
 

  

Abstract— We developed a method for assessment of the gait 

regularity in hemiplegic patients. We used a fully wearable 

system comprising ground reaction force sensors and inertial 

measurement units to record the dynamics and array electrodes 

and multichannel amplifiers for electromyography (EMG) 

mapping of activity of tibialis anterior m. during the gait. The 

fuzzy logic was applied to ground reaction force signals  for 

estimating the gait symmetry. This paper introduces a new 

parameter for estimation of symmetry of muscle activities in the 

ipsilateral and contralateral legs based on the entropy of EMG 

maps. The presented method forms a set of gait parameters for 

quantifying the regularity of the patient’s gait. The set of 

parameters are of interest for the assessment of the efficacy of 

the therapy. 

 

Index Terms—gait, EMG, EMG maps, IMU, wearable 

technology, drop foot 

 

I. INTRODUCTION 

Cerebrovascular lesion in most cases leads partial paralysis 

of one side of the body (hemiplegia). Hemiplegia comprises 

an irregular posture, unevenly distributed support on legs 

when standing, slow and asymmetrical gait, rapid onset of 

fatigue, etc. [1]. 

The motor status of a hemiplegic patient can be assessed by 

the analysis of the gait regularity. There are a several scales 

for gait assessment: Rivermead Visual Gait Assessment 

(RVGA), Salford Gait Tool (SGT), Observational Gait Scale 

(OGS), Clinical Gait and Balance Scale (GABS), etc. [2]. The 

listed clinical scales are largely based on the visual 

observations made by the clinician. 

Technological progress led to the reproducible and 

examiner independent methods for gait quantification. 

Different types of instrumentation are in use: sensor platforms 

for measuring the reaction forces of the ground and cameras 

with reflective markers for recording movement [3], inertial 

measurement units (IMU), and insoles for shoes with force 

sensors [4], walking paths with sensors [5], etc. These systems 
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provide various information about gait mechanics: joints 

angles, angular velocities, ground reaction forces, etc. [6]. 

Electrophysiological signals (e.g., electromyography – EMG) 

carry important information about the motor systems 

responsible for the gait [7]. The combination of physiological 

signals and gait mechanics gives the possibility of qualitative 

and quantitative gait analysis, which includes the analysis of 

the movement actuators and its mechanics. 

We presented a method for gait assessment based on 

temporal parameters [8, 9]. To obtain these parameters (gait 

cycle, step cycle, swing phase, stance phase, double support 

phase, and cadence) we used shoe insoles with built-in 

pressure sensors and IMUs to analyze gait mechanics and 

determine the characteristic moments that represent the 

boundary between individual gait phases. We showed in 

another study [10] the upgraded method where the EMG 

mapping was included. We have shown that there are 

significant differences between the intensities of EMG in 

specific regions on the paretic and nonparetic leg. We showed 

the presence of symmetrical shapes in EMG maps of 

ipsilateral and contralateral extremities and lack of intensity in 

the paretic side relative to nonparetic [11, 12]. As EMG maps 

represent digital images, in [13] we have shown the 

implementation of digital image processing techniques for 

analysis of EMG maps.  

In this paper we presented the method for gait assessment 

based on temporal gait parameters and EMG mapping. The 

method quantifies the gait symmetry in electrical activities of 

muscle tibialis anterior (TA) in legs during the gait of 

hemiplegic patients. The TA muscle is responsible for lifting 

the toes. The lack of activity of the TA results with the drop 

foot and the gait starts to be abnormal since the toes are 

catching the ground during the swing phase of the gait cycle. 

We used the recordings of mechanical and EMG signals from 

the gait of a group of hemiplegic patients before and after 

standard medical treatment in the rehabilitation. 

II. THE METHOD 

A. Instrumentation 

To record monopolar EMG signals from the TA on both 

legs we used two custom designed circular 24-pad electrodes 

(d = 8 mm). Pads were fixed in 6 rows with different number 

of pads (5 pads in 1st and 2nd row, 4pads in 3rd and 4th row, and 

3 pads in 5th and 6th row). Arrays were made of SA9327 

EKG/EMG Ag-AgCl commercially available electrodes 

(Thought Technology Ltd., Montreal, QC, CA). All pads were 
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covered with AG936 conductivity gel (Axelgaard 

Manufacturing Co. Ltd., Lystrup, DK). We used disposable 

pre-gelled EMG Ag/AgCl electrodes with 10 mm flat pellets, 

Covidien BRD H124SG (Covidien, Medtronic, Dublin, IR) as 

ground and reference electrode. 

Array electrodes were connected to two wearable 24-

channel amplifiers Smarting (https://mbraintrain.com/). The 

Smarting was designed for monopolar recordings of the 

cortical activities (brain-computer interface – BCI). Due to 

Bluetooth connection with PC Smarting has sampling rate 

limit at 500 Hz per channel. This limitation does not satisfy 

Nyquist criterion for EMG signals, but we validated the 

applicability of the Smarting for estimation of EMG 

envelopes by comparing the recordings with the signals 

acquired by a professional EMG amplifier BioVision 

(BioVision, Wehrheim, DE) [14]. For recordings, we used the 

proprietary software of the Smarting. Each Smarting system 

was connected to a separate PC. 

For the recording of the gait mechanics we used 

instrumented insoles (Gait Teacher, https://rehabshop.rs/). 

Each insole comprises five pressure sensors and one IMU to 

record accelerations and angular velocities in all three 

directions. Insoles have wireless connection with PC. For the 

signal acquisition, we used the proprietary software of the 

Gait Teacher. In this study we used signals from the pressure 

sensors that are highly correlated with the ground reaction 

forces. 

All three recording systems (two PCs with smarting 

systems and one PC connected to insoles system) were 

synchronized by Lab Stream Layer platform, which collects 

data from available streams from PCs connected in the same 

Local Area Network. 

B. Subject and Procedure 

One hemiplegic patient (female, 72-years, 175 cm, 71 kg, 

right side hemiplegia, uses four-legged cane) participated in 

our key study. She signed the informed consent approved by 

the ethics committee of the Clinic for rehabilitation “Dr 

Miroslav Zotović“). The whole procedure was supervised by a 

physiatrist. 

 
Fig. 1. a) Schematics of the electrode placement: array electrode was 

covering the region over TA  muscle; ground electrode was placed over bony 

part of knee and the reference electrode was placed under the array along the 

longitudinal axis; b) Patient with experimental setup. 

The array electrodes were placed symmetrically on both 

legs, covering the TA regions. Longer edge of the electrode 

was placed along the tibia, top of the electrode at 20 mm from 

the tibial tuberosity (Fig. 1). Ground electrodes were placed 

over patella, and reference electrodes were placed under the 

array electrodes, 10 mm along the longitudinal axis. 

Subject’s task was to walk in a straight line to cover the 

distance of 10 m. Before the recording subject was asked to 

stand with evenly distributed weight on both legs (as much as 

it was possible). Subject was asked to start and stop the gait 

on an auditory signal. The subject was asked to walk with the 

gait rate that she felt comfortable. The procedure was repeated 

three times in one session before and after three weeks of the 

therapy. 

C. Data Processing 

An original software in Matlab R2015a (MathWorks, Inc., 

Natick, MA, US) was used for processing. 

We applied fuzzy logic on signals from pressure sensors to 

estimate the heel contact (HC; beginning of the stance phase) 

and toes off (TO; beginning of swing phase) moments. 

Detailed explanation can be found in [8, 9]. We estimated the 

following parameters: gait cycle (GC) – time between the two 

consecutive HC of the same leg; step cycle (SC) – time 

between the HC of the ipsilateral leg and the HC of the 

contralateral leg; stance phase (STP)– time between the HC 

and the TO of one leg; swing phase (SWP)– time between TO 

and HC of one leg; double support phase (DSP) – time when 

both legs are contacting the ground; gait cadence (GCD)– 

number of steps per unit time. 

We applied high pass Butterworth filter (2nd order, cutoff 

frequency at 30 Hz) to EMG signals to stabilize the baseline 

and notch Butterworth filter (3rd order) at 50 Hz to minimize 

the impact of noise coming from the power lines. To remove 

the artefacts incurred during a heel strike we used FastICA 

method [15]. Recorded signals 𝒙 (surface EMG) with artifacts 

can be represented as: 

 

𝒙 = 𝑨𝒔;           (1) 

𝒙 = [

𝑥1

⋮
𝑥𝑛

]; 𝒔 = [

𝑠1

⋮
𝑠𝑛

]; 𝑨 = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

] ; 

where 𝒔 are original activities of particular sources and 𝑨 is 

the mixing matrix (matrix of constants). 

Using the ICA algorithm, the weight factors W are 

calculated such that the separated components u are 

maximally statistically independent: 

 

𝒖(𝑡) = 𝑾𝒙(𝑡) = 𝑾𝑨𝒔(𝑡)       (2) 
 

Fig. 2 shows the decomposition of 24 EMG signals from 

one array electrode (only one channel is shown on the top 

panel due to limited space) to 24 independent components 

(maximum number of components). Among the obtained 

components u (middle panel) the components with artifacts 
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stand out (examples are marked with red circles).We detected 

components that mostly contain artifacts, using visual 

inspection, and removed them manually, equating them with 

zero. After the components are deleted, the inversion 

reconstructs the EMG signals based on the remaining 

components: 

 

𝒙(𝑡) = 𝑾−𝟏𝒖(𝑡)         (3) 

 

 
Fig. 2. Removing heel contact artefacts from EMG signals by applying 

ICA method. a) The example of EMG signal with significant moving 

electrode artefacts incurred during a heel strike; b) The independent 

components obtained from 24 EMG channels from the same array electrode; 

c) The EMG signal with removed artefacts. 

 

We applied low pass Butterworth filter (3rd order, cutoff 

frequency at 3 Hz) on absolute value of EMG signals to 

estimate the EMG envelopes. All envelopes were normalized 

relative to maximal value of all channels in the analyzed 

sequence. 

We used EMG envelopes to obtain the EMG maps. Similar 

to method we used in our previous researches [13], we applied 

bicubic (“spline”) interpolation to current envelope samples 

from the same array electrode. The only difference was in 

initial matrix, due to different shape of array electrode. The 

EMG maps were formed based on the template matrix 

(72x101 pixels – one pixel corresponds to 1x1mm of array 

electrode) that contains three groups of pixels (Fig. 3): 24 

original pixels with the envelope samples, placed in 

appropriate place due to pads order; pixels interpolants; and 

empty pixels that exceed the array electrode. 

Algorithm took the samples of EMG envelopes from same 

array electrode in the same moment (1 sample per channel – 

24 samples in total) and arranged them in appropriate pixels in 

the template. In next step, algorithm applied interpolation and 

assigned the scale of colors (deep blue is region without 

activity and deep red is region with highest activity). 

Assigning colors is used just for visualization of EMG maps, 

but it is not a part of further calculations.  

Fig. 3. Template for EMG map interpolation: red squares represent the 24 

original data set; blue region represents the pixels interpolants and black 

region are the empty pixels that exceed dimensions of array electrode. 

 

To ensure better repeatability of EMG maps from step to 

step, EMG maps were calculated by averaging of 11 samples 

from each channel, in the vicinity of HC (5 samples before, 

HC moment and 5 samples after). The number of samples is 

determined heuristically. Since it is difficult to estimate the 

appropriate moment from EMG envelopes on the paretic foot, 

the detection was performed based on signals from the 

insoles, in which the desired HC is clearly distinguished. 

We calculated entropy of digital image as: 

 

𝐸𝑛𝑡 = − ∑ 𝑝𝑖 log 𝑝𝑖
𝑛−1
𝑖=0      (4) 

 

where 𝑛 is number of intensities in the color scale, and 𝑝𝑖  is 

the probability expressed in number of pixels with intensity 𝑖. 

Based on the individual entropies, the mean entropy values for 

the nonparetic and paretic leg were calculated. A coefficient 

representing their ratio was calculated, according to the 

formula: 
𝐸𝑛𝑡𝑙̅̅ ̅̅ ̅̅ −𝐸𝑛𝑡𝑟̅̅ ̅̅ ̅̅ ̅

𝐸𝑛𝑡𝑙̅̅ ̅̅ ̅̅ +𝐸𝑛𝑡𝑟̅̅ ̅̅ ̅̅ ̅
          (5) 

 

where 𝐸𝑛𝑡𝑙
̅̅ ̅̅ ̅̅  and 𝐸𝑛𝑡𝑟

̅̅ ̅̅ ̅̅  are mean entropy values for EMG 

maps from left and right leg, respectively. 

III. MAIN RESULTS 

Figure 4 shows the example of signals from pressure 

sensors and median of EMG envelopes from nonparetic and 

paretic leg for seven full gait cycles. Figure also shows 

sequences of EMG maps on both sides in characteristic 

moment of gait which are marked with red dots.  

In Figure 5 are shown the examples of EMG maps from 

nonparetic (top left) and paretic (bottom left) leg and their 

histograms (right).  
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Fig. 5. Examples of EMG maps from nonparetic (top left) and paretic 

(bottom left) leg and their histograms (right). There is noticeable difference 

between histograms: histogram on paretic side is more concentrated around 

one peak, while histogram on nonparetic side wights to uniform distribution. 

 

In Table I are presented the mean values of gait parameters 

and EMG map entropies obtained from signals recorded 

before and after therapy. Gait cycle (GC) and Step Cycle (SC) 

are given in seconds, Swing phase (SWP) and Stance phase 

(STP) are given as percent of Gait cycle, Gait cadence (GCD) 

is given in steps per second, Double support phase (DSP) is 

presented as percent of a Gait cycle and EMG entropy is 

represented in arbitrary values.  

TABLE I 
GAIT PARAMETERS AND EMG MAP ENTROPY 

 

 
GC 

[s] 

SC 

[s] 

SWP 

[%] 

STP 

[%] 

DSP 

[%] 

GCD 

[step/s] 

Entropy 

[arb.] 

B
ef

. L
 

2.30 0.62 10.3 89.7 50.4 
56.27 

5.12 

R
 

2.29 0.61 26.9 73.1 15.7 3.46 

A
ft

. L
 

1.86 0.58 17.5 82.5 38.7 
70.51 

5.43 

R
 

1.80 0.56 29.8 70.2 17.2 4.07 

 

Figure 6 shows the main ratio between swing and stance 

phase for paretic and nonparetic leg before and after therapy 

(left panel) and ratio of EMG entropies on left and right leg 

before and after therapy (right panel).  

 

 
Fig. 6. Main ratio between SWP and STP for paretic and nonparetic leg 

before and after therapy (left panel) and ratio of EMG map entropies between 

left and right leg before and after therapy.  

Fig. 4. Signals from pressure sensors and median of EMG envelopes from nonparetic leg (top panel) and paretic leg (bottom panel) for seven full gait 

cycles; Example shows the sequences of EMG maps on both legs obtained in characteristic moments, marked with red dots. Significant difference can be 

noticed in signals and EMG maps on paretic and nonparetic side. 
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IV. DISCUSSION 

In Figure 4 it is noticeable that the pressure distribution 

during the STP arises in an irregular rhythm on the paretic leg 

(all signals rise simultaneously from the HC moment). 

Segments in which the pressures are equal to 0 represent the 

SWP and it can be noticed that their duration differs on the 

paretic and nonparetic leg: the SWP is shorter on the 

nonparetic leg, because the subject tends to rely on the 

nonparetic leg as soon as possible. These differences in 

signals on both sides indicates to irregular and asymmetrical 

gait.  

In Figure 4 significant difference in EMG activity between 

nonparetic and paretic leg can be noticed: mean envelope on 

nonparetic side has relatively repetitive pattern with local 

maxima at HC moment, while on paretic side EMG envelopes 

have irregular pattern and noticeably lover amplitude. This 

difference reflects to EMG maps (Figure 4 top and bottom). 

Beside lower intensity, EMG maps on paretic side don’t have 

clearly defined high intensity regions, and activity spreads all 

over the EMG map. This can be explained as patients attempt 

to make a movement by compensatory mechanism, due to 

poor innervation of targeted muscle. The EMG maps and 

histograms in Figure 5 illustrate this scattering of EMG 

activity. Histogram of nonparetic EMG map wights to 

uniform distribution because the pixels of the EMG map have 

various intensities. On the other hand, histogram of the EMG 

map from paretic side is concentrated around one peak, 

because the majority of the pixels have same intensity (color). 

These differences in intensity distribution are clearly 

quantified by calculating entropies. The values shown in 

Table I: 5.12 for nonparetic and 3.46 for paretic leg before the 

therapy. The greater entropy is the histogram is closer to 

uniform distribution, which means more different colors in 

EMG map. After the therapy, difference between entropies are 

lower, which indicates patient’s improvement and greater 

selectivity in muscle recruitment. The EMG map entropy ratio 

shown in Figure 6 represents the symmetry of patient’s 

activities on paretic and nonparetic leg and level of selectivity 

for muscle recruitment. Due to equation (5), in ideal case this 

ratio would be 0 which would mean that both legs have the 

same selectivity (entropies are equal on both legs). 

Global improvement can be noticed in gait parameters in 

Table I: patient walks faster (GCD is greater and GC and SC 

are shorter), but also symmetry is improved (difference 

between duration of SWP and STP on paretic and nonparetic 

leg are lower; Figure 6 left panel). 

V. CONCLUSION 

The proposed method, which combines the use of pressure 

sensors with EMG array electrodes and portable amplifiers, 

provides a good base for gait analysis. The formed set of 

parameters, based on gait mechanics, and spatio-temporal 

images of muscle activity during gait (both as a visual 

assessment and quantified), gives the possibility to assess the 

patient's condition before and after therapy. 
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