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Abstract—Objective measure of the gait quality is essential for 
evaluating the therapeutic protocol's effects on stroke patients' 
rehabilitation. We present a new proposal for assessing the gait, 
which uses the principal component analysis (PCA) of feet 
kinematics and ground reaction forces (GRF) data. The data 
have been acquired by the Gait Master comprising five GRF 
sensors and 6D inertial measurement units (IMU) per insole. The 
PCA reduces the 22-time series output from two insoles and 
generates cyclograms, allowing qualitative analysis of the 
pathologic and healthy gait differences. We suggest that 
cyclograms in the space with principal components on the axis 
provide useful information to the clinician about the gait 
performance. Five volunteers with no known motor impairment 
participated in the determination of the regular pattern. We 
tested the method in a small series of patients after stroke using 
the pattern of healthy as a standard. The results suggest that the 
PCA analysis provides a good measure of gait quality.  

 
Index Terms—Gait; Stroke; Cyclograms; Principal 

component analysis (PCA); Inertial measurement unit (IMU); 
Ground reaction force (GRF).  

 

I. INTRODUCTION 

THE characterization of gait in persons with motor 
disabilities is instrumental in selecting the most effective 
therapeutic protocol. The characterization can be performed 
based on data acquired during the gait. The data of interest are 
the ground reaction forces (GRF) and leg segments' 
kinematics since they fully define the biomechanics. 

The precise measurement of leg segments' ground reaction 
forces and kinematics can be done in the specialized 
laboratories instrumented with camera systems and force 
plates [1, 2]. The difficulty is that the recording process 
requires a specialist's participation with the experience in 
acquiring motion data and setting the markers on the 
appropriate places at the body. The gait laboratory setup is 
designed for only straight-line walking, and GRF is acquired 
for one or two steps. The alternative to the recordings in the 
gait laboratories is to implement a wearable system [3-7]. 
Wearable systems combine sensors integrated into shoe 
insoles and inertial measurement units (IMU) that measure the 
acceleration and angular rates of body segments. Information 
from all sensors must be synchronized, which is not the most 
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trivial task because of the time delays and lost packages when 
wireless technology is used. The difficulty is that sensors 
integrated into insoles, although being much improved 
(availability of new materials and miniaturization of 
electronics and wireless communication) measure only total 
ground reaction forces and have hysteresis, delay, and 
insufficient robustness when the temperature and humidity 
change. The recently introduced Gait Master system [8] with 
several industrial quality GRF sensors and IMU provides 
versatility comparable with the force plates in the gait 
laboratories. The data from the insoles is stored in a time-
stamped format for off-line analysis. The set of data 
comprises the 22-time series. This data is sufficient to 
determine gait parameters [1, 2]. Table I shows the typical 
collection of data that can be estimated from a wearable 
system. 

TABLE 1: FEATURES IN GAIT ANALYSIS 

Gait Feature Definition 
Walking Speed The average speed while the subject is walking 
Cadence Average steps per minute while walking 
Swing Time The transition time of the foot from lift to landing 
Stance Time The transition time of the foot from landing to lift 
Stride Length  The distance between the heel contacts of the 

ipsilateral foot and contralateral foot 
Step length The distance between two consecutive heel 

contacts of the same foot 
Ground 
reaction force  

The distribution of the GRF over the sole 

Symmetries Differences between the same events in 
ipsilateral and contralateral legs  

 
The reason for the quantification of the gait is the objective 

assessment of the performance. However, there is no golden 
standard what is the normal performance. Young people have 
different gait patterns than persons of older age. Females have 
different gait patterns influenced by the type of shoes used, 
etc. [9].  

Methods used in clinical studies compare the measured 
features between before and after the therapy, or between 
different therapeutic protocols. The comparison is statistically 
analyzed, and significant differences are used as measures. 

Another method to use gait data is to form cyclograms. 
Cyclograms are a spatial presentation where two or more 
recorded signals (e.g., hip and knee angles; hip, knee, and 
ankle angles) are the coordinate system axes. The cyclograms 
can be used to analyze the different gait modalities and 
compare healthy vs. pathologic gait [10]. 
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We introduce here the method which uses cyclograms 
generated in the space of principal components calculated 
from data recorded during gait. The principal components 
analysis (PCA) reduces the 22-time series recordings to a set 
of orthogonal values that can be used for the creation of a 
two-dimensional cyclogram. In principle, the analysis can 
look into three or more dimensional cyclograms.  

The method that we present, PCA, was applied to sets of 
data separately for the left and right legs. Data recorded were 
considered as sequences of stochastic events. The reason for 
developing this method for representing the gait performance 
follows the previous research in applying PCA to analyze 
kinematic data [11]. 

We illustrate the method by using data recorded in healthy 
and patients with stroke. Besides, we associate a numerical 
measure calculated from the cyclograms to be a classifier of 
difference between the healthy and pathologic gaits. 

II. METHODS AND INSTRUMENTATION 

A. Instrumentation 

We used Gait Master insoles [8] with five GRF sensors and 
the one 6D IMU per insole. The insoles use the hardware built 
around MPU-6050 (16-bit conversion). Each insole includes a 
wireless communication circuit allowing real-time data 
transfer at 100 Hz (11 signals per insole) to the host computer 
at distances up to 30 m. The LabView environment's 
proprietary acquisition software provides online data with the 
delay of 50ms and stores data in a time-stamped format for 
off-line analysis. The program has a graphical user interface 
(GUI), allowing the clinician to intuitively operate the system. 
1) Subjects  

Six healthy volunteers participated in this study. They were 
considered healthy since no known sensory-motor impairment 
was reported or known from their health record. Four patients 
with stroke were recruited. The measurements were 
performed in the Clinic for rehabilitation "Dr. Miroslav 
Zotović“, Belgrade, Serbia. All patients signed an informed 
consent approved by the board of the Institute. Patients 
participated in testing the efficiency of the functional 
electrical stimulation assisted pedaling. 

B. Procedure 

Subjects were asked to walk at their normal walking pace. 
They repeated walking over a 5m flat surface two times. If 
necessary, they would rest between the trials.  

C. Signal processing  

Steps extraction and the stance and swing detections were 
done based on the threshold method for detecting heel strike 
and toe-off events. The threshold was set to be 5% of the 
maximum value from the GRF signal from the heel and the 
toes' lateral side. The first and last steps were excluded from 
further analysis. The singles used in the principal component 
analysis were the angular velocity in the sagittal plane 
(GyroY), the acceleration in the direction of sole (AccX), and 
the direction orthogonal to the sole (AccZ), and the all five 
ground reaction forces individually (GRF). The signals were 

selected based on the heuristic analysis of all 11 signals 
measured by each insole. We normalized the signals to make 
them have the unit variance.  

The PCA allowed the mapping of the original data into 
orthogonal space, where the principal axis is the direction of 
the data's maximal deviation [12]. The analysis includes 
calculating the correlation matrix, extraction of the application 
of the principal component of the varimax rotation, and 
calculation of factor scores. The number of principal 
components we used in this study was chosen based on 
Kaiser's proposed method [13]. We retained only elements in 
which the eigenvalues were more significant than one. The 
Bartlett's test of sphericity showed that data was suitable for 
PCA. 

The proposed method uses 2D cyclograms in the space of 
the first two principal components. Cyclograms were 
compared for consecutive steps for different gait categories. 
These cyclograms are the image representation for the gait 
performance assessment. 

  
We defined the quantitative parameter d, as shown in Eq. 1: 
 

𝑑 =
𝑑ଵ௦௧

𝑑ଶ௦௧
൘ ∗

𝑑ଶ௦௪

𝑑ଵ௦௪
൘  (1) 

 
where 𝑑ଵ௦௧

 is the maximal distance on the PC1 axis 
between points on cyclograms for the stance phase. Similarly, 
𝑑ଵ௦௪

 is the distance for the swing phase, while PC1 and 

PC2 subscripts represent the distance on the PC1 and PC2 
axis, respectively (Fig 1). 
 

 
Fig.1. Sketch of the parameters defining the cyclogram that can be 
automatically calculated. The left panel shows a characteristic pattern for one 
leg during healthy gait. The right panel shows an example of the non-paretic 
limb during the gait of a patient. 

III. RESULTS 

Fig. 2 shows the processed data and a characteristic single 
step for a person's left leg with no known sensory-motor 
impairment. 

 Fig. 2 shows the processed data for about eight seconds 
(left panel) and extracted data for a single step for a person's 
left leg with no known sensory-motor impairment (right 
panel). 
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Fig.2. An example of the eight signals extracted from the 22-time series was 
recorded with the insole in the left shoe during a healthy person (left panel). 
The right panel shows the processed and standardized data for a single step. 
Acronyms AccX (blue) and AccZ (red) are used to the accelerations in the 
direction of the sole, and the direction orthogonal to the sole, GyroY (green) 
is denoting the angular rate of the foot in the sagittal plane, and GRF (five 
black lines) are five signals from the GRF sensors. 
 

Left panels in Fig. 3 show the first two principal 
components (PC 1 and PC 2) vs. time. The right panels in Fig. 
3 are cyclograms in the two-dimensional PCA space (PC1 and 
PC2, the horizontal and vertical axis). The black color shows 
the stance phase, while the red color indicates the swing 
phase. 

 

 
Fig.3. Left panels show the first two principal components (PC 1, PC 2) and 
the sum of all five sensors (GRF). The right panels show PCA cyclograms for 
a single gait cycle  

and use two colors for distinguishing between the swing 

and stance phases. The upper row uses data from the left leg 
of a healthy subject. There is a distinct difference in the 
cyclograms for both paretic and non-paretic legs compared 
with the cyclogram for healthy gait patterns. 

Fig. 4 shows the variability of cyclograms for four 
consecutive steps. 

 
Fig.4. Cyclograms for four consecutive steps. The first row shows cyclograms 
for the left leg of a person with no known sensory-motor impairment. The 
second and third rows are cyclograms for a patient's non-paretic and paretic 
leg after stroke. Red lines are used to the swing phases and the black lines for 
the stance phases. 
 

The top panels show a healthy pattern, the second row 
shows the non-paretic leg, and the bottom panels represent the 
paretic limb. The red color indicates the swing phases, while 
the black lines show each step's stance phases. 

Fig. 4 indicates that there is a small variability from step to 
step in a healthy gait. There are significant differences 
between cyclogram in patients for the paretic and non-paretic 
legs. There is a high variability from step to step, especially 
noticeable in the cyclograms for the paretic limb. 

In conclusion, the pathological gait patterns have different 
cyclogram shapes than healthy gait patterns, and they have 
more substantial shape variability from step to step. 
 

TABLE II. THE VALUES OF THE RATIO OF LENGTHS dPC1 AND dPC2 FOR FOUR 

CONSECUTIVE STEPS OF A HEALTHY AND PATIENT NO1 FOR THE STANCE AND 

THE SWING PHASES 

 Healthy – left leg non-paretic Paretic 
    
 stance swing stance swing stance Swing 

Step 1 1.4 1.1 1.2 0.6 1.8 0.2 
Step 2 1.2 1.7 0.9 0.3 1.2 0.7 
Step3 1.3 2 1.3 0.8 2.3 0.2 
Step 4 1.3 1.9 1.1 0.5 2.2 0.3 

Mean±SD 1.30.1 1.7±0.4 1.1±0.2 0.5±0.2 1.9±0.4 0.3±0.3 

d ± SD 0.8±0.2 2.3±0.6* 7.8±5.6* 
 

Data for four steps for the healthy gait and one patient are 
in Table I. The columns are the values of the dPC1 and dPC2. 
The data for one leg of a healthy gait and non-paretic and 
paretic sided of one patient with stroke. The asterisks annotate 
the significant difference. 

BTI 1.3.3



 

TABLE III. THE MEAN AND STANDARD DEVIATIONS OF d (RATIO OF dPC1 AND 

dPC2 ) FOR ALL CONSECUTIVE STEPS FOR A HEALTHY AND FOUR PATIENTS. 
  

 d ± SD 

Healthy (left leg) 0.9±0.2 

 Non paretic leg Paretic leg 

Patient No 1 2.3±0.6 7.8±5.6 

Patient No 2 3.2±.1.2 6.9±4.5 

Patient No 3 1±0.9 7.9±6.3 

Patient No 4 0.7±0.6 1.5±1.2 

 
Table III shows the values of the parameter d for the 

healthy gait and the gait of four patients.  

IV. DISCUSSION AND CONCLUSION 

The cyclograms reflect the gait performance reduced to two 
principal components. The parameter d is a quantitative 
measure of the cyclograms, which we suggest to be used as 
the gait measure. The new standard is a simple means for 
evaluating a therapy [14, 15].  

The shapes of cyclograms in patients show a discrepancy in 
patients' gait compared with healthy persons (Fig. 6). The 
cyclograms are a catching eye measure to the gait 
performance. The software we developed allows the clinician 
to superimpose the cyclogram of a patient over the cyclogram 
of a healthy gait.  

The cyclograms can be used as a simple gait event 
visualization method. The characteristic points of transition 
between swing and stance phase of the first two principal 
components are shown as one point on cyclograms. 

Data presented for patients show a significant difference 
compared with the healthy (Fig. 4, Tables I and II). The high 
variability between steps is noticeable in patients after stroke 
compared with the repeatability in persons with no known 
sensory or motor impairment. 

 
Fig.5. The superimposed cyclogram of a healthy leg over the cyclogram of 
the non-paretic leg (left panel) and the same cyclogram of a healthy 
superimposed over the cyclogram of the paretic limb for one gait cycle (right 
panel). 
 

The orientation of the axis is not essential, since if the sign 
of a component is changed, the variance contained in that 
component is not changed. More precisely, these components 
are given by PCA component scores. Each original variable is 
a linear combination of the weighted components. The 
cyclograms are not fully closed curves; some overlap since we 

observe consecutive steps, but this does not limit the 
estimation of the parameter d. 

The cyclograms shape for the non-paretic leg is more 
similar to the one presenting healthy gait (Fig. 5). This can be 
explained by the fact that the neural system still has not 
developed compensation strategies for this leg. Thus, we can 
conclude that this image representation is an effective and 
simple way to follow the therapy's progress.  

We suggest that the PCA distinguishes between healthy gait 
and gait of a person after a stroke. 

The Gait Master system also provides data that can be used 
to study the gait in more detail. More extensive clinical 
studies for the method's validation started, but the current 
Covid-19 pandemic slowed down the data collection. 
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