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Abstract—In this paper, a system for vowel recognition using 

formant analysis and neural network is described. Complete 

procedure for vowel recognition which consists of historical 

dataset forming, dataset preprocessing, power spectral density 

estimation, formant extraction and neural network training and 

testing is given. Finally, gain results are discussed and it is shown 

that with first three formant frequencies and with appropriate 

neural network architecture vowels can be classified and 

recognized with big accuracy.     

 

Index Terms—formant frequencies; vowel recognition; neural 

network.  

 

I. INTRODUCTION 

Automatic speech recognition (ASR) is scientific field 

which attracts scientist and researches for more than 60 years. 

Full development of this scientific field has happened with the 

transition from analog to digital systems. Recently, with 

global technological development, ASR has gained 

application in large number of applications that can be found 

in everyday life [1]. 

    In this paper automatic vowel recognition using formant 

analysis and neural network is described.  It is known from 

acoustic theory of speech production, that every uttered vowel 

has three main resonant frequencies which are called formant 

frequencies or just formants [2, 3]. In this paper is described 

complete procedure for automatic vowel recognition. First 

step was forming of dataset which consists of recorded vowels 

uttered by male speakers. After that, dataset was processed for 

noise cleaning and for extraction of useful part of every 

recorded vowel. After dataset preprocessing, power spectral 

density estimation of signals is performed, so formants could 

be extracted [4]. After power spectral estimation, first three 

formant frequencies were extracted from each vowel using 

adaptive algorithm. Extracted formants were used for neural 

network training [5, 6]. After training, neural network was 

tested on new vowels that were not in historical dataset. Very 

good results were gained during training and during neural 

network testing. System for automatic vowel recognition 
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using formant analysis and neural network gave good results 

and did recognition with big accuracy. It is shown that first 

three formant frequencies can make good classification 

between vowels and with good neural network design system 

can make vowel recognition with big accuracy. On Fig.1 

algorithm for vowel recognition is shown. 

 

 
 

Fig.1. Algorithm for vowel recognition. 

 

First four steps of the algorithm were performed in 

programming language Matlab, while neural network training 

and testing was performed in programming language Python. 

 

II. ACOUSTIC THEORY OF SPEECH PRODUCTION 

In acoustic theory term sound refers to vibration. Vibrations 

are the cause of sound waves production, which propagate due 

to particle oscillating in the medium through they travel. 

Because of that, basic principles of physics must describe 

production and propagation of sound in vocal tract. For vocal 

tract modeling, detailed acoustic theory must take into 

account next factors: time variability of the shape of vocal 

tract, losses due to thermal conductivity and viscous friction 

on the walls of the vocal tract, softness of the walls of the 

vocal tract, radiation of sound on the lips, acoustic relation 

between oral and nasal cavities and sound source in the vocal 

tract [3]. In this paper simplified mathematical model is taken 

which neglects the above factors. The simplest model which 

can describe the process of speech production is shown on 

Fig.2. Vocal tract is modeled as a tube of uneven, time-

varying cross-section. 

Frequency characteristic of vocal tract is defined as ratio 

between the complex amplitude of the volumetric air flow at 

the end and the beginning of the tube. In the field of ASR 

resonant frequencies of vocal tract tube are called formant 

frequencies or just formants. 
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Fig.2. a) Vocal tract model b) Transfer function of vocal tract cross-

section, ),( txA . 

  

Formant frequencies depend on the shape and dimensions 

of the vocal tract. Therefore, the spectral properties of the 

speech signal change over time with the change in the shape 

of the vocal tract. The bandwidth of the first formant (first 

formant frequency) is mainly determined by the vibration of 

the walls. The bandwidths of the second and third formant 

frequencies are determined with the combination of the effects 

of wall vibrations and radiation on the lips. At high 

frequencies, the influence of radiation on the lips is dominant, 

which at these frequencies overcomes the influence of wall 

vibrations, friction and thermal conductivity. Information 

about the content of the speech signal is hidden in the first two 

formants, while the third and fourth formant refers to the color 

of the voice [3].  

 

III. RECORDING OF VOWELS  

 The first step in making a system for vowel recognition 

was vowel recording. Vowels are voices that arise with quasi-

periodic excitation, where the function of cross-section of the 

vocal tract is stationary. The way in which the cross section of 

the vocal tract changes determines the resonant frequencies of 

the tract (formants) and thus the sound is produced. Each 

vowel can be characterized by the function of cross-section of 

the vocal tract used in its production. It is obvious that this is 

very imprecise characterization due to the natural differences 

that exist between the vocal tracts of different speakers. The 

second representation is trough the resonant frequencies of the 

vocal tract. Also, in this case, there are numerous variations 

that are expected for the same vowel that is uttered by a large 

number of different speakers. The period of the basic 

frequency of oscillation of the vocal cords, i.e. the period of 

the glottal wave is called the pitch period. It ranges from 

7 8( )ms for men, about 4 5( )ms for women and about 

2.5 3.5( )ms for children. In other words, the fundamental 

frequency of vocal cord is about 100 120( )Hz  for men, about 

200 250( )Hz for woman and about 300 350( )Hz for children. 

For this reason, the formant frequencies for female speakers 

and children are shifted relative to the formant frequencies for 

male speakers. In Table I are shown first three average 

formant frequencies for vowels uttered by male (native 

English) speakers [3]. 

 
TABLE I 

FORMANT FREQUENCIES FOR MALE SPEAKERS 

 

 

Because of different values of formant frequencies for male 

and female speakers and children it would be a very difficult 

task to make a unique algorithm for vowel recognition for 

vowels uttered by men, women and children. For this reason 

we decided to make an algorithm for vowel recognition 

uttered only by male speakers.  Original base of vowels 

consisted of 500 uttered vowels. Ten male speakers uttered 

each vowel for 10 times. Recording of each vowel lasted 2 

seconds with sample frequency of 8 kHz. The sample 

frequency was chosen in order to satisfy Shannon’s sampling 

theorem [7]. 

 

IV. DATASET PREPROCESSING 

After recording of vowels, next step was dataset 

preprocessing. All vowels were filtrated for removing of noise 

and high frequencies that are not of interest for first three 

formant frequencies seeking. On Fig.3 speech signal which 

represents uttered vowel “a” after filtering is shown.  

 

 
Fig.3. Uttered vowel “a” after filtering. 

 

 After filtering, it was necessary to extract only useful part 

from recorded signals. As we can see from Fig.3 beginning 

and the end of recorded signal is useless for further analysis, 

because it is part of a signal which represents silence. Good 

solution for extraction of useful part of the speech signal is 

calculating the square of amplitude of signal and extracting 

the part which is above some threshold [3]. The original 
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signal with squared amplitude can be defined with equation: 

 

                                      2( )X x n ,                                   (1) 

 

where n is number of samples. Part of each recorded signal 

that was above the threshold which is 25% of the maximum of 

signal with squared amplitude was extracted. Threshold was 

chosen empirically. In this way, only useful part of the signals 

was extracted and useless part was removed (part at the 

beginning and the end of the signal which represents silence). 

On Fig.4 speech signal which represents uttered vowel “a” 

with squared amplitude and threshold are shown.  

 

 
Fig.4. Speech signal which represents uttered vowel “a” with squared 

amplitude and threshold. 

 

    The useful part of each recorded vowel was divided into 

“packets” of 800 samples and thus, after preprocessing a 

dataset consisting of 1080 signals is obtained. Dividing of 

useful part of the signals is performed for increasing of dataset 

of uttered vowels.   

 

V. POWER SPECTRAL DENSITY ESTIMATION OF SPEECH 

SIGNALS 

    In order to extract formant frequencies, it was necessary to 

perform power spectral density estimation of signals. Power 

spectral density (which is noted as ( )P f
xx ) of complex, wide 

stationary random process [ ]x n  is defined as: 

 

    ( ) [ ]exp( 2 )xx xx

k

P f r k j fk





  ,   
1 1

2 2
f   .           (2)  

With [ ]xxr k  is noted autocorrelation function of [ ]x n  defined 

as: 

                          [ ] ( [ ] [ ])xxr k x n x n k


  ,                           (3) 

 

where   represents mathematical expectation operator. 

 The power spectral density function actually represents the 

distribution of power over the frequency of a random process. 

Since the power spectral density is a function of an infinite 

number of values of the autocorrelation function, the task of 

estimating the power spectral density based on a finite set of 

data is almost impossible. There are various models for power 

spectral density that can be assumed in order to minimize the 

problem of spectral estimation. The choice of a model may 

depend on which model best finds the required spectral 

characteristics. An example of this is the search for formant 

frequencies in speech signal. Spectral estimation via Welch 

[8] gave the best results comparing with other two methods- 

Periodogram and Blackman-Tukey [4]. 

 Basically, Welch’s method is based on time averaged 

periodogram which is defined as: 

 

               

2
1

0

1
( ) [ ]exp( 2 )

N

PER

n

P f x n j fn
N






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where N is number of samples. According to Welch’s method, 

the number of samples N in which we perform the estimation 

should be divided into L intervals of M samples and each of 

these intervals should be multiplied by a window. For each 

interval multiplied by a window, a periodogram should be 

calculated and at the end averaging of periodograms should be 

performed. Multiplying with a window solves the problem of 

"spectrum leakage", i.e. prevents the occurrence of signals at 

lower levels to be masked by the side lobes of signals at 

higher levels, if the signals are close in frequency. 

Multiplying with the window reduces the signal level on the 

side lobes, at the cost of increasing the width of the main lobe. 

Welch's method solves the problem of making compromises 

between spectral resolution, variance and bias by allowing 

data intervals to overlap. As the N increases, variance 

decreases, the estimation is not shifted, and since the intervals 

overlap, we did not lose much when it comes to resolution.  

In this paper, Hamming window [7] was chosen with length 

of 128 samples, and the overlap between data intervals was 

50%. On Fig.5 is presented power spectral density estimation 

of uttered vowel “a” via Welch.  

 

 
Fig.5. Power spectral density estimate via Welch for uttered vowel “a”. 

 

   From Fig.5 can be noticed that formant frequencies are 

very clear represented as peaks in the signal, so they can be 

easy extracted. First formant is always global maximum, 
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while second and third formants are local maxima.   

VI. FORMANT EXTRACTION 

  After dataset preprocessing all recorded vowels were 

filtered, useful part of the signals was extracted and divided in 

smaller “packets” and for dataset consisting of 1080 

preprocessed signals power spectral density estimation was 

performed. In this way dataset was prepared for formant 

extraction. 

 An adaptive algorithm was developed, based on Table I, 

depending on the range in which the formant frequencies are 

expected to appear. The first formant was found as the global 

maximum, and the remaining two formants were found based 

on where we expected them to appear, depending on the 

vowel. Only for the vowel “a” the range for the first formant 

does not overlap with the ranges for the first formant of other 

vowels, so it was easiest for the vowel “a” to create a 

separable class. The overlap of the first formant frequencies 

occurs with the vowels “e” and “i”, but they can be classified 

quite successfully based on the position of the second and 

third formant frequencies. Also, the vowels “o” and “u” 

overlap by the second formant, but they can be classified 

based on the position of the first and third formant 

frequencies. Another difficulty that occurred during creating 

an adaptive algorithm was that formant frequencies do not 

always appear in expected ranges. Formant frequencies can be 

shifted higher or lower than expected, depending on the 

uttering that can vary for different speakers. In Table II 

average values of formant frequencies extracted from the 

recorded vowels are shown. There are some differences 

between Table I and Table II in average values of formant 

frequencies. Table I is formed according to male speakers 

which are English native speakers, and Table II is formed 

according to male speakers from Serbia. Another cause of 

these differences is uttering of vowels.  Speakers which utter 

the vowels are from different age groups, some of them may 

be smokers, speakers are in different mood during recording, 

etc. All this affect on formant frequencies positions. Even a 

same speaker can utter the same vowel differently. This is the 

reason why ASR is very difficult task. 

 
TABLE II 

AVERAGE VALUES OF FORMANT FREQUENCIES  

 

 

 After formant extraction, five classes were obtained, one 

class for each vowel, but their overlapping could not be 

avoided. Classification in five separate classes based on first 

three formant frequencies is difficult because of formant 

frequencies overlap between some vowels, but the adaptive 

algorithm that was applied to extract the formants gives quite 

good results which are shown on Fig.6. 

After formant extraction, for each vowel about 200 formant 

frequencies (first three formant frequencies) are obtained. 

This is now prepared historical dataset which will be used for 

neural network training and testing. 

 

 
Fig.6. Distribution of the vowels in 1F 2F 3F  space. 

 

    

VII. NEURAL NETWORK FOR VOWEL RECOGNITION AND 

GAIN RESULTS  

    After formant extraction final step was neural network 

design. For vowel recognition problem multilayer feed-

forward neural network was chosen [9]. Supervised learning 

technique is performed because neural network has target 

values for input data. Supervised learning implies that neural 

network has output values for all input values. On these 

input/output pairs neural network is trained and tested [10].    

Neural network has three inputs, one for each formant 

frequency. Neural network has five outputs, one for each class 

that represents one vowel. We decided to split our historical 

dataset that has 1080 formant frequencies (about 200 

instances for first three formant frequencies for each vowel), 

so 90% of data was used for training and 10% was used for 

testing. For better algorithm performances k-fold cross 

validation was performed [5]. Entire dataset was split on 10 

folds. For model metrics we used accuracy which was counted 

on testing dataset in each iteration during k-fold cross 

validation. Finally, average accuracy of the model was 

counted for all ten iterations.  

   Number of hidden layers and nodes was chosen by trial 

and error method. First, small number of hidden layers and 

nodes was chosen. This number was increased in order to 

increase the accuracy of the model, but we took care about 

overfitting and stopped with increasing when accuracy started 

to decrease [9]. We also tried network training with different 

optimization algorithms, activation functions and values of 

learning rate. Number of epochs was also changed.  

The best result was achieved with neural network 

architecture that consists of six hidden layers with 100 nodes. 
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Optimization algorithm that was used is Adam [11] with 

sparse categorical cross entropy loss function, with learning 

rate one and with RELU activation function [9]. Number of 

epochs was 2000. With this neural network architecture 

average accuracy of the model on testing dataset was 96.3%.   

When optimal neural network architecture was chosen, 

neural network was trained on entire historical dataset.   

Finally, neural network testing was performed on uttered 

vowels that did not were in original base of vowels. Three 

new male speakers uttered each vowel five times. For new 

vowels confusion matrix is shown in Table III.  

 
TABLE III 

CONFUSION MATRIX FOR NEW VOWELS 

 
 

New vowels were recognized with accuracy of 96%. We 

can see that all vowels except vowel “e” were recognized with 

100% accuracy. Vowel “e” was three times recognized as 

vowel “i”.  This error is not surprising because classes of 

vowels for neural network training were not separable, and 

there was overlapping between classes “e” and “i”. These 

results could be different for some other speakers and that is 

the reason why vowel recognition is very complex task.  

 
 

VIII. CONCLUSION 

    Considering that historical dataset for neural network 

training was not big, gain results are very satisfying. It is 

shown that with first three formant frequencies and with 

adequate choice of neural network, vowels can be recognized 

with big accuracy. 

    First problem during vowel recognition system making was 

different uttering of vowels. Since this is a system that is 

independent of the speaker, the way in which vowels are 

uttered is very important for their recognition. For this reason, 

it is very difficult to create a single algorithm that classifies 

vowels, regardless of which speaker uttered the vowel. 

Second problem was overlapping between classes that 
represent vowels. This overlapping was unavoidable and it 

affected on model accuracy.  

    Dataset with formant frequencies for neural network 

training was not very big. Increasing of dataset with recorded 

vowels for neural network training would probably increase 

model accuracy. Also, more uttered vowels for neural network 

testing would give more reliable results about model 

accuracy. Despite the above limitations and problems 

encountered in designing a vowel recognition system, the 

designed system gives very good results. 

    Due to their properties, neural networks are nowadays very 

attractive for scientists and researchers when it comes to 

speech recognition [12]. In some future work other types of 

neural network can be applied for solving vowels recognition 

problem and comparative analysis can be made with gain 

results.  
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