard 
numerical procedures. The condition number of the matrix is 
one of the parameters describing the corresponding system of 
equations in this sense, and, generally, matrices with smaller 
condition number are preferable, i.e., yield numerically more 
stable solutions. 

III. BASIS FUNCTIONS AND THEIR ORTHOGONALITY IN THE 
HIGHER ORDER FEM 

The curl-conforming basis functions can be represented as 
[6] 

 
,)()()(

,)()()(
,)()()(

w
kjiwijk

v
kjivijk

u
kjiuijk

wPvSuS
wSvPuS
wSvSuP

af
af
af

=
=
=

 (5) 

where ua , va  and wa  are reciprocal unitary vectors defined 
as 
 ,Jwv

u aaa ×=     ,Juw
v aaa ×=     ,Jvu

w aaa ×=  (6) 
J  is the Jacobian of the covariant transformation 
 ( ) wvuJ aaa ⋅×= , (7) 

and ua , va  and wa  are unitary vectors defined as 
 ,dd uu ra =   vv ddra =   and  ,dd ww ra =  (8) 

with r  given in (1). 
Two basis functions if  and jf  are said to be orthogonal if 

their inner product is equal to zero [15, 16], i.e., if 

 0d, =⋅= ∫
V

jiji Vffff , ji ≠ , (9) 

where V  is the volume of the particular FE. Based on (9), 
basis functions belonging to different elements are inherently 
mutually orthogonal. 

The orthogonality condition (9) takes into account the 
polynomial form of the basis functions, but also the geometry 
of the particular element [through the unitary and reciprocal 
unitary vectors, as well as the Jacobian appearing in (5) and 
(6)]. The orthogonality condition defined this way is very 
restrictive, so it is very challenging to develop basis functions 
orthogonal in this sense for a general (curved) FE. Because of 
this, we will consider less general and less restrictive 
orthogonality condition in which it is assumed that a FE has 
mutually orthogonal coordinate lines with constant unitary 
and reciprocal unitary vectors. In this particular case, the basis 
functions orthogonality defined in (9) can be reduced to the 
orthogonality of P- and S-functions from (5) [15, 16]. We will 
thus consider the two basis functions to be mutually 
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orthogonal if their P- and S-functions satisfy 
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Based on this we can define the orthogonality factors for P- 
and S-functions as [15, 16] 
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Next, we consider three types of basis functions and their 
orthogonality: classical basis functions (CLBFs), near-ortho 
basis functions (NOBFs), and max-ortho basis functions 
(MOBFs), and we examine their performance and behavior in 
the context of the higher order large-domain FEM. 

For CLBFs, P- and S-functions [in (5)] are defined as [5, 6, 
15, 16] 
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S-functions ( jS , 0≥j ) can be divided into two groups: 0S  

and 1S  will be called node S-functions, and jS , 2≥j , will 

be called segment S-functions, as in [15, 16]. Only basis 
functions with appropriate node S-functions establish the 
continuity of the tangential component of the electric field at a 
face shared by adjacent elements, making them 
curl-conforming. 

For near-ortho basis functions, P- and S-functions are 
defined as [9, 11, 15] 
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where iL  are Legendre polynomials of order i .  
Max-ortho segment S-functions, jS , 2≥j , can be 

constructed in the form [15, 16] 
 )()()()( 22 vSDvLvLvS jjjjj −− +−= ,   2≥j , (15) 

and recurrent formula for the unknown coefficients jD  is 

derived in [16] 
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Max-ortho node S-functions, 0S  and 1S , can be 
constructed in the form [15, 16] 
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where N  is an appropriate field-expansion order and kS , 
Nk ≤≤2  are max-ortho segment S-functions from (15). The 

recurrent formula for the unknown coefficients kD0  and kD1 , 
Nk ≤≤2 , is determined in [16] 
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Notice that the max-ortho node S-functions are not 
mutually orthogonal, and that they are not hierarchical. The 
fact that these functions are not hierarchical has different 
practical implications in the FEM and the MoM-SIE, and this 
will be the subject of our future research. Additionally, in [17] 
it is shown that high-order Legendre polynomials and their 
derivatives cannot be calculated precisely simply by linearly 
combining power functions, and that they should be 
calculated recurrently. Thus, the max-ortho basis functions 
should also be calculated recurrently (as they contain 
Legendre polynomials in our implementation). Based on this, 
the recurrent formulas (16) and (18) are perfectly suited for 
efficient and precise calculation of the max-ortho basis 
functions. 
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Fig. 2.  Matrix form of orthogonality factors || P
ijo  (top row) and || S

ijo  (bottom 

row) for (a) classical, (b) near-ortho and (c) max-ortho basis functions.  
Absolute values of orthogonality factors P

ijo  and S
ijo  are 

plotted in Fig. 2 in the form of a matrix for CLBFs, NOBFs 
and MOBFs up to the ninth order (0 ≤ i,j ≤ 9), similarly as in 
[15, 16]. For CLBFs, the matrices of the orthogonality factors 

P
ijo  and S

ijo  [Fig. 2 (a)] have many non-zero elements, thus the 
majority of basis functions are not mutually orthogonal. For 
NOBFs, P-functions are completely mutually orthogonal and 
the matrix of the orthogonality factors P

ijo  is an identity matrix 
[Fig. 2(b)]. S-functions are not completely mutually 
orthogonal, but, when compared with CLBFs, the matrix of 
the orthogonality factors S

ijo  is sparser. Finally, as it can be 
seen from Fig. 2(c), max-ortho P-functions are completely 
mutually orthogonal, segment S-functions are completely 
mutually orthogonal (Region 1), node S-functions are 
completely orthogonal to the segment S-functions, (Region 2), 
node S-functions are not mutually orthogonal (Region 3), and 
the matrix of the orthogonality factors S

ijo  is the sparsest for 
the MOBFs. Based on these results, it seems reasonable to 
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assume that the MOBFs will lead to the smallest condition 
number of the FEM mass matrix, especially when the mesh 
consists of electrically large elements with high 
field-expansion orders. 

IV. NUMERICAL EXAMPLES 
In this section we examine the performance of MOBFs 

implemented in higher order large-domain FEM technique 
[6]. We also compare their performance with CLBFs and 
NOBFs, similarly as in [16]. In all numerical examples, the 
entries of the mass and stiffness matrices are diagonally 
normalized [15] by the entries on the main diagonal of the 
mass matrix and all real and complex numbers are represented 
in double-precision floating-point format. 

As the first example, consider a spherical perfect electric 
conductor (PEC) scatterer of radius m1=a , situated in free 
space. The scatterer is modeled with six second-order ( 2=K ) 
truncated square pyramid like elements, as shown in the inset 
of Fig. 3. These elements have inner radius m1=a  and outer 
radius m5.1=b  with the PEC boundary condition and 
first-order absorbing boundary condition (ABC) [18] applied 
to their faces that sit on the scatterer and outer surface, 
respectively. The scatterer is illuminated by a uniform plane 
wave. A bistatic radar cross-section (RCS) is calculated at 
frequency MHz300≈f  ( m10 =λ  being the corresponding 
wavelength in a free space). For all elements in the mesh, the 
field-expansion orders in all directions are set to be equal 
( NNNN wvu === ). 

When solving an EM eigenvalue problem (e.g., as in first 
two examples from [16]), FEM mass and stiffness matrices 
are kept separately, and a separate condition number can be 
calculated for each of them. In contrast with this, when 
solving radiation or scattering problems, FEM mass and 
stiffness matrices are combined, resulting in a final FEM 
matrix. As can be seen from Section II, computation of entries 
in the stiffness matrix includes the curl operator. The curl 
operator affects the basis functions, and mutually orthogonal 
basis functions generally are not mutually orthogonal after the 
curl operator has been applied. This will definitely degrade 
the orthogonality of the final FEM matrix compared to the 
orthogonality of the mass matrix. Nevertheless, it is 
reasonable to expect that max-ortho basis functions will lead 
to reduction of the condition number of the final FEM matrix 
compared to all the other types of basis functions. 

Fig. 3 shows the condition number of the normalized final 
FEM matrix for the spherical scatterer. The results for all 
three types of basis functions are compared. We can see from 
Fig. 3 that the MOBFs indeed produce the lowest condition 
number. When the CLBFs are used, the condition number 
increases rapidly, and it is expected that after reaching a peak, 
it will remain practically constant, similarly as in [16]. 

Fig. 4 shows the normalized 2L  error norm of the 
computed bistatic RCS [19] for the PEC spherical scatterer. In 
this example, all three types of basis functions yield similar 
accuracy in computation of the RCS. One of the main 

advantages of the max-ortho basis functions in this example 
would be the smallest condition number, which is a feature 
highly sought by the iterative solvers [16]. 
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Fig. 3.  Condition number of the final FEM matrix for the PEC spherical 
scatterer; comparison of MOBFs, NOBFs, and CLBFs.  
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Fig. 4. Normalized L2 error norm for the computed bistatic RCS of the PEC 
spherical scatterer; comparison of MOBFs, NOBFs, and CLBFs.  

 
As the second example, consider a waveguide band-pass 

filter, frequently encountered in engineering practice. The 
filter consists of an air-filled rectangular PEC waveguide with 
two PEC stubs in the form of rectangular cuboids. The 
waveguide is mm50=c  long with dimensions mm20=a  
and mm10=b in the cross-section, as shown in the inset of 
Fig. 5. The two stubs have a square cross-section, mm20 =a  
on a side, and they are set symmetrically in the waveguide. 
Their axes are separated by mm5.170 =c . 

The filter is meshed with eight trilinear ( 1=K ) elements. 
For all elements in the mesh, the field-expansion orders in all 
directions are equal and set to N  ( NNNN wvu === ). 

Fig. 5 shows the condition number of the final FEM matrix 
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for all three types of basis functions. We can conclude based 
on this figure that with p-refinement [6], the CLBFs lead to a 
drastic increase of the condition number. On the other hand, 
the MOBFs have the lowest condition number, whereas the 
difference in the condition number between the MOBFs and 
NOBFs is not very large. 
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Fig. 5. Condition number of the final FEM matrix for the waveguide band-
pass filter; comparison of MOBFs, NOBFs, and CLBFs.  

 

10.5 10.6 10.7 10.8 10.9 11.0 11.1 11.2 11.3 11.4 11.5
-35

-30

-25

-20

-15

-10

-5

0

5
s11

s21

s 11
 a

nd
 s 21

 (d
B

)

f (GHz)

     N
u
=N

v
=N

w
=9

 s11           s21
 Max-Ortho  
 Near-Ortho 
 Classical  
    HFSS    

 
Fig. 6. Scattering parameters of the waveguide band-pass filter; comparison 
of results obtained by HFSS and by the higher order FEM using MOBFs, 
NOBFs, and CLBFs.  

In order to evaluate the accuracy of the higher-order FEM 
analysis of the filter and validate the obtained results, we 
employ a HFSS [20] model for comparison. Fig. 6 shows the 
comparison of the scattering parameters (s-parameters) of the 
filter computed by our higher order FEM (for the dominant 
mode excitation) and by HFSS (a fully converged solution). 
For the higher order FEM, all three set of results (for CLBFs, 
NOBFs and MOBFs) are shown and we can see from the 
figure that the agreement of the results is excellent.  

V. CONCLUSION 
We evaluated the performance of the max-ortho basis 

functions in comparison with the classical and near-ortho 
basis functions using two numerical examples. For the 
scatterer analysis in open space we combined the max-orho 
basis functions with the first order absorbing boundary 
condition. The results show that the max-orho basis functions 
retain their superiority regarding the condition number. We 
also showed that the max-ortho basis functions lead to the 
smallest FEM matrix condition number in a waveguide filter 
analysis problem, which contains geometrically deformed and 
electrically small finite elements.  
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