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Abstract—A method for estimation of electrical distance be-
tween two realistic antennas, based on a MUSIC-type algorithm,
is proposed. A simple physical model of the antennas is assembled
in a full-wave electromagnetic simulation tool. The synthesized
signal accounts for the transfer function between antenna ports,
which is extracted from the electromagnetic simulation. The
method is verified through comparison with the actual distance
within the electromagnetic model and with the computed nor-
malized group-delay.

Index Terms—distance measurement; radio positioning; ToA
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I. INTRODUCTION

DEVELOPOMENT of the global navigation satellite sys-

tems (GNSS) and the increase of processing power of the hand-

held devices was immediately followed by development of in-

door positioning systems. Indoor positioning, as well as GNSS,

found their way to many commercial, military and safety-of-

life applications. In the heart of all positioning algorithms lies

the measurement of distance between the transmitter and the

receiver, using the information on the signal power, phase or

time of arrival (ToA) [1], [2]. The radio ranging algorithms

that are based on observation of the time of arrival (ToA) of

the signal, actually estimate electrical [3] rather than physical

distance between the transmitter and receiver antennas. The

antennas are often roughly approximated by point radiators,

which do not account for propagation of the signal within the

antennas themselves. The consequence of this mismodeling is

performance degradation of ranging, localization and direction-

of-arrival (DoA) estimators. The information on the propaga-

tion of the electrical signal in the antennas is carried within

the frequency- and angle-dependent phase and group-delay

characteristics of the transfer function between the antenna

ports [2], [4], [5]. In many cases, this transfer function cannot

be measured in situ. Since there is a constant demand for high-

level positioning accuracy, it is important to revisit the problem

of estimation of electrical distance with a careful modeling of

the received signal.

In this work we elaborate the signal model and propose

a MUSIC-type algorithm [6]–[8] for estimation of electrical

distance between two antennas in a typical narrowband ranging
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Fig. 1. Half-wave dipole and Yagi-Uda antenna, placed at distance d0 in the
simulated two-antenna scenario.

procedure. In order to assess the error contribution of the

ranging algorithm, we compare the estimates to the normalized

group delay, derived from the transfer function between the an-

tenna ports that is obtained from an electromagnetic simulation

of the scenario.

II. PROBLEM FORMULATION

We consider a system consisting of a transmitter and a

receiver antenna, set apart by physical distance d0 (Fig. 1).

The position of each of the antennas is determined by a fixed

point at or close to the geometrical center of the antenna in

question. The signal that is being transmitted is a periodic

sequence of N symbols and of bandwidth BW , modulated

at central frequency fc. It is assumed that the transmitter

and the receiver have perfectly synchronized reference clocks.

The problem in focus is estimation of the electrical distance

between the antenna ports for different orientations of the

transmitting antenna and different sequence lengths N . The

estimation is based on M transmitted frames of the a priori

known signal sequence.

III. ELECTROMAGNETIC SIMULATION SETUP

The setup for the electromagnetic simulation consists of a

transmitting three-element Yagi-Uda antenna (port 1) and a

receiving half-wave dipole antenna (port 2), placed in vacuum

at distance d0 = 5m, as shown in Fig. 1. The antennas are

realized as wire models in a full-wave solver WIPL-D Pro

[9]. They are optimized for operation at central frequency

fc = 1GHz, from which the central free-space wavelength

follows, λc = c/fc ≈ 0.3m. The radius of the model wires

is rw = λc/100. The Yagi-Uda antenna is inclined by angle

θ and is defined by the lengths of the reflector, feeder and
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Fig. 2. Scattering parameters of the two antennas for θ = 0
◦.

director elements, respectively: hr = 0.5λc, hf = 0.44λc

and hd = 0.43λc. The reflector and director are placed

at distances lr = 0.5λc and ld = 0.2λc from the feeder

element, respectively. The length of the receiving dipole is

hdip = 0.51λc.

The simulated scattering parameters (reflection and trans-

mission) of the antennas are shown in Fig. 2 for a wide

range of frequencies, where we can see that both antennas are

well matched at the central frequency. In our study we will

particularly observe the band of BW = 10MHz around fc. In

order to generate the receiving signal, the forward transmission

parameter s21(f), i.e. transfer function between ports 1 and 2,

has been recorded for different inclination angles θ ∈ [0◦, 75◦]
with a 5◦ step, and at N uniformly spaced frequency points

within the band of interest, i.e. the set of sample frequencies

is defined by fn = fc−BW/2+ (n− 1)BW/(N − 1), where

n ∈ {1, 2, ..., N}. This data will allow us to observe how the

signal-processing algorithm handles the angle-dependent phase

characteristic of the transfer function. In Fig. 3 example phase

and group delay characteristics of s21 are plotted with respect

to frequency. The group delay is derived from the transmission

parameter

τgd(f) = −
1

2π

d

df
arg{s21(f)}. (1)

IV. SIGNAL MODEL AND ESTIMATION ALGORITHM

The proposed bandpass signal consists of a periodic and or-

thogonal polyphase sequence of complex numbers, b ∈ C
N×1,

|bn| = 1. Such sequences are usually used in spread-spectrum

systems [10]. In our examples, the sequence is transmitted

in M consecutive frames. At the receiver side, the transmitted

frame is altered by the transfer function, which includes impact

of antennas and of the propagation path, with addition of white

noise. Therefore, the m-th frame received by the half-wave

dipole, xm ∈ CN×1, can be expressed as time-domain (TD)

baseband model

xm = aejγm + nm, m = 1, 2, ...,M, (2)

where γm is the constant corresponding to the initial phase

of the m-th frame and nm ∈ CN×1 is the noise vector. The

vector a is given by

a = (TW)H(ŝ21 ⊙ b̂), (3)
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Fig. 3. Phase and group delay of the transmission parameter s21 vs. frequency
for θ = 0

◦.

where W ∈ CN×N is the discrete Fourier transform (DFT)

matrix, T ∈ RN×N is the permutation matrix (shifts DC

component to the center of the spectrum)

T =

[

0 IN/2

IN/2 0

]

, (4)

IN/2 is the identity matrix of size N/2, b̂ = TWb ∈ CN×1

is the frequency-domain (FD) spectrum of the sequence,

ŝ21 ∈ CN×1 is the column vector containing samples of the

parameter s21(fn) for a particular inclination angle θ and d0.

The hat sign denotes FD magnitudes and ⊙ represents the

Hadamard product.

The comprehensive model of the received signal for an

unknown distance d and angle θ would be

ym = uae
jγm + nm, (5)

where ua = (TW)H(α̂ ⊙ β̂ ⊙ b̂), α̂ ∈ RN×1 is the

magnitude spectrum of the transfer function and the elements

of β̂ ∈ CN×1 are given by β̂n = ejφn , where φn = φ(fn)
is the discrete phase spectrum of the transfer function. Thus,

in such a model we have 2N unknown parameters. This

large estimation problem can be simplified using following

approximations: (i) Since the transmitted sequence is known

and its magnitude spectrum is flat [10], we can perform

magnitude equalization at the receiver and obtain the equalized

signal and its respective model for a single frame as

xeq
m = (TW)H(x̂m ⊘ |x̂|) ⇒ yeq

m = ueq
a
ejγm +nm, (6)

where |x̂| = 1
M

∑M
m=1 |x̂m| is the mean magnitude spec-

trum of x, the operator | . | returns the vector of element-

wise absolute values, ⊘ is the element-wise division and

ueq
a

= (TW)H(β̂ ⊙ b̂). (ii) Secondly, since the signal model

is narrowband, the phase characteristic is approximated by a

linear function, and therefore, according to (1), the group delay

is approximated by a constant τgd(f) ≈ τgd(fc) in proximity

of fc. It follows that β̂n ≈ v̂n(d) = e−j 2πfn
c

d, where it is

assumed that d ≈ cτgd(fc). Let us define a grid of distances
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dk, k = 1, 2..., K , that correspond to different traveling times

of the signal. We can now write the signal model for each

point on the grid

yeq
m (dk) ≈ u(dk)e

jγm + nm, (7)

where u(dk) = (TW)H(v̂(dk)⊙ b̂) and

v̂(dk) = [e−j 2π
c
dkf1 , e−j 2π

c
dkf2 , ..., e−j 2π

c
dkfN ]T (8)

is the delay manifold vector. This model is justified by the

level of collinearity of vectors u and equalized a from (3),

given as

aeq = (TW)H(v̂c ⊙ b̂), (9)

where v̂c(dk, fc) = [e−j 2π
c
dkfc , ..., e−j 2π

c
dkfc ]T. The mea-

sure of this collinearity is their scalar product χ(d, θ, fc) =
‖uHaeq‖/(‖u‖‖aeq‖). Our simulations show that for the

adopted set of parameters fc, BW , θ and d0, the collinearity

is as high as χ > 0.941.

The simplified model in (7) is analogous to the signal model

used in spatial (angular) domain for sensor arrays, where u

corresponds to the steering vector and γm to the phase at the

reference point of the sensor array. Due to this analogy, the

algorithms used for parameter estimation in angular domain,

e.g. MUSIC, can be applied in time-frequency domain. In order

to apply MUSIC, we define matrix X ∈ CN×M , which is

obtained by joining together M signal frames xeq
m , and the

estimation of its covariance matrix, RXX = 1
MXXH. Finally,

for given θ, we can write the MUSIC spectrum as

PMUSIC(dk) =
u(dk)

Hu(dk)

u(dk)HQnQH
nu(dk)

, (10)

where Qn ∈ CN×(N−1) is the noise subspace matrix of RXX

[7] and the denominator u(dk)
Hu(dk) represents a scaling

factor. The estimation of electrical distance between antennas

is obtained by

d̃(θ, fc) = max
dk

{|PMUSIC(dk)|}. (11)

V. NUMERICAL EXAMPLES

Besides the data acquired from the simulated scenario in

Fig. 1, in order to test the algorithm, we define here further

parameters of our experiment. We use sequences of differ-

ent lengths, N ∈ {16, 64, 256}. Such sequence is repeated

M = 100 times. For each inclination angle θ we perform 100
estimations of distance d, while the signal-to-noise ratio is set

to SNR = 30 dB. In this study, such relatively high SNR
level is chosen in order to distinguish the imperfections of

the transmission channel and of the algorithm from the noise

effects. The search space (range) for the estimated distance d̂
directly affects the size of the problem, i.e. the computation

time. However, since the physical distance between antennas is

known a priori, in this work, a range of only 1m is considered

in order to assess the accuracy of the proposed algorithm.

Therefore, the chosen grid resolution is ∆d = 0.1mm. The

results of the MUSIC estimations for N = 16, as well as the

normalized group delay at the central frequency cτgd(fc), are

shown in Fig. 4 with respect to θ. For each inclination angle, a
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Fig. 4. Estimation of electrical distance between antennas at different
inclination angles for N = 16. The dots represent single estimations, whereas
the solid line is estimated average for each inclination angle. Circles are
estimation based on the simulated group delay of the transmission channel.
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Fig. 5. Normalized root mean square of the estimation error vs. inclination
angle for different sequence lengths.

set of estimations is performed, the plot of which are given in

dots, whereas their average for the given angle is given in solid

line. The root mean square (RMS) of the estimation error with

respect to cτgd(fc) vs. inclination angle for different sequence

lengths is given in Fig. 5.

In the first place, we see in Fig. 4 that the estimation

obtained through MUSIC algorithm fits very well to the

prediction given by the computed group delay, even for a

relatively short sequence, when N = 16. This verifies the

methodology for assessing the algorithm performance, using

electromagnetic simulation and proper reference magnitudes.

Furthermore, we notice that the relative discrepancy between

the simulated physical distance and the normalized group

delay is |d0 − cτgd(fc, θ)|/λc ∈ [1.19, 2.71]. This result might

seem surprising, knowing that the maximal diameter of the

simulated Yagi-Uda antenna is 0.84λc and that of the dipole

is 0.51λc. In general, the discrepancy stems largely from
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the geometrical and electrical properties of the antennas and

the environment, which condition the phase characteristic of

the total propagation path. The example illustrates effectively

the realistic error levels in narrowband ranging applications,

in case no calibration of the group-delay bias is available.

Finally, in Fig. 5 we observe that the contribution of the

algorithm itself to the estimation error is relatively small.

Already for N = 256, the RMS of the error with respect to

cτgd(fc) approaches 0.75% in terms of λc, which corresponds

approximately to 2.25mm. The results in Fig. 5 show that the

accuracy doubles if the length of the sequence is increased

four times.

VI. CONCLUSION

A method based on a MUSIC-type algorithm for estimation

of the electrical distance between two antennas is proposed.

The estimation results are compared to the normalized group

delay, obtained from the electromagnetic simulation of the

scenario. The obtained ranging accuracy increases linearly

with the length of the signal sequence and can reach only

a fraction of the free-space wavelength. Due to the group-

delay variations and simplifications of the signal model, the

estimated electrical distance contains a bias error with respect

to the physical distance, which can exceed the size of the

antennas. This fact is important in distinguishing properties of

the estimation algorithm from the inherent physical properties

of the transmission channel.
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