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Abstract—In this paper multi-step adaptive consensus algo-
rithms for distributed information processing via networks of
intelligent sensors are considered. Network nodes are assumed
to have limited resources in view of the limited connectivity
range and the local availability of measurements (limited sensing
range). Consensus schemes aimed at achieving the weighted
average of node states (local information processing results)
by utilizing the locally available communication channels are
discussed. The setting where the adaptive asymptotic consensus
weights reflect assertions about the individual node quality
as well as the real-time measurement availability is adopted.
Within this context, the paper proposes practically convenient
procedure for designing the adaptive communication weights
exhibiting the fastest convergence speed of the resulting consensus
scheme, and proves the claimed optimality. This issue is of
great importance for reducing sensor network communication
requirements and increasing its energy efficiency. A number of
numerical examples are given, illustrating the algorithm behind
the proposed procedure and demonstrating its effectiveness.

Index Terms—Sensor networks, Adaptive consensus, Conver-
gence speed, Optimization.

I. INTRODUCTION

The problem of signal and information processing via sensor
networks has attracted a great deal of scientific interest over
the past few decades, e.g., [1], [2]. Distributed algorithms
have been in the focus of many researchers, due to their high
potential for increasing the robustness and fault tolerance of
the resulting schemes. Among various types of distributed
schemes, consensus algorithms have emerged as one of the
dominantly used protocols for reaching the agreement of
different nodes in the network regarding variables connected
to the global processing task [3], [4].

The application domain of consensus algorithms has been
very wide. Consensus has been used in distributed state
estimation [2], [5], [6], [7], fault diagnosis [8], [9], change
detection [10], [11], [12], [13], optimization [14], target track-
ing [15], [16], [17], [18], [19], [20], etc. All of these solutions
inherently adopt the local connectivity assumption, i.e., nodes
in the network are connected only to their neighboring nodes;
all-to-all connections are usually not considered since they
correspond to the centralized schemes.

One of the major challenges for the successful application
of consensus schemes has been to appropriately address the
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problem of some sensors not receiving measurements con-
nected to the global processing task at a given time instant, i.e.,
the problem of local observability [21], [22]. This represents
the special case of a more general setting with discrepant
local processing results - different nodes in the network obtain
local variables with different “quality”, which can be related
to both a priori assertions about the nodes (e.g., connected to
local measurement error covariances [9], [12], [13]), as well
as to real-time assertions (e.g., reflecting the fact that a node
does or does not receive measurements at a given time instant
[15], [17], or receives them with high or low probability [16],
[23]). In any case, this issue has to be taken into account
when designing the consensus communication scheme, so that
the achieved agreement is dominantly influenced by the “high
quality” nodes. The so-called adaptive consensus schemes
[15], [16] have demonstrated their effectiveness in solving
the problems with discrepant local processing results. The
proposed algorithms in [23], [17] solve the problem by using
multiple consensus iterations at each time instant and by
adopting the desirable asymptotic behavior of the consensus
scheme, resembling the two parallel passes scheme from [24].

When applying any communication procedure in the context
of sensor networks, and, in particular, when applying the
multi-step consensus schemes, it is very important to reduce
the needed communication burden. This represents an issue
that must be taken into account, having in mind the imposed
energy efficiency imperatives when working with sensor net-
works. In this paper we address the problem of designing the
adaptive consensus weights exhibiting the fastest convergence
speed, and propose a practically convenient procedure as a so-
lution. We also prove the optimality of the proposed solution,
extending the classical results from [25]. The adopted problem
setting is general and can be applied to different application
scenarios, such as distributed state estimation, target tracking,
change detection, optimization, etc. A number of numerical
examples are given, illustrating the underlying steps behind
the proposed procedure and demonstrating its effectiveness.

The outline of the paper is as follows. Problem setting and
the used adaptive multi-step consensus algorithm are described
in Section II. Section III deals with the problem of optimiz-
ing the consensus scheme convergence speed. Characteristic
numerical simulations are given Section IV, while concluding
remarks are stated in Section V.

II. ADAPTIVE CONSENSUS ALGORITHM

A. Problem Definition

Assume that we have a network of N intelligent sen-
sors, represented by a directed graph G = (N , E), where
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N = {1, . . . , N} is the set of nodes and E = {(i, j)} is
the set of directed links from node i to node j. Let A be the
adjacency matrix of G. We shall assume that the network is
aimed at performing a global information processing task in a
distributed manner, based on the locally available information
and real-time communication via the available communication
links (local connectivity assumption). In order to accomplish
the adopted global task, we assume that each node locally
processes its state vector:

ξi(t|t) = ξi(t|t− 1) + Fi (zi(t)) , (1)

where ξi represents the state vector (size n × 1) of the
node i, Fi its local filtering function, and zi locally available
measurements. This setting encompasses typical distributed
estimation and tracking problems, as well as distributed change
detection, optimization and calibration tasks. Importantly, we
shall assume that different nodes in the network can be in
different real-time situations regarding the availability of mea-
surements (local observability assumption), so that the quality
of the individual filtering processes can differ significantly in
time. In this respect, we shall further assume that each node
can estimate the quality of its local filtering process, resulting
in the scalar local weight γi(t) ∈ (0, 1], reflecting quality
of the estimate ξi(t|t). These weights γi(t) typically directly
reflect the availability of measurements (as in target tracking
scenarios where only part of the nodes observe the target).

The nodes subsequently exchange information on their
states and perform local predictions:

ξi(t+ 1|t) = Pi

∑
j∈Ji

cij(t)ξj(t|t)

 , (2)

where Pi is the local prediction function, and cij(t), i, j =
1, . . . , N , are time varying weights reflecting the real-time
communication weights between the nodes, such that N ×N
matrix C(t) = [cij(t)] (consensus matrix) is row-stochastic
for all t, Ji = Ni ∪ {i}, where Ni is the set of in-neighbors
of the i-th node, e.g., [1], [26], [27].

We see that the proposed setting requires the exchange of
node states only (size n×1) between the nodes (compare with
[22], [19]). It contains two parts: 1) the filtering part, in which
the local measurements are processed, and 2) the prediction
part, in which the agreement between the nodes is enforced
by forming a convex combination of the communicated local
states, which are then included in the prediction step, e.g., [1],
[4], [26].

B. Multi-Step Scheme

The main idea behind the adaptive consensus scheme dis-
cussed in the paper is to use the locally available weights
γi(t) in the design process of the consensus weights cij(t),
so that the corresponding consensus scheme potentiates the
states with high γi(t). To this end, we shall apply the so-
called multi-step consensus, and design such a scheme where
the asymptotic consensus weight connected to ξi(t|t) will be
proportional to γi(t). Moreover, in order to propose a general
solution, we shall assume that each node i is associated with
the weight wi, reflecting a priori assertions about the quality

of that node, so that the desired asymptotic consensus weights
will be

c∞ij (t) =
wjγj(t)∑N

j′=1 wj′γj′(t)
. (3)

Consequently, after the communication scheme is applied, all
the nodes will have estimations that are mostly influenced by
the “high quality” nodes, both in terms of a priori as well as
real-time quality assertions. Of course, in the case of equal a
priori weights, we will have c∞ij (t) = γj(t)/

∑N
j′=1 γj′(t).

In order to accomplish the set task, we shall apply K
consensus steps at each time instant t. In each consensus step,
the nodes will exchange the variables based on γi(t) as well
as the local states. The variables will be used for weighting the
communicated states. Before the consensus scheme is applied,
we need to obtain matrix B, which represents a consensus
matrix based on A used in communicating local weights γi(t)
between the nodes, such that

lim
K→∞

BK = 1wT , (4)

where 1 represents a vector of ones of appropriate size, and
w a priori weight vector w = [w1 · · ·wN ]T . Such a matrix
satisfies wTB = wT [4], [1], [14]. It can be shown that this
equation has, in principle, infinitely many solutions, using the
procedure analogous to the one from [14]. Solving it requires
the knowledge of network topology; it is performed only once
for a fixed topology (see the following section).

Let γ[κ]i (t) and ξ[κ]i (t|t), κ = 1, . . . ,K, be the weight and
the state of the i-th node connected to the κ-th consensus step,
respectively. We shall start from

γ
[1]
i (t) = γi(t), ξ

[1]
i (t|t) = ξi(t|t).

In this first consensus step, the nodes exchange γ
[1]
i (t) and

their states ξ[1]i (t|t). The weights γ[1]i (t) are being exchanged
through B, so that the corresponding consensus matrix that
defines the weights for the communicated states is

C [κ](t) =
(
B · diag

(
γ
[κ]
1 (t), . . . , γ

[κ]
N (t)

))
rs
, (5)

κ = 1, where (·)rs denotes an operator making the resulting
matrix row-stochastic - it divides elements of each row of the
argument matrix by the corresponding row sums.

Now that we have the consensus matrix C [κ](t) = [c
[κ]
ij (t)],

i, j = 1, . . . , N , the local states are obtained by

ξ
∗[κ]
i (t|t) =

∑
j∈Ji

c
[κ]
ij (t)ξ

[κ]
j (t|t), (6)

where star denotes the states obtained after the consensus step
is applied.

For the next consensus step, our design requires that
the weight of each node corresponds to the sum of
the weights it received previously, so that γ[κ+1](t) =
[γ

[κ+1]
1 (t) · · · γ

[κ+1]
N (t)]T becomes:

γ[κ+1](t) = B · diag
(
γ
[κ]
1 (t), . . . , γ

[κ]
N (t)

)
· 1 = B · γ[κ](t).

(7)
Also,

ξ
[κ+1]
i (t|t) = ξ

∗[κ]
i (t|t). (8)
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At this point one can proceed with (5) and (6) for κ + 1
and likewise repeat the described procedure for the total of K
consensus steps.

It is straightforward to show that the consensus parameters
cij(t) in (2) obtained by applying K consensus steps are:

[cij(t)] = C(t) = C [K](t) · C [K−1](t) · . . . · C [1](t)

=

[
bKij γ

[1]
j (t)∑n

j=1 b
K
ij γ

[1]
j (t)

]
, (9)

where [bKij ] = BK (B to the power of K). Under the usual
assumption that G is strongly connected [4], [14], we select
B satisfying (4), and readily obtain:

lim
K→∞

ξ
∗[K]
i (t|t) =

∑
j∈Ji

c∞ij (t)ξj(t|t), (10)

where

[c∞ij (t)] =


w1γ1(t)

w1γ1(t)+···+wNγN (t) · · · wNγN (t)
w1γ1(t)+···+wNγN (t)

...
. . .

...
w1γ1(t)

w1γ1(t)+···+wNγN (t) · · · wNγN (t)
w1γ1(t)+···+wNγN (t)

 ,
which represents the desired result from (3)

III. OPTIMIZING CONVERGENCE SPEED

In order to have a complete algorithm, we have to define
a constant matrix B in (5) and (7) according to (4), for a
given network topology and choice of w. Since our concern
is to achieve the fastest convergence to consensus (maximally
reducing the communication efforts), the formal problem to
be solved is [25]:

minimize r(B − 1wT ) with respect to B

subject to wTB = wT and B1 = 1, (11)

where r(·) is equal to either the spectral radius ρ(·) or the
spectral norm ‖ · ‖S (see [25]). It is possible to reduce
the number of degrees of freedom by introducing additional,
practically justifiable constraints on A.

Let B have equal non-diagonal non-zero elements in each
column (an analogous row-wise assumption can be used as
well), i.e., B =

∑
k,k 6=1(1−αcka1k) αc2a12 ··· αcna1n

αc1a21
∑

k,k 6=2(1−αcka2k) ··· αcna2n

...
...

. . .
...

αc1an1 αc2an2 ···
∑

k,k 6=n(1−αckank)

 ,
where α represents a scaling factor, cj are the elements of the
normalized vector of column values

c = [c1 · · · cN ]T ,

so that 1T c = 1, and aij are the elements of the adjacency
matrix A of the digraph G.

Formally, first we have to solve the standard equation

wTB = wT , (12)

for the unknown parameters in B under the given topology
constraints. It is straightforward to show that (12) reduces to

L̃Twc = 0, (13)

where L̃w is in the form of a weighted Laplacian matrix of
the underlying graph G [28], i.e., L̃w =
∑
k,k 6=1 wka1k −w2a12 · · · −wna1n
−w1a21

∑
k,k 6=2 wka2k · · · −wna2n

...
...

. . .
...

−w1an1 −w2an2 · · ·
∑
k,k 6=n wkank

 .
If G is strongly connected (which is a standard topology as-

sumption within similar contexts [14]), we have rank(L̃w) =
N−1 [4], [14]. Thus, (13) represents a system of N−1 linearly
independent equations with N unknowns, which, combined
with 1T c = 1, yields a unique solution for c.

On the other hand, it is easy to see that

B = I − αL̃c, (14)

where L̃c is in the form of another weighted Laplacian matrix,
i.e., L̃c =
∑
k,k 6=1 cka1k −c2a12 · · · −cna1n
−c1a21

∑
k,k 6=2 cka2k · · · −cna2n

...
...

. . .
...

−c1an1 −c2an2 · · ·
∑
k,k 6=n ckank

 .
Now, we can directly generalize the results from [25] to
conclude that (4) is achieved for

0 < α <
2

λ1(L̃c)
, (15)

where λi(·) denotes the i-th largest eigenvalue of the argument
matrix. Further, the optimal choice of α in view of (11) is

α =
2

λ1(L̃c) + λN−1(L̃c)
. (16)

It is to be noted that simple bounds that give choices that do
not require exact knowledge of the Laplacian spectrum can be
used as well [25].

IV. SIMULATION EXAMPLES

We shall consider a sensor network with N = 10 nodes,
randomly dispersed within a square area, and connected if the
corresponding inter-distance is less than half of the side of the
square (the so-called Geometric Random Graph topology). In
order to show that our proposed methodology is applicable
to the general case of digraphs, approximately 25% of two-
way connections is randomly made one-way. One obtained
realization of such a network, together with its communication
topology, is shown in Fig 1. The corresponding adjacency
matrix is

A =



0 0 1 1 0 1 1 0 0 1
1 0 0 1 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 1 0 1
1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 1
1 0 0 0 1 1 1 0 1 0


.
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Fig. 1. Sensor network with its communication topology.

First, we shall consider the average consensus problem, i.e.,
the case when we have

w = [ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ]T .

The corresponding weighted Laplacian matrix is

L̃w =



0.6 0 -0.1 -0.1 0 -0.1 -0.1 0 0 -0.1
-0.1 0.3 0 -0.1 0 0 -0.1 0 0 0
-0.1 -0.1 0.2 0 0 0 -0.1 0 0 0
-0.1 -0.1 0 0.2 0 0 -0.1 0 0 0

0 0 0 0 0.2 0 0 -0.1 0 -0.1
0 0 -0.1 0 0 0.4 -0.1 -0.1 0 -0.1

-0.1 -0.1 0 0 0 -0.1 0.6 0 0 -0.1
0 0 0 0 -0.1 -0.1 0 0.2 0 0

-0.1 0 0 0 0 0 0 0 0.1 -0.1
-0.1 0 0 0 -0.1 -0.1 -0.1 0 -0.1 0.5


.

By coupling (13) (for example, taking the first N − 1 inde-
pendent rows) with 1T c = 1, we come to

0.6 -0.1 -0.1 -0.1 0 0 -0.1 0 -0.1 -0.1
0 0.3 -0.1 -0.1 0 0 -0.1 0 0 0

-0.1 0 0.2 0 0 -0.1 0 0 0 0
-0.1 -0.1 0 0.2 0 0 0 0 0 0

0 0 0 0 0.2 0 0 -0.1 0 -0.1
-0.1 0 0 0 0 0.4 -0.1 -0.1 0 -0.1
-0.1 -0.1 -0.1 -0.1 0 -0.1 0.6 0 0 -0.1

0 0 0 0 -0.1 -0.1 0 0.2 0 0
0 0 0 0 0 0 0 0 0.1 -0.1
1 1 1 1 1 1 1 1 1 1


· c =



0
0
0
0
0
0
0
0
0
1


,

and readily obtain

c = [ 0.08 0.08 0.11 0.11 0.10 0.09 0.06 0.09 0.18 0.10 ]T .

The corresponding weighted Laplacian matrix is given by
L̃c =

0.47 0 -0.11 -0.11 0 -0.09 -0.06 0 0 -0.10
-0.08 0.25 0 -0.11 0 0 -0.06 0 0 0
-0.08 -0.08 0.22 0 0 0 -0.06 0 0 0
-0.08 -0.08 0 0.22 0 0 -0.06 0 0 0

0 0 0 0 0.19 0 0 -0.09 0 -0.10
0 0 -0.11 0 0 0.36 -0.06 -0.09 0 -0.10

-0.08 -0.08 0 0 0 -0.09 0.35 0 0 -0.10
0 0 0 0 -0.10 -0.09 0 0.19 0 0

-0.08 0 0 0 0 0 0 0 0.18 -0.10
-0.08 0 0 0 -0.10 -0.09 -0.06 0 -0.18 0.50


.

α

0 0.5 1 1.5 2 2.5 3 3.5 4

ρ
(B

−
1
w

T
)
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2

λ1(L̃c)

2

λ1(L̃c) + λN−1(L̃c)

Fig. 2. Spectral radius of B − 1wT for different values of α.

Now that we have L̃c, we can design the matrix B from (14)
by choosing the scaling factor α. Plotting the spectral radius
of B − 1wT for different values of α (Fig. 2), we see that
the minimal value and fastest convergence is obtained exactly
for α = 2/(λ1(L̃c) + λN−1(L̃c)) = 2.79, while the stability
boundary is reached for α = 2/λ1(L̃c) = 3.15. The resulting
matrix B providing the fastest consensus is

B =



-0.31 0 0.30 0.30 0 0.25 0.16 0 0 0.28
0.22 0.31 0 0.30 0 0 0.16 0 0 0
0.22 0.23 0.39 0 0 0 0.16 0 0 0
0.22 0.23 0 0.39 0 0 0.16 0 0 0

0 0 0 0 0.46 0 0 0.26 0 0.28
0 0 0.30 0 0 -0.01 0.16 0.26 0 0.28

0.22 0.23 0 0 0 0.25 0.02 0 0 0.28
0 0 0 0 0.27 0.25 0 0.48 0 0

0.22 0 0 0 0 0 0 0 0.50 0.28
0.22 0 0 0 0.27 0.25 0.16 0 0.50 -0.40


.

We shall further consider the weighted consensus case. For
example, let the weight vector be

w = [ 0.05 0.16 0.08 0.12 0.22 0.06 0.09 0.06 0.06 0.11 ]T .

Similarly as above, we obtain

c = [ 0.04 0.11 0.16 0.12 0.21 0.07 0.05 0.07 0.08 0.10 ]T ,

and the fastest convergence is achieved for α = 3.1, while
the stability boundary is reached for α = 3.35. The resulting
matrix B providing the fastest consensus is

B =



-0.52 0 0.49 0.36 0 0.21 0.15 0 0 0.31
0.11 0.38 0 0.36 0 0 0.15 0 0 0
0.11 0.33 0.40 0 0 0 0.15 0 0 0
0.11 0.33 0 0.40 0 0 0.15 0 0 0

0 0 0 0 0.48 0 0 0.21 0 0.31
0 0 0.49 0 0 -0.16 0.15 0.21 0 0.31

0.11 0.33 0 0 0 0.21 0.04 0 0 0.31
0 0 0 0 0.65 0.21 0 0.14 0 0

0.11 0 0 0 0 0 0 0 0.57 0.31
0.11 0 0 0 0.65 0.21 0.15 0 0.25 -0.38


.

In order to show the effectiveness of our solution, we
shall compare the aggregated consensus results (powers of
the matrix B) in the optimized convergence speed case (with
α = 2/(λ1(L̃c)+λN−1(L̃c)), shown in Fig. 3), to one example
of the non-optimized case (with α = 1, shown in Fig. 4). It
can be clearly seen that the desired asymptotic weights are
reached much faster with the optimized solution.
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Fig. 3. Values of all rows of BK when B is optimized; asymptotic weights w are illustrated with red dots.
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Fig. 4. Values of all rows of BK when B is not optimized; asymptotic weights w are illustrated with red dots.

Finally, as a small proof-of-concept example, we shall
assume that the nodes states directly reflect the received scalar
measurements; for all the nodes except nodes 5 and 8 these
are randomly sampled from the Gaussian distribution with
µ = 100 and σ = 10 (we assume that these are low qual-
ity measurements with corresponding weights γi = 0.001),
while for nodes 5 and 8 the measurements are randomly
sampled from the Gaussian distribution with µ = 10 and
σ = 1 (high quality measurements with corresponding weights
γi = 0.99). We adopt equal a priori weights wi for all i.
Therefore, we expect our scheme to achieve consensus value

around 10, influenced primarily by nodes 5 and 8. We see in
Figs. (5) and (6) that this indeed happens. Also, it can be seen
that the optimized case offers a satisfying solution already for
a number of consensus steps of 3, while similar amount of
disagreement between the nodes in the non-optimized case is
reached only just for a total number of consensus steps of 10.

V. CONCLUSION

In this paper a procedure for designing the adaptive multi-
step consensus communication scheme in sensor networks is
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Fig. 6. Nodes’ states for different number of consensus steps - non-optimized
case.

proposed, exhibiting the fastest convergence to the desirable
asymptotic values, and thus minimizing the resulting commu-
nication burden. The scheme allows both a priori and real-
time weightings of the local processing results connected to
different nodes in the network, influencing the asymptotic
behavior of the consensus protocol in appropriate manner.

Further work can be oriented towards exploring the design
possibilities of analogous randomized schemes, similarly as in
[29], [12], [14].

REFERENCES

[1] R. Olfati-Saber, A. Fax, and R. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 215–233, 2007.

[2] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in
46th IEEE Conference on Decision and Control, 2007, pp. 5492–5498.

[3] W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle
Cooperative Control: Theory and Applications. Springer Publishing
Company, Incorporated, 2007.

[4] W. Ren and R. Beard, “Consensus seeking in multi-agent systems using
dynamically changing interaction topologies,” IEEE Transactions on
Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[5] R. Olfati-Saber and N. F. Sandell, “Distributed tracking in sensor
networks with limited sensing range,” in American Control Conference,
2008, pp. 3157–3162.
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