
 

 

Abstract—In this paper a robust block linear prediction 
(RBLP) method for autoregression (AR) model parameter 
estimation of speech signal is considered. The considered method 
consists of two separate iterative steps which are described in 
detail. The method is tested on both synthesized and natural 
human speech in the presence of outliers and additive 
measurement noise. A comparative analysis of the RBLP method 
and the conventional linear prediction method shows that the 
robust method gives results which are less biased and have a 
smaller variance.  

 
Index Terms—AR model, outliers, RBLP, estimation, speech. 

 

I. INTRODUCTION 

Statistical signal processing is frequently based on the 
assumption of a priori known probability data distribution, 
stationarity, linearity as well as independence of stochastic 
processes [1]. In most engineering problems, real system 
model parameter estimation methods assume that stochastic 
processes have Gaussian distribution, which is, in most cases, 
justified. The assumption of Gaussian distribution allows for a 
straightforward implementation of optimal estimators. On the 
other hand, in the case of large realizations of stochastic 
perturbations, as well as non-Gaussian additive measurement 
noise, the assumption is not justified. Optimal estimation 
methods based on the assumption of Gaussian distribution are 
extremely sensitive to deviations from the assumed Gaussian 
distribution, where, in some cases, even a small deviation 
from the assumed distribution results in significant 
deterioration in estimator performance. 

Even though in many cases, the Gaussian distribution is 
justified, there are many situations where it has been 
determined that the actual data distribution is far from 
Gaussian. One of the main reasons for the distribution 
deviations are the impulse perturbations, i.e. outliers. 

As it can be seen in [2], outliers can be found in various 
areas, such as image processing, speech signal processing, 
sensor networks, medicine, industry, etc. Because of the 
prevalence of outliers in different areas, outlier detection and 
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elimination are of great importance. 
Based on the fact that the conventional linear prediction 

(CLP) methods assume the Gaussian distribution of the 
residuals, CLP methods assign equal weights to all residuals 
[3]. If the residual distribution varies from the Gaussian 
distribution, the results of the CLP methods may be inaccurate 
with both a large bias and variance. Due to the unsatisfactory 
results, robustification must be performed. 

There are two different approaches to estimator 
robustification, the diagnostic approach and statistically robust 
approach [4]. Diagnostic approach detects outliers and replaces 
them using classical parameter estimation, as discussed in [5]. 
The statistically robust approach uses the entire dataset and 
bounds the influence of outliers using influence functions. 

In this paper, robust estimation of autoregression (AR) model of 
speech signal is discussed. Due to the impulse-type quasiperiodic 
excitation of the vocal tract, distribution of the residuals varies 
from the Gaussian distribution. This variation from the Gaussian 
distribution is considered to be a result of the presence of outliers, 
so the performance of CLP methods decreases. 

Robust parameter estimation techniques are efficient even 
without the a priori known statistical characteristics of the 
perturbations in the system [6]. Robust estimation techniques 
are less sensitive to the presence of impulse perturbations in 
the system, that is, robust estimation techniques enable outlier 
detection in the signal and its elimination. 

Specific application of outlier detection in AR parameter 
estimation of speech signal can be found in [7], where a 
voice-based Parkinson’s disease detection is considered. 

In this paper, robust block linear prediction (RBLP) method 
for an AR parameter estimation of speech signal, described in 
detail in [8], is analyzed. The algorithm in [8] is improved, 
especially the second step of the algorithm. The outliers 
considered in [8] originate only from the impulse-type 
quasiperiodic excitation, whereas, in this paper, outliers 
originating from the measurement errors, also referred to as 
additive outliers (AO) [4], will be analyzed. The effects of 
measurement noise, as well as the effects of different types of 
nonlinearities are considered. The RBLP method will be 
tested on both synthesized and natural voiced signals in the 
presence of additive measurement noise. 

II. ESTIMATION PROBLEM 

The AR model of the speech signal [9], considered in this 
paper, shown in the Fig. 1, is given in the form: 
 

 𝐸(𝑧)𝐺(𝑧)𝑉(𝑧)𝐿(𝑧) =
ா(௭)

஺(௭)
= 𝑆(𝑧), (1) 
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where 𝐸(𝑧) is the 𝑧 transform of the excitation of the glottal 
tract, 𝐺(𝑧) is the transfer function of the glottal tract, 𝑉(𝑧) is 
the transfer function of the vocal tract and 𝐿(𝑧) is the transfer 
function of the radiation on the lips. Combined transfer 
function of 𝐺(𝑧)𝑉(𝑧)𝐿(𝑧) can be represented as an inverse 
filter given by: 
 

 𝐴(𝑧) =
ଵ

ீ(௭)௏(௭)௅(௭)
. (2) 

 
Fig. 1.  A linear model of the speech production system. 
 

In this paper, two impulse-type quasiperiodic excitations of 
the AR model, shown in the Fig. 2, are considered. First type 
of excitation is the train of Dirac pulses, while the second type 
of excitation is the twice differentiated Strube’s glottal wave 
[10], which is a more accurate representation of the speech 
signal excitation. Both excitations are normalized and periodic 
with the period equal to the fundamental period of speech. 

 
Fig. 2.  Impulse-type quasiperiodic excitation of the AR speech model with 
the fundamental period of 8 ms with the sampling frequency of 10 kHz: a) 
Dirac pulse train; b) twice differentiated Strube’s glottal wave. 
 

AR model of the speech signal of the 𝑝-th order, in the time 
domain, is given by (3). 
 
 𝑠(𝑛) + ∑ 𝑎௜𝑠(𝑛 − 𝑖)

௣
௜ୀଵ = 𝑒(𝑛) (3) 

 
In the case of the 𝑁 + 𝑝 known speech signal samples 𝑠(𝑛), 

(3) can be rewritten in the matrix form: 
 
 𝑆 = 𝐻𝜃 + 𝐸, (4) 

 
where 𝑆 is a vector of the speech signal samples with the 
length of 𝑁, 𝜃 is a vector of coefficients 𝑎௜ of the AR model 
with the length of 𝑝, 𝐸 is a vector of excitation samples 𝑒(𝑘) 
with the length of 𝑁 and 𝐻 is a matrix of speech signal 
observations with the dimensions 𝑁 × 𝑝. 
 

 𝑆୘ = [𝑠(𝑘 + 1) 𝑠(𝑘 + 2) … 𝑠(𝑘 + 𝑁)] (5) 

 𝜃୘ = ൣ𝑎ଵ 𝑎ଶ … 𝑎௣൧ (6) 

 𝐸୘ = [𝑒(𝑘 + 1) 𝑒(𝑘 + 2) … 𝑒(𝑘 + 𝑁)] (7) 

 𝐻 = ൦

−𝑠(𝑘) ⋯ −𝑠(𝑘 + 1 − 𝑝)
−𝑠(𝑘 + 1) ⋯ −𝑠(𝑘 + 2 − 𝑝)

⋮ ⋱ ⋮
−𝑠(𝑘 + 𝑁 − 1) ⋯ −𝑠(𝑘 + 𝑁 − 𝑝)

൪ (8) 

 
One of the CLP methods for speech parameter estimation is 

the least-squares (LSQ) method [8]. In the presence of 
outliers, LSQ method does not give satisfactory results. The 
reason for decreased performance of the LSQ method lies in 
the fact that the LSQ method is based on the assumption of 
the Gaussian data distribution and assigns equal weights to all 
samples including outliers. For the purpose of overcoming the 
problems that the LSQ method encounters, robustification is 
proposed. 

III. RBLP METHOD 

One of the robust estimators used for estimating AR model 
parameter coefficients is the approximate maximum 
likelihood estimator, shortly M-estimator [10]. M-estimators 
are based on the approximation of the unknown probability 
density function, and its corresponding nonlinear score 
function, which reduces the effects of outliers. 

The minimization problem whose solution is a robust 
M-estimation of the parameter vector 𝜃 is defined by: 
 

 𝐽ே൫𝜃෠൯ = ∑ 𝜌 ൤
௦೔ି௛೔

೅ఏ෡

ௗ
൨ே

௜ୀଵ , (9) 

 
where 𝑠௜ is the 𝑖-th element of 𝑆, ℎ௜ is the 𝑖-th row of 𝐻, 𝑁 is 
the dimension of 𝑆, 𝑑 is the scaling factor and 𝜌 is the 
nonlinear score function [8]. 

The minimization problem can be reformulated into: 
 

∑
ଵ

ௗ
ℎ௜௝ ൤

௦೔ି௛೔
೅ఏ෡

ௗ
൨ே

௜ୀଵ = 0,           𝑗 = 1, … , 𝑝, (10) 

 
where ℎ௜௝ is the element in the 𝑖-th row and the 𝑗-th column of 
𝐻, and  is the influence function (∙) = 𝜌ᇱ(∙). 

In this paper, a non-recursive RBLP method for AR 
parameter estimation is considered [8]. The proposed RBLP 
method starts from the estimates obtained using one of the 
CLP methods, such as the LSQ method, and further consists 
of two separate iterative steps. 

A. Dutter algorithm 

The first step of the non-recursive RBLP is based on  
M-estimation [10]. The used nonlinear score function is 
Huber’s score function: 
 

 𝜌(𝑥) = ቐ

௫మ

ଶ
, |𝑥| ≤ 𝑘

𝑘|𝑥| −
௞మ

ଶ
, |𝑥| > 𝑘

, (11) 
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where 𝑘 ensures the desired efficiency in the case of nominal 
Gaussian distribution. The appropriate influence function is 
given by: 
 

 (x) = ൜
𝑥, |𝑥| ≤ 𝑘

𝑘 sign(𝑥), |𝑥| > 𝑘
 . (12) 

 
Because the solution of the system (10) cannot be obtained 

in the closed form, Dutter iterative procedure is used [10]. For 
the initial guess 𝜃଴ of the unknown vector 𝜃, result of the LSQ 
algorithm is used, while the initial scaling factor 𝑑଴ is 
obtained by (13). 
 

 𝑑଴ = median ቀ
|௦೔ି୫ୣୢ୧ୟ୬(௦೔)|

଴.଺଻ସହ
ቁ (13) 

 
Dutter iterative method consists of several steps: 
Step 1: Calculation of the nonnormalized residual: 
 

 𝑛௜൫𝜃෠଴൯ = 𝑠(𝑖) − ℎ௜
்𝜃෠଴. (14) 

 
Step 2: Calculation of a new estimation of the scaling factor 

𝑑ଵ: 
 

 𝑑ଵ
ଶ =

ଵ

(ேି௣)ா{మ(௭)}
∑ 𝑑଴

ଶଶ[𝜀௜(𝜃෠଴)]ே
௜ୀଵ , (15) 

 
where the normalized residual is given by: 
 

 𝜀௜൫𝜃෠଴൯ =
௡೔(ఏ෡బ)

ௗబ
, (16) 

 
and 𝐸{ଶ(𝑧)} is the mathematical expectation for the standard 
normal random variable: 
 

 𝐸{ଶ(𝑧)} = ∫ ଶ(𝑧)𝑝(𝑧)𝑑𝑧
ஶ

ିஶ
, (17) 

 
where 𝑝(𝑧) is the probability density function of the standard 
Gaussian random variable 𝑧 (𝑁(0,1)). For the adopted 
parameter 𝑘 = 1.5, (17) results in 0.7785. 

Step 3: Residual Windsorization: 
 

 Δ௜ = ൞

𝑛௜൫𝜃෠଴൯, |𝜀௜൫𝜃෠଴൯| ≤ 𝑘

𝑘𝑑ଵ, 𝜀௜൫𝜃෠଴൯ > 𝑘

−𝑘𝑑ଵ, 𝜀௜൫𝜃෠଴൯ < 𝑘

. (18) 

 
Step 4: Calculation of the regression coefficients 𝜃 using 

LSQ estimation: 
 
 Δ𝜃 = [𝐻୘𝐻]ିଵ𝐻୘𝜓௩;  

௩
= {Δଵ, … , Δே}. (19) 

 
Step 5: Update of the estimation of the parameter 𝜃: 

 
 𝜃෠ଵ = 𝜃෠଴ + 𝑞Δ𝜃, (20) 

 
 

where 𝑞 is the correction factor defined by: 
 

 𝑞 = min ቂ
ଵ

ଶ ௘௥௙(௞)
, 1.9ቃ. (21) 

 
Step 6: Repetition of the steps 1-5 with the new estimations 

𝜃෠ଵ i 𝑑ଵ as the initial guesses until the fulfillment of the 
termination conditions: 
 

 ቚ𝜃෠ଵ 
(௠)

− 𝜃෠଴
(௠)

ቚ < 𝜂 ቚ𝜃෠଴
(௠)

ቚ, (22) 

 |𝑑ଵ − 𝑑଴| < 𝜂 ቚ𝜃෠଴
(௠)

ቚ, (23) 

 
where 𝜂 > 0 is a conveniently chosen small number and 𝜃෠(௠) 

is the 𝑚-th element of the vector 𝜃෠. 

B. Weighted Least Squares Algorithm 

The second step of the RBLP method, considered in [8], is 
the Weighted Least Squares Algorithm (WLSQ). The 
estimations obtained by the Dutter algorithm are used as the 
initial guesses for the iterative WLSQ algorithm, which 
further reduces the effects of outliers. 

In this paper an improvement of the WLSQ algorithm, 
given in [8], is presented. 

The minimization problem (10), in the case of the WLSQ 
algorithm, is given in the form:  
 
 ∑ ℎ௜௝𝑤௜଴൫𝑠(𝑖) − ℎ௜

୘𝜃෠൯ே
௜ୀଵ ≈ 0; 𝑗 = 1,2, … , 𝑝 , (24) 

 
where coefficients 𝑤௜଴ are given by: 
 

 𝑤௜଴ =

⎩
⎪
⎨

⎪
⎧ቆ

ೞ(೔)ష೓೔
౐ഇ෡బ

೏బ
ቇ

ೞ(೔)ష೓೔
౐ഇ෡బ

೏బ

, 𝑠(𝑖) ≠ ℎ௜
୘𝜃෠଴

1, 𝑠(𝑖) = ℎ௜
୘𝜃෠଴

, (25) 

 
where 𝜃෠଴ and 𝑑଴ are the initial estimations obtained using the 
Dutter algorithm. 

Matrix notation of the system is given by: 
 
 𝑊଴ = 𝑑𝑖𝑎𝑔{𝑤ଵ଴, … , 𝑤ே଴}; 𝑆୘ = {𝑠(1), … , 𝑠(𝑁)}. (26) 

 
The new estimation of the vector of parameters 𝜃෠ is 

calculated using: 
 
 𝜃෠ = (𝐻୘𝑊଴𝐻)ିଵ𝐻୘𝑊଴𝑆. (27) 

 
The WLSQ algorithm is repeated using the new estimation 

𝜃෠ as the initial guess for the vector parameter 𝜃. The scaling 
factor 𝑑଴ changes with each iteration, and its new value is 
calculated using (15) with an appropriate 𝐸{ଶ(𝑧)}, which is 
the main improvement of the algorithm given in [8] The 
algorithm is repeated until the terminal condition (22) is 
satisfied. 
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The influence functions that can be used in this step of the 
RBLP algorithm are either Andrews (28) or Tukey (29) 
nonlinearity [10]. The influence functions are shown in Fig. 3. 
 

 (𝑥) = ൜
sin(𝑥/𝑎), |𝑥| < 𝑎𝜋

0, |𝑥| > 𝑎𝜋
 , 𝑎 ∈ [0.45 0.65] (28) 

 (𝑥) = ൜
𝑥(1 − (𝑥/𝑎)ଶ), |𝑥| < 𝑎

0, |𝑥| > 𝑎
 , 𝑎 ∈ [1.5 2] (29) 

 
The influence functions (28) and (29) can lead to 

divergence of the algorithm because of their non-convexity. 
By limiting the number of the iterations of the WLSQ 
algorithm to only a few, the problem of the non-convex 
influence functions can be overcome, while the quality of the 
estimation does not deteriorate. 

 
Fig. 3.  Nonlinear influence functions (∙): a) Andrews nonlinearity; b) 
Tukey nonlinearity. 
 

IV. RESULTS AND DISCUSSION 

In this paper, the RBLP method is tested on both 
synthesized and natural voiced signal “a” in the presence of 
additive measurement noise. For the purpose of testing the 
RBLP method, estimations of the AR model parameters are 
obtained by performing both a CLP method and the RBLP 
method at the sliding rectangular window with the length of 
256 samples. 

In the second step of the RBLP method, Andrews 
nonlinearity, with the parameter 𝑎 = 0.5 and 
𝐸{ଶ(𝑧)} = 0.5617, is used, while the number of iterations is 
limited to four iterations. 

A. Synthesized vowel “a” 

The considered AR model of the order 𝑝 = 8 is the same as 
in [8], with the parameters: 𝑎ଵ = −2.22, 𝑎ଶ = 2.89, 
𝑎ଷ = −3.08, 𝑎ସ = 3.27, 𝑎ହ = −2.77, 𝑎଺ = 2.35, 𝑎଻ = −1.7 
and 𝑎଼ = 0.75. The excitation of the AR model is described 
in detail in the second section. The output of the AR model is 
noised by additive Gaussian noise 𝑁(0,0.0002) and 
contaminated with outliers. One of the most common types of 
outliers in time series, such as the speech signal, are the AO 
[11], which are the type of outliers used in this model. The 
outliers are generated as a random variable with the Gaussian 
distribution 𝑁(0,0.02) with the probability of occurrence of 
5% [4]. 

In the Fig. 4, results of the RBLP method for parameter 𝑎ଵ, 
performed on noised and non-noised synthesized vowel “a”, 
in the case of train of Dirac pulses excitation (Fig. 2(a)), are 
shown. 

 
Fig. 4.  Comparative analysis of the CLP and the RBLP methods performed 
on synthesized vowel “a”, parameter 𝑎ଵ estimates for: a) non-noised b) noised 
train of Dirac pulses excitation. 

 

In the Fig. 4(a) the results of the RBLP method without 
both additive Gaussian noise and outliers, are shown. For 
signals as simple as this, it can be seen that the first step of the 
RBLP method gives satisfactory results that are both unbiased 
and insensitive to the position of the sliding window, unlike 
the results of the LSQ algorithm. In the Fig. 4(b) the same 
type of excitation is used, but in the presence of both additive 
Gaussian noise and outliers. In the presence of noise and 
outliers, the importance of the second step of the RBLP 
method can be seen. The WLSQ algorithm ensures an 
unbiased estimation with a smaller variance than the first step 
of the RBLP method. 

In the Fig. 5 the results of the RBLP method for the 
parameter 𝑎ଵ, in the case of an excitation that is twice 
differentiated Strube’s glottal wave (Fig. 2(b)), are shown. 

 
Fig. 5.  Comparative analysis of the CLP and the RBLP methods performed 
on synthesized vowel “a”, parameter 𝑎ଵ estimates for: a) non-noised b) noised 
twice differentiated Strube’s glottal wave excitation. 

 

When there is no noise nor outliers (Fig. 5(a)), in the 
contrast to the case when the excitation is the train of Dirac 
pulses (Fig. 4(a)), the first step of the RBLP method does not 
give good enough results. The unsatisfactory results of the 
Dutter method, which reflect in the presence of a large bias in 
the parameter estimation, are improved using the WLSQ 
algorithm, whose results are the same as in (Fig. 4(a)). In the 
presence of noise and outliers (Fig. 5(b)) the variance of the 

-a a

1

a)

-a a

0.3849a

b)
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estimation of the parameters is bigger than in the previous 
case, while the estimation is still unbiased. 

In the Fig. 6 the results of the RBLP method, for the twice 
differentiated Strube’s glottal wave excitation, with noise, for 
both constant and variable scaling factor 𝑑 in the WLSQ 
algorithm, are shown. It can be seen that the result of the 
RBLP algorithm with variable scaling factor has both smaller 
variance and bias, which is the main improvement of the 
algorithm in [8]. 

 
Fig. 6.  Comparative analysis of the RBLP with constant and variable scaling 
factor in the second step of the algorithm. 
 

B. Natural human spoken vowel “a” 

The algorithm was tested on the natural human spoken 
vowel “a” which was recorded with the sampling frequency of 
10 kHz and filtered with a low-pass filter with the cut-off 
frequency of 4 kHz. Because the exact values of the 
parameters of the AR model are not a priori known, for the 
reference values an estimation provided by the CLP method, 
performed on the sliding window with the length shorter than 
the fundamental period, is adopted [8]. When the sliding 
window for the CLP method does not contain the part of the 
signal originating from the excitation, the estimation is 
considered unbiased. For the length of the sliding window of 
the CLP method, 37 samples are adopted, as the fundamental 
period of the test signal is 47 samples. The adopted order of 
the AR model is 𝑝 = 8. 

The filtered signal is given in Fig. 7(a), while the estimates 
for the parameter 𝑎ଵ are given in Fig. 7(b). For the reference 
values of the parameter 𝑎ଵ, results of the CLP method, with a 
shorter window length, when there is no effect of the impulse 
type excitation, are adopted. In the Fig. 7(b), there is no effect 
of the impulse type excitation when the CLP estimates are at 
their higher values.  

 
Fig. 7.  Comparative analysis of the CLP and the RBLP methods performed 
on natural human spoken vowel “a”: a) Filtered spoken vowel “a”; b) 𝑎ଵ 
parameter estimates for the CLP and the RBLP methods. 

It can be seen that the estimates provided by the Dutter 
algorithm are less biased than the starting LSQ estimates, while 
the WLSQ algorithm gives significantly less biased estimates. 

V. CONCLUSION 

In this paper, an improvement to the RBLP algorithm, 
described in detail in [8], has been proposed. The main 
improvement of the algorithm is in the second step, the WLSQ 
algorithm, where it is proposed that the scaling factor changes 
with each iteration. The experimental results given in [8] have 
been confirmed. The algorithm has also been tested to the 
presence of the additive measurement noise as well as outliers, 
and it has been shown that the RBLP method is much more 
robust than the CLP methods. In the case of the natural human 
speech, the results of the RBLP method have a significantly 
smaller bias than the results of the CLP methods. Overall, the 
RBLP method proves to be much better for estimating the AR 
model parameters of the speech signal for both synthetized and 
natural human speech in the presence of outliers. 
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