
Decision Support System for Traffic Jams by using
Artificial Intelligence
Luka Bjelica, Svetozar Vulin, Anja Buljević

Abstract—This paper presents one possible decision support
system as partial solution of traffic jam problem using au-
tonomous vehicles. Proposed solution is based on deep learning
algorithms and artificial neural network (ANN) models which
task is to make a decision whether to move the car to a side
lane, or stay in the current lane. The optimality criteria is
maximization of the elapsed distance in traffic by training
ANN, using a supervised learning paradigm from labeled data,
to control the car. Gradient descent algorithm is used for
the network’s parameters estimation. Verification, testing and
simulation application is also presented in this paper.

Keywords: self-driving, artificial neural networks, deep
learning, gradient descent, traffic jam.

I. INTRODUCTION

Traffic congestion has become one of the biggest modern
life problems. Time spent in traffic jams is irreversibly
wasted. Moreover, some researches have also shown that
traffic congestion represents negatively impacts the Earth’s
climate, leading to global warming [1]. One solution to
this problem is to minimize the time spent in traffic using
autonomous vehicles. This solution not only reduces air
pollution and global warming rate, but also saves time for
each commuter. Autonomous cars are vehicles which are
driven by digital technologies without any, or little, human
intervention. They are capable of driving and navigating
themselves on the roads by sensing the environmental im-
pacts. They are designed to occupy less space on the road
in order to avoid traffic jams and reduce the likelihood of
accidents. Autonomous cars are one of the biggest challenges
in industry nowadays, so various solutions solving the au-
tomation of control of cars on the road have been widely
studied in the literature [2], [3].

This paper concerns the automation of the car movement
in a highway traffic jam, based on deep learning algorithms,
and ANN models, like Multilayer Perceptron (MLP) [4], in
order to make decision whether to move the car to a side
lane, or stay in the current lane. The idea is to maximize
the average speed of the car or to maximize the distance
that car would elapse in certain amount of time. The car
is controlled by trained ANN. Gradient descent algorithm
is used for the network’s parameters estimation. Simulation
application could be found in [5].

L. Bjelica (bjelicaluka@uns.ac.rs), S. Vulin (svetozar.vulin@uns.ac.rs),
A. Buljević (anjabuljevic@uns.ac.rs), University of Novi Sad, Faculty of
Technical Sciences, Department of Computing and Control Engineering,
Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia.

After Introduction, the paper is organized in the following
manner: description of self-driving component, model of
the environment, data collecting procedure and the agent
controlling the car are explained in Section II, explanation of
the custom deep learning library can be found in Section III,
technical details about the implementation are introduced in
Section IV, simulation results are shown in Section V and
the concluding remarks are given in the final Section VI.

II. SELF-DRIVING COMPONENT

As previously mentioned, the topic of this paper is the
automation of car movement through a dense highway traffic
environment. The real-world environment is represented in
a computer simulation and due to its complexity, only main
dynamic characteristics are emphasised. For the need of this
paper, it is expected that the vehicle already has automatic
acceleration and braking systems implemented so the em-
phasis is on the component responsible for highway traffic
jams. That component is called self-driving component. The
purpose of this component is to make sure that the agent gets
out of highway traffic jams as fast as possible (maximum
distance optimization problem). It is important to know that
self-driving component does not ensure that the vehicle is
completely autonomous, thus it only provides a solution to
dense traffic.

Environment (2D traffic simulation)

The model of the environment is a simplified represen-
tation of the real world (Fig. 1). It is represented in two
dimensional (2D) space. The environment consists of N
traffic lanes, passing cars and the vehicle that is being
controlled (agent).

Fig. 1. Environment screenshot

AUI 1.6.1

Cars can be created in any of N lanes in random order and
are moving in constant speed relative to each other. The agent
has three sensors: front, left-side and right-side sensors, each
consisting of a red and green zone. The green zone provides
a distance between the car controlled by the agent and the
nearest facing car in that lane. The red zone, or the safety
zone, activates the braking system that manages to stop the
controlled car when the car in front is detected and prohibits
sidetracking when the car is detected on either left or right
side. If the front sensor has not detected any cars in the
red zone, the controlled car automatically accelerates until it
reaches the maximum speed. This ensures that the car has
a built-in safety system and that the agent has the ability to
accelerate automatically when there are no cars in front of
it. The environment implementation details are explained in
the Section IV.

Data (collecting and labeling)

Data is collected and labeled while the user is controlling
the car. Each time the user makes a decision (turns left, right
or continues to move forward) a snapshot of each sensor
data is collected. A snapshot is a list of data containing the
following parameters:

• Left-side sensor green zone distance
• Left-side sensor red zone active status
• Front sensor green zone distance
• Front sensor red zone active status
• Right-side sensor green zone distance
• Right-side sensor red zone active status.

The label represents the user’s decision (-1 for left, 0 for
forward and 1 for right). After the user has provided enough
training samples (the number of training samples is 28), the
dataset is created which can then be used for training the
neural network model.

Agent Controlling the Car

On a fixed time interval the agent queries the trained
network with the current state of sensors. Agent expects to
get a response containing the prediction about the action it
should make. Based on the network’s decision, the agent
parses the response and either moves the car to a side lane,
or stays in the current lane. If the car gets stuck because
the network is continually making bad decisions, the user
can correct the decision of a network. The corrections are
saved and the user can put them in the dataset and retrain
the model.

III. DEEP LEARNING LIBRARY

For need of this paper, a deep learning library is imple-
mented from scratch. Its model is based on the most popular
deep learning framework Keras [6]. The library consists of a
Model that represents the main component, Neural Network
that acts as a container of parameters (weights and biases),
Initializers, Operators, Losses, Optimizers, and Regularizers.
The model is implemented as a Feed-Forward MLP [4],
which means that each node (neuron) from every layer is
connected to each node in the previous and following layer.

It supports only the Supervised Learning paradigm [4], in
which the desired outputs are known and the model is
trained to predict future outcomes (output) depending on
given (input) data.

Initializers

Initializers provide the initial values for the model param-
eters at the start of training. Initialization plays an important
role in training deep neural networks, because bad parameter
initialization can lead to slow or no convergence. Parameters
of the network are initialized as small random weights drawn
from the normal distribution [7].

Operators

Operators are the basic building blocks of any neural
network. They are vector-valued functions that transform the
data. Some commonly used operators are:

• layers (linear, convolution, and pooling)
• activation functions (Rectified Linear Unit (ReLU),

Sigmoid, SoftMax, Tanh and etc.)
The only type of operators that are implemented for the
need of this paper are activation functions. They are used
to normalize the output of each neuron in the desired range.

Losses

Losses are differentiable mathematical expressions given
in closed-form that are used as surrogates for the optimiza-
tion objective of the problem at hand. Loss functions provide
feedback on the training progression. They map a vector of
values to a number that represents the quality of the network
at a certain moment of training.

The cost or loss function has an important job in that it
must faithfully distill all aspects of the model down into
a single number in such a way that improvements in that
number are a sign of a better model. [8]

Regularizers

Regularizers provide the necessary control mechanism
to avoid overfitting and promote generalization. L2 weight
regularization [9] is implemented that makes the weights
sparser and uniform, respectively.

Optimizers

Optimizers provide the iterative update of model param-
eters with respect to the optimization objective. In this
context, the optimization objective is to minimize the loss
function that depends on the network’s parameters. The
parameters are considered optimal when the loss function
reaches its global minimum. Loss function determines the
error between the expected value and output value. Gradient
Descent optimizer [8], [10] is used for fitting the model.
Gradient Descent is an iterative optimization algorithm used
for finding the minimum of a differentiable function. With a
goal of minimizing the loss function, this algorithm takes
steps of the steepest descent which is calculated by the
negative value of the gradient of the function. Iteratively
moving to the minimum, the size of each step is determined

AUI 1.6.2

by the learning rate. For network training using Gradient
Descent [4], the following steps are taken:

1) Creating a mini-batch
In this step, the portion of data is taken from the
dataset, which is used in the present iteration. The size
of the portion is equal to the batch size option that the
user provides

2) Forward pass and Calculating Loss
The feed-forward function is used to calculate the
output of each layer. Outputs are stored in a list and
are later used for calculating the gradients. Next, the
value of loss function is calculated based on the output
of the network.

3) Backward pass
In this step, the error is being calculated and passed
backward through the network. After the backward
pass, deltas (the portion of error) have been calculated
for each layer. It is important to apply the derivative of
activation function to each delta in order to deactivate
it.

4) Backpropagation
This is the main step in which the gradients, based on
small changes in a gradient direction, are calculated
and the outputs of the layer from the feed-forward pass.
In simple terms, after each forward pass through the
network, error is calculated and backward pass is being
performed while adjusting the network’s parameters
(weights and biases).
The goal is to adjust each parameter in proportion to
how much it contributes to the overall error.
Partial derivative, of the loss function, concerning each
parameter, represents the value of gradient.
To calculate derivatives with respect to any nested
variable in the equation (∂L

∂wj
or ∂L

∂b) we use the method
called chain rule [7]. The chain rule shows that for the
given:

a) preactivation z of input x and bias b with respect
to weight matrix transposed wT is:

z = wTx+ b

b) value of the preactivation passed through activa-
tion function σ:

ŷ = σ(z)

c) loss function (in this case cross entropy) deter-
mines the error between the target value y and
the output value of the network ŷ:

L(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ),

the derivatives of the loss function with respect to w
and b are

∂L

∂wj
=
∂L

∂ŷ

∂ŷ

∂z

∂z

∂wj

∂L

∂b
=
∂L

∂ŷ

∂ŷ

∂z

∂z

∂b
.

After the partial derivatives of nested equations have
been calculated and substituted into the chain rule the
obtained result are following

∂L

∂wj
=
∂L

∂ŷ

∂ŷ

∂z

∂z

∂wj

=
ŷ − y

ŷ(1− ŷ)
ŷ(1− ŷ)wj

= (ŷ − y)wj

∂L

∂b
=
∂L

∂ŷ

∂ŷ

∂z

∂z

∂b

=
ŷ − y

ŷ(1− ŷ)
ŷ(1− ŷ)

= (ŷ − y).

In vectorized form with m training examples (when us-
ing Batch or Mini-Batch GD) the following equations
are obtained

∂L

∂w
=

1

m
X(ŷ − y)T

∂L

∂b
=

1

m

m∑
i=1

(ŷ(i) − y(i)).

After the gradients have been calculated, the parame-
ters are ready to be adjusted (updated) accordingly

w(i+1) = w(i) − γ
∂L

∂w

b(i+1) = b(i) − γ
∂L

∂b
.

γ (learning rate) determines how big a step the ad-
justment is making in the negative direction of the
gradient.

5) Adjusting Weights and Biases
In this step, network’s parameters are updated ac-
cording to the calculated gradients. If γ is too big,
algorithm would diverge and never find the minimum.
On the other hand, if γ is too small, it would take
too much time to find the minimum. So it is necessary
to find optimal value for γ in order to find minimum
in reasonable time. For more details about choosing
optimal γ, see [11].

Model

Model is the main component used to bind all of the
above-explained components together. It represents a public
Application Programming Interface (API) through which
users can interact with the library, define the network’s
architecture and train the network.

Knowing that representability and trainability are two
main attributes that describe the network, layer structure has
a huge impact on the network’s performance. The network is
“representable” if it can represent a solution to the problem
with a certain level of complexity. The higher the number of

AUI 1.6.3

layers, the more complex problems a network can represent.
Trainability sets a threshold to the number of hidden layers
and the overall complexity of the network. Too many layers
and a number of nodes in each layer can lead to slow
convergence or high computational power demands.

The task of the network is to make a decision, whether
the car should turn left, right or stay in the same lane. That
decision is represented with a column vector consisting of
three numbers that represent probabilities for each action.
Softmax is our activation function which helps the network
achieve this by squashing the outputs of each unit to be in
the interval [0, 1], and also dividing each output such that the
total sum of the outputs is equal to 1.

IV. SYSTEM IMPLEMENTATION

The system is distributed in two main components: the
React.js application that implements the environment and a
Flask web application that implements the neural network
model. They communicate over HyperText Transfer Protocol
(HTTP).

Network Architecture

The architecture of a network [4] used for training the
self-driving agent is determined by a numerical experiment
through a large number of simulations and it is shown in Fig.
2. The implemented network consists of three layers: an input
layer with 6 neurons, a hidden layer with 4 neurons and an
output layer with 3 neurons. The input layer does not have an
activation function or more precisely, the activation function
of the input layer is the identity function. The activation
function used in the hidden layer is the ReLU.

Fig. 2. Network architecture

Environment

The environment (Fig. 1) is represented through the Re-
act.js application. It is divided into three main components:
highway environment, settings panel, and results pane.

The highway environment is represented through Hyper-
Text Markup Language (HTML) canvas. It consists of traffic
lanes, passing cars and the controlled car. Traffic movement
and canvas dynamics are managed using the p5.js library.
Passing cars are spawned at the top of the screen and are

moving with the constant speed relative to each other. The
controlled car’s sensor zones are displayed around him with
a transparent background color. If a passing car is detected
in any of the zones, the transparency is reduced and the
color becomes more solid which indicates that the sensor is
active. This is useful when collecting training data because
the user can see the boundaries of the agent’s “vision” and
drive accordingly. The settings panel is used for changing
the parameters of the environment. It is divided into three
sections: environment, traffic, movement and agent settings.
In the environment section, the user can change the number
of traffic lanes in range of 4 to 10. In the traffic section,
the car creation interval and the number of cars spawned on
each interval can be modified. The maximum speed of the
controlled car can be changed in the movement section and
visibility of the sensor zones can be toggled in the agent
subsection. Next to the agent label, the connection status
with the backend application is displayed. Ability to change
the parameters enables the option to change the “difficulty”,
or the complexity, of the environment.

In the results pane, the current speed of the car, average
speed and the number of passing cars are displayed. That is
the direct indicator of how well the agent is controlling the
car. Below the results pane, there is a canvas that holds the
figure of the neural network model. According to the outputs
of each layer calculated in the forward pass, the nodes and
the connection lines are shaded.

Collecting the Data: In manual mode, the user can control
the car using the arrows keys and data is collected that way.
The data is represented as a list of 6 numbers, a snapshot
that contains information gathered from the sensors. Three
of those six numbers represent a distance from the nearest
car that is in the green zone of one of three sensors. In
order to normalize input data, each distance is divided by
the maximum distance, the green zone length, which ensures
that those numbers are in interval [0, 1]. The other three
numbers are boolean values, 0 or 1, which only indicate the
presence of a car in the red zone of that sensor. Apart from
the snapshot, a label that represents the user’s decision is also
collected in the form of a whole number between -1 and 1
(-1 for left, 0 for forward and 1 for right) and is pushed to
the list. So the final result is a list of 7 numbers. The result
is then added to the list of collected data that represents the
dataset for training the model.

Training the Model: The model is created using the
following code:

1 model = Model([[6], [4, "relu"], [3,
"softmax"]],
loss_function='cross_entropy',
learning_rate=0.001)

↪→

↪→

↪→

After the model is initialized, training examples and labels
are extracted from the saved .csv dataset and passed as
arguments for training the model.

AUI 1.6.4

1 model.train("gradient_descent",
inputs=np.array(inputs),
labels=np.array(labels), epochs=500,
batch_size=1)

↪→

↪→

↪→

Each input argument, such as learning rate, batch size or a
number of epochs, has an impact on the time spent training
and the quality of the results. The main goal is to find the
best proportion of those two factors.

One epoch represents only one forward and backward
pass of the dataset through the network. In every epoch,
weights and biases are changed and adjusted. One pass leads
to underfitting the curve in gradient descent algorithm, so
more epochs are needed in order to achieve better results.
On the other hand, too many epochs lead to a big increase
in time spent training and overfitting the curve. It has been
determined experimentally that the most satisfying number
of epochs for this problem is 1000.

In case that the dataset is too big, data is separated into
batches. Using this technique, the data can be passed in
smaller groups, achieving faster training time, and having
more training examples in each update of parameters. Be-
cause the self-driving dataset is not too big, the chosen batch
size is 1, which means that only one training example is used
for each parameter adjustment.

Agent Controlling the Car: After training the model and
starting the Flask web service holding the network, the user
can turn on the auto mode. In auto mode, the car is controlled
by the agent. The current state of sensors and the name of the
trained model are sent to the Flask web service every 500ms
through an HTTP request. The input data is passed to the
trained model. The model makes a prediction based on the
passed data and the response is generated and sent back to
the agent. The response comes in the form of a probability
distribution vector. The index of the element in the vector
that has the highest probability represents the action that the
agent should make. The agent then moves the car based on
the parsed prediction.

Each time the agent gets stuck in the traffic, the user
is able to move the controlled car and correct the agent’s
decision. Correcting the agent means switching to manual
mode. Each correction is saved in a list. Then, the user is
able to download saved corrections in the form of a new
dataset, add them to the initial dataset and to refine the
agent’s decision making by retraining the model.

Because it is expected that the controlled car has a built-
in safety system, the acceleration and braking are performed
automatically. When the front sensor detects that a car has
entered the safety zone, it triggers the braking system and the
controlled car starts to decelerate in proportion to the distance
from the facing car and the current speed. If there are no
detected cars in the facing line, the controlled car starts to
accelerate in proportion to the current speed until it reaches
the maximum speed of N km/h. N takes the maximum speed
out of a set 80, 120, 160 km/h.

V. SIMULATION RESULTS

This section presents the results of training the model,
testing the agent’s behaviour and comparison to the user’s
behaviour.

Model Training

The accuracy of the model represents how good the pre-
dictions that the model makes according to the given dataset
are. It is calculated by comparing the received results from
the model and expected results from the dataset represented
in percentages.

Using the network architecture and training parameters
explained in Section IV, the calculated accuracy over the
training dataset is 95% and the calculated accuracy over
the test dataset is 85%. Each training parameter affects the
accuracy of the model. With an increased number of epochs,
the accuracy may stay the same, but the time spent training
increases. After the successful training, the obtained results
are following.

(a) Accuracy of the model for training dataset

(b) Accuracy of the model for test dataset

Fig. 3. Accuracy of the model

Fig. 3a presents the accuracy of the model for training
dataset and it can be noticed that the accuracy score rises
from 20% to 95% within first 1000 epochs, and stays stable
until the end of the training. Fig. 3b presents the accuracy
of the model for test dataset and it can be noticed that the
accuracy score rises from 10% to 85% within first 1000
epochs, and stays stable until the end of the training.

It is expected that the accuracy for test dataset is not as
good as the accuracy for training dataset, but still test results
are very satisfying.

AUI 1.6.5

Agent’s behaviour based on a quality of the dataset

Clear information about lane changing, means positioning
the agent in a good spot for evading the incoming car without
hitting the safety (red) zone. A good dataset does not need
to have a lot of examples, it needs to have a clear set of
instructions and cover most typical scenarios making sure
that it contains a balanced number of labeled decisions. It
is not good if any of the three decisions is dominant in the
dataset.

Training is considered not adequate if the user does not
give clear information about his actions and many decisions
with similar, or same, inputs are in contradiction, which
makes the model disorientated and not able to move in
the right direction. Even though the accuracy of the trained
model is at a high percentage, the agent still acts disoriented
and makes wrong turns, often getting stuck in the traffic.

Users vs Agent driving

Simulation experiment is based on three main drivers
categories. First experienced user, then inexperienced user
and finally, trained agent. First two categories covers manual
driving with ten different participants in both categories and
averaging their results. Different scenarios were tested with
various maximal speeds of car, number of lanes, number of
cars spawning and car spawning speed. Results of simulation
are presented by total distance that car could pass in 30
minutes. Three representative results are presented in Fig.
4. Maximal speed was 120km/h, five lanes, one spawning
car with all spawning speeds modes. From this figure, it is
clear that in most cases after 30 minutes of simulation, agent
approach shows the best behaviour that is maximal elapsed
distance.

VI. CONCLUSION

Multilayer Perceptron Model and supervised learning
paradigm used in this paper present one possible approach
for training the model to autonomously drive itself trough
traffic jams. The aim of this project was to achieve successful
autonomous driving in a highway traffic jam in terms of
maximizing elapsed distance in traffic by maximizing the
average speed of the car.

After network’s parameters estimation and training the
model, agent’s behaviour was tested in simulations. Although
this solution does not ensure that the vehicle is completely
autonomous, obtained training results have proved satisfying
on a tested system in terms of getting out of the traffic jam
as fast as possible.

In the future work, we will be focused on a new approach
that will allow us to generate realistic camera image for
simulation directly using sensor data collected by a self-
driving car.

VII. ACKNOWLEDGMENT

This paper has been supported by the Ministry of Edu-
cation, Science and Technological Development through the
project no. 451-03-68/2020-14/200156: “Innovative scientific
and artistic research from the FTS domain". (A.B.)

208 209 210 211 212 213 214 215

Experienced user

Inexperienced user

Agent

Distance [km]

209,5 210 210,5 211 211,5 212 212,5 213

Experienced user

Inexperienced user

Agent

Distance [km]

206 206,5 207 207,5 208 208,5 209

Experienced user

Inexperienced user

Agent

Distance [km]

Fig. 4. Simulation results for three different scenarios. Maximal
speed 120km/h, five lanes, one spawning car with spawning

speeds modes: slow (upper figure), normal (middle figure) and
fast (bottom figure).

REFERENCES

[1] J. Baron, “Thinking about global warming,” Climatic Change 77,
137–150 (2006). DOI: 10.1007/s10584-006-9049-y, 2006.

[2] A. Takacs, I. J. Rudas, D. Bosl, and T. Haidegger, “Highly automated
vehicles and self-driving cars.,” IEEE Robotics Automation Magazine
25(4):106-112, DOI: 10.1109/MRA.2018.2874301, 2018.

[3] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of
deep learning techniques for autonomous driving.,” Journal of Field
Robotics, Online ISSN:1556-4967, DOI: 10.1002/rob.21918, 2019.

[4] A. P. Engelbrecht, “Computational intelligence: An introduction,”
Wiley Publishing, ISBN:978-0-470-03561-0, 2007.

[5] L. Bjelica, S. Vulin, and A. Buljević. http://self-driving.bjelicaluka.
live/, 2020.

[6] “Keras documentation.” https://keras.io/.
[7] D. Kriesel, “A brief introduction on neural net-

works.” http://www.dkriesel.com/_media/science/
neuronalenetze-en-zeta2-2col-dkrieselcom.pdf.

[8] J. Nocedal and S. J. Wright, “Numerical optimization, second edition,”
Springer, New York, ISBN: 978-0-387-30303-1, DOI: 10.1007/978-0-
387-40065-5, 2006.

[9] A. Nagpal, “L1 and l2 regulariza-
tion methods.” https://towardsdatascience.com/
l1-and-l2-regularization-methods-ce25e7fc831c, 2017.

[10] M. J. Kochenderfer and T. A. Wheeler, “Algorithms for optimization,”
The MIT Press. ISBN:978-0-262-03942-0, 2019.

[11] Y. xiang Yuan, “A new stepsize for the steepest descent method,”
Journal of Computational Mathematics Vol. 24, No. 2 (MARCH 2006),
pp. 149-156, 2006.

AUI 1.6.6

