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Abstract—In this paper an algorithm for segmentation of 

brain tumor lesions in magnetic resonance images (MRI) using 

convolutional neural networks (CNN) is proposed. Precise 

determination of brain tumor regions is important for diagnosis, 

treatment choice and patient follow-up. The realized CNN model 

has the U-Net architecture, which is able to simultaneously 

extract structure characteristics and their precise locations in the 

input image. The U-Net is applied on the scans of high-grade 

glioma patients. The resulting segmentation is evaluated using 

Dice coefficient and the median Dice values achieved on the test 

images are 0.83, 0.58 and 0.74 on the whole tumor, active tumor 

and core tumor region respectively.  

  

Index Terms—brain tumor segmentation; biomedical image 

processing; convolutional neural networks; U-Net architecture.  

 

I. INTRODUCTION 

BRAIN tumor represents the uncontrolled growth of 

abnormal cells within the brain tissues [1]. Brain tumors can 

be malignant, when they are referred to as cancer, or benign. 

Both types of tumor can harm the proper functioning of the 

affected brain region and need adequate treatment [1].  

There are more than 130 types of brain tumors [2]. Based 

on the organ in which they first appear, brain tumors are 

classified either as primary or secondary (metastatic) tumors. 

Primary brain tumors appear in the brain and can spread to 

other regions in the brain or spinal cord, while metastatic 

tumors first appear in other body organs and spread to the 

brain tissues. The most common primary brain tumor type in 

adults is astrocytoma or glioblastoma multiforme (GBM). 

GBM is a type of glioma brain tumor which is formed of glial 

cells, supporting cells of the central nervous system [3]. 

According to the World Health Organization, the 

classification of the brain and spinal cord tumors is done on 

the molecular and histological level [4]. Brain tumors are 

categorized in four different grades based on the abnormality 

of tumor cells observed under a microscope and the pace of 

their growth and spreading. Grade I tumors, also referred to as 

low-grade tumors, grow and spread slower than higher grade 

tumors, rarely affect the surrounding tissues and can be cured 

if completely removed by surgery. Tumors classified as grade 

IV, also referred to as high-grade tumors, are the most 

aggressive brain tumor types, as they grow and spread at a 

very rapid pace and usually cannot be cured [1, 4].  

Medical imaging modalities used in medical practice for 
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brain tumor diagnosis are: computerized tomography (CT), 

magnetic resonance imaging (MRI), single photon emission 

computed tomography (SPECT) and positron emission 

tomography (PET). Identifying the exact position, shape and 

size of tumor lesions in the obtained images or 3D volumes is 

crucial for correct diagnosis and choice of adequate treatment 

methods [1]. Therefore, development of image processing 

techniques which automatically analyze tumor scans with the 

aim to segment the tumor regions and identify tumor 

substructures are of great importance, as they could improve 

and accelerate the process of diagnosis, treatment choice and 

patients’ follow-up care [5]. Automatic segmentation of brain 

tumor lesions is a challenging task, as the tumor lesions can 

be of different shape and size and can appear in any region of 

the brain, as well as vary in pixel intensities in the scanned 

images, due to the usage of different modalities and scanning 

devices. Thus, automatic brain tumor segmentation techniques 

cannot assume any information about the position, size and 

pixel intensity of tumor lesions in scanned images [5].   

Based on the type of information used for the segmentation 

of tumor regions, segmentation methods can be categorized as 

either generative probabilistic or discriminative [5]. 

Generative probabilistic methods combine knowledge of 

anatomical brain models with the spatial distribution of 

different tissue types in the brain and can usually generalize 

well on the previously unseen scans. Discriminative methods 

do not require information related to the brain structure and 

they segment the tumor lesions by learning the characteristics 

from the images and their relations to the segmentation labels 

manually annotated by the experts. Such methods require 

large datasets for the training purposes. Segmentation 

techniques which combine the characteristics of both 

generative probabilistic and discriminative methods are called 

generative-discriminative methods [5].  

Starting from 2012, the Brain Tumor Image Segmentation 

Challenge (BRATS) is organized annually with the 

conjunction of the international Medical Image Computing 

and Computer Assisted Interventions (MICCAI) conference 

[6], with the aim of proposing different brain tumor 

segmentation methods and comparing the results on the 

commonly used publicly available dataset and using the 

common protocol for the results evaluation [5, 7]. Since 2014, 

discriminative methods based on convolutional neural 

networks (CNNs) have become the most commonly proposed 

segmentation methods in the BRATS challenges, with a 

number of novel network architectures as well as their 

variations suggested every year. CNN models trained on 

extracted 2 dimensional (2D) or 3 dimensional (3D) image 
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patches aim to predict the class of the central pixel in the 

patch while learning local relations between the pixels inside 

the extracted patch regions [8-12]. In [13] a cascaded two-

pathway CNN architecture was proposed, where each path 

extracts features respectively from the larger-size and the 

smaller-size 2D patches extracted around the central pixel, so 

that the network can make predictions based both on the local 

and more global features. Fully convolutional neural networks 

(FCNN) do not contain dense neural layers and can produce 

dense segmentation of the whole images or image patches 

given at the network input. Number of methods proposed 

variations of different FCNN architectures, such as 

DeepMedic [14-16], VGG [15], SegNet [17, 18], U-Net [19-

23] and V-Net [24, 25]. DeepMedic is a FCNN architecture 

with 2 parallel paths which process the input 3D patches 

extracted from the image at different pixel resolutions, while 

SegNet, VGG, U-Net and V-Net can be modified to process 

either whole image slices or 3D patches. Several methods 

propose cascaded network architectures, where the output of 

one network architecture is used as the input into the next 

network, thus achieving segmentation results through several 

phases [25-28]. In [29] several network architectures were 

trained independently and then used to form the network 

ensemble for final segmentation results by averaging the 

outputs of individual models.  

In this paper the automatic discriminative method for 

glioma brain tumor segmentation in multimodal MR images 

based on the U-Net architecture of CNN is described. In 

Section II, the proposed CNN architecture, dataset used and 

the details on the algorithm implementation are described. 

Section III represents the segmentation results. Finally, 

Section IV gives brief conclusion of the proposed method, as 

well as possible ways of future improvements of the results.   

II. THE METHOD 

A. The Database 

Database used for the training and testing of the proposed 

segmentation algorithm is the publicly available database of 

MRI scans of glioma patients [30] used in the BRATS 

challenges 2015 and 2016 [5, 31]. The training and validation 

dataset contains 220 scans of high-grade glioma patients and 

54 scans of low-grade glioma patients, while the testing 

dataset consists of 110 mixed scans of both high-grade and 

low-grade glioma patients.  For each patient, there are 155 2D 

images in axial plane available, acquired with each of 

following MRI contrasts: T1-weighted, T1-weighted contrast-

enhanced (T1c), T2-weighted and T2-weighted FLAIR. The 

training and validation dataset also contains masks with 

annotated labels of the tumor structures for all patients. All 

scans in the database were anonymized, scull stripped, co-

registered to corresponding T1c scans and were set to the 

1 mm3 spatial resolution using linear interpolation.  

The scans were manually annotated by the expert 

radiologists, based on the radiological criteria, so that the 

annotated structures belong to visually separable structures 

and do not strictly represent different biological structures 

within the brain. The tumor structures in the images are 

divided into four categories: edema, non-enhancing core, 

enhancing core and necrotic core. The annotation masks are 

the same size as the MRI scans and contain the following 

pixel-wise labels: 0 – background, 1 – necrotic core, 2 – 

edema, 3 – non-enhancing core, 4 – enhancing core. The 

enhancing core can be extracted on the high-grade glioma 

scans solely. The extracted tumor structures are further 

grouped into the following tumor regions: 

- whole tumor region, which contains all four tumor 

structures; 

- tumor core, which contains necrotic core, non-enhancing 

core and enhancing core; 

- active tumor region, which contains enhancing core. 

 

B. U-Net architecture 

The U-Net architecture is the CNN architecture which, for 

the image given at its input, returns as the output the map of 

probabilities for each image pixel to be belonging to each of 

the considered segmentation classes. It was first proposed in 

[32], where it was used for the segmentation of the biomedical 

images: scans of neural structures obtained with an electron 

microscope and cell images obtained with a light microscope. 

Originally proposed U-Net architecture, as well as its 

modifications, found application in many other problems of 

biomedical image segmentation [19-23, 27, 28, 33-35]. 

Compared to many other CNN architectures used for 

segmentation purposes, the main advantage of the U-Net 

architecture is that it can take the whole image as its input, 

instead of taking various patches from the image. Thus, the 

network training process becomes faster and the problem of 

simultaneous feature extraction and their precise localization 

is avoided [32].   

 U-Net is a fully convolutional neural network. It consists 

of the two symmetric paths of convolutional layers, the 

contracting path and the expansive path, which can together 

be schematically represented to form the shape of the letter 

“U”. The aim of the contracting path is to capture context in 

the image and it has the typical form of the CNN. Its main 

block consists of two convolutional layers, with activation 

function applied to the output of each of them and max 

pooling operation applied after the 2nd convolutional layer. 

Every succeeding layer in the contracting path uses the 

doubled number of convolutional filters compared to the 

preceding layer. The aim of the expansive path is to precisely 

locate the captured details in the image. Each layer of the 

expansive path has the input formed by the concatenation of 

the output of the symmetric layer from the contracting path 

and the up-sampled output from the previous layer of the 

expansive path. On such formed input tensor, similarly as in 

the contracting path, two convolutional layers, each followed 

by activation functions, are applied and the result represents 

one of the inputs to the next layer of the expansive path. In the 

last layer of the expansive path an additional convolution 

operation is applied after the double convolutional layers and 

its output represents the map consisting of the probabilities for 
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each pixel in the input image to be belonging to different 

segmentation classes. The number of convolutional filters 

applied in the last convolution operation equals the number of 

different segmentation classes in the input image [32]. 

The U-Net architecture implemented in this paper, 

schematically represented in Fig. 1, resembles the original U-

Net architecture, with several changes in the network 

architecture. It contains four symmetric layers in both the 

contracting and the expansive path, while the output of the 5th 

layer in the contracting path is up-sampled and concatenated 

to the output of the 4th layer in contracting path to form the 

input to the deepest layer of the expansive path. Different 

from the original U-Net architecture, the convolutional layers 

include zero-padding, so that the output of the network has the 

same dimensions as the input image and no cropping of the 

outputs from the layers of the contracting path is needed. The 

number of convolutional filters applied in the first layer of the 

contractive path is 32 and the dropout [36] is added in all 

layers of both the contracting and expansive path, as 

suggested in [33]. The up-sampling of the outputs in the 

expansive path is done using transposed convolution.  

 

 
Fig. 1.  Implemented U-Net architecture 

 

C. Implementation details 

The code was written using Python 3.7.4 programing 

language (Python Software Foundation, SAD). The network 

model was formed and trained using TensorFlow 1.13.1 with 

Keras API, with the GPU version installed for the faster and 

more efficient computing. The program was tested on the PC 

with Windows 10 Education 64-bit (Microsoft Corporation, 

Redmond, Washington, USA) operating system, Intel® 

Core™ i7-5820K (Intel Corporation, Santa Clara, California, 

USA) processor with 3.30 GHz frequency, 64 GB RAM and 

NVIDIA GeForce GTX 1060 (NVIDIA Corporation, Santa 

Clara, California, USA) GPU with 6 GB memory. 

As the training dataset of the high-grade glioma scans 

contains annotations of four tumor structures, while low-grade 

glioma scans contain annotations of three tumor structures, as 

they lack enhancing core, it was chosen to train the CNN to 

segment only high-grade glioma scans, with the aim to 

segment all four tumor structures. The dataset was divided so 

that the scans of 170 randomly chosen patients were used for 

network training and validation, while the scans of the 

remaining 50 patients were used for testing of the trained 

network. The network was trained using 140 patients for 

training and remaining 30 patients for validation. Thus, the 

training and validation data subset is divided so that 83% of 

the data are used for training, while 17% are used for the 

validation of the network parameters. The test set contains 

23% of the whole dataset. 

As the dataset preprocessing was already done by the 

BRATS challenge organizers, the only preprocessing step 

required was the data normalization along each MRI contrast, 

so that the pixel values belong to the interval [-1, 1], with the 

zero mean and unit standard deviation, which is a suitable 

range for the CNN input values. The input of the network is 

the 4-channel tensor formed of the MRI contrasts. The masks 

with segmentation labels were transformed into 5-channel 

matrices, one for each segmentation class, using one-hot 

encoding principle [37]. The output of the network is the 5-

channel map of the same dimensions as the input, containing 

the probabilities for each pixel in the input to belong to one of 

the 5 classes: background, necrosis, edema, non-enhancing 

core or enhancing core. Each pixel is assigned to the class for 

which the belonging probability is greater than 50%. 

The loss function and metrics used for the performance 

evaluation during the network training are categorical cross-

entropy and categorical accuracy [38], which were also 

chosen for the training of the original U-Net architecture [32]. 

The activation function after the final convolutional layer in 

the expansive path of the U-Net is the softmax activation 

function, which calculates the probability distribution for each 

pixel in the input image to belong to each of the segmentation 

classes. The formulas for softmax and categorical cross-

entropy loss are given in (1) and (2):  
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where ip  are the weight maps which give more weight to 

some pixel values during the training process, and 
iz  

represents the unnormalized probability for the pixel x to 

belong to the segmentation class i [38], as shown in (3): 
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The segmentation results were evaluated using Dice 

coefficient, which represents the overlapping proportion of the 

segmented area and the annotated label: 
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Here 
1| |gS and 

1| |tS  are the areas of pixels belonging to 
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the considered class in the annotation mask and the segmented 

result each, while 
1 1| |g tS S is the area of pixels belonging 

to the considered class in both the annotation mask and the 

segmentation result [5]. 

The network was trained using Adam optimizer [39] for the 

maximum of 50 epochs. Regularization techniques used are:  

validating the network performance on the validation set, 

learning rate reduction by the coefficient of 0.1 after 3 epochs 

and early stopping after 10 epochs of non-improving 

validation loss applied. After the network is trained, the 

parameters of the saved best model are loaded and the 

segmentation results are predicted on the training, validation 

and test sets. Dice coefficient is then calculated for 

segmentation results for each of the four tumor structures, as 

well as for the tumor regions consisting of them: tumor core, 

enhancing tumor and whole tumor. 

III. RESULTS AND DISCUSSION 

The neural network training lasted 70 min. The best 

evaluation result on the validation dataset occurred in the 4th 

epoch and the training was stopped 10 epochs later due to 

early stopping. The best model achieved loss value of approx. 

0.03 on the validation set and 0.02 on the training set. The 

average prediction time per image using the trained model 

was 8 ms. 

 
TABLE I 

NUMBER OF IMAGES CONTAINING TUMOR STRUCTURES 

 

 necrosis edema non-enhancing enhancing 

train 4201 10149 7525 6705 

valid 1022 2252 1644 1440 

test 1379 3666 2634 2284 

 

The number of scans containing each of the tumor 

structures in the annotation masks for each of the datasets is 

given in Table 1. Overall, the training set contains 10179 

images with at least one tumor structure labeled, the 

validation set contains 2262 images, while the test set contains 

3673 images with at least one tumor structure. Table 1 clearly 

shows imbalanced data, as the majority of scans in all three 

sets contain the edema structure, while more than a half of the 

scans in all sets do not contain a single pixel labeled as 

necrosis and around a third of the scans do not contain pixels 

labeled as non-enhancing or enhancing core. 

The boxplot diagrams of the Dice coefficient calculated for 

the tumor structures and tumor regions in all three sets are 

given in Fig. 2. Median values and mean values are presented 

as red horizontal lines and green triangles respectively. The 

boxplot diagrams show better segmentation results for the 

edema and enhancing core structures than the non-enhancing 

core and necrosis on all three sets. Dice coefficients achieved 

for edema and the enhancing core have mean values greater 

than or equal to 60% and median values greater than or equal 

to 75% for all three sets, so the segmentation results obtained 

for these structures can be considered acceptably good. On the 

other hand, mean values of Dice coefficient obtained for 

necrotic core are lower than 40% and for the non-enhanced 

core are around 20% on all three sets, showing poor 

segmentation results for these structures. The results are 

expected, as the edema and enhancing core have larger 

surfaces in the image slices than the necrosis and non-

enhancing core, which makes the pixels belonging to the first 

two structures more common in the image data and makes it 

more likely for the network to classify them correctly. The 

mean Dice values for the tumor regions in all the sets are 

between 0.5 and 0.8, with the highest values achieved for the 

whole tumor and the lowest values for the tumor core. The 

mean value achieved on all three datasets for the whole tumor 

region is greater than 70% and median is greater than 83%. 

Active tumor region has the mean values greater than or equal 

to 60% and median greater than or equal to 75%, while the 

tumor core has the mean value and median each between 50% 

and 60%, achieved on the test set, and 60% and 80%, 

achieved on the training set. Achieved mean values greater 

than 50% and median values greater than or equal to 60% for 

all tumor regions suggest the successful segmentation of the 

tumor regions. The achieved segmentation results are 

comparable to the results of the algorithms available at the 

BRATS 2015 database website [30]. The greatest limitation of 

comparing the results of the proposed algorithm with the 

results in [30] is that in this work two subsets of the high-

grade glioma set were used for training and testing of the 

algorithm, while in the BRATS 2015 challenge the training 

set consisted of high-grade and low-grade glioma sets, while 

the separate set without the annotations was used for testing. 

An example of the segmentation results for the four tumor 

structures is given in Fig. 3, while Fig. 4 shows the 

segmentation results of the tumor regions formed from the 

structures in Fig. 3. In both figures the segmentation results 

are overlapping the corresponding annotation masks. Pixels 

belonging to the annotation masks which were not recognized 

as the tumor structure by the U-Net are shown in green, pixels 

predicted as the tumor structure which do not belong to the 

annotation mask are shown in dark blue, while pixels assigned 

as tumor structure in both the segmentation result and the 

annotation mask are presented as bright blue. The achieved 

values of Dice coefficient are listed under each image in both 

figures. The best segmentation result was achieved for the 

edema structure, with the Dice coefficient value of 93%, while 

the necrotic core was not recognized by the U-Net at all, with 

the Dice value 0%. It can be noticed that edema has the largest 

surface of all the structures, while the necrosis has the 

smallest surface, containing only several pixels in the 

annotation mask. Furthermore, the incorrectly classified pixels 

usually belong to the border between the structure area and 

the background, while pixels inside the area of the annotated 

structures are usually classified well. Despite the unsuccessful 

segmentation of the necrotic core and the average 

segmentation result of the non-enhancing core, with Dice 

value of 48%, the segmentation of the tumor regions formed 

from the segmented structures shows good result,    
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Fig. 2.  Boxplot diagram for the Dice coefficient achieved on the tumor structures (1st row) and tumor regions (2nd row).  

 

as shown in Fig. 4, with Dice values of 95% for the whole 

tumor, 90% for the tumor core and 85% for the active 

tumor. It is notable that the incorrectly classified pixels 

usually belong to the borderlines between the different 

structures. 

 

 
 
Fig. 3.  Example of the segmentation results for tumor structures. Bright 
blue pixels belong both to the segmented lesion and the annotation mask. 

Green pixels are ground truth pixels not recognized by the model as tumor 
structures, while dark blue pixels resemble background pixels incorrectly 

recognized as tumor structures.  

 
 
Fig. 4.  Example of segmentation results for tumor regions formed from the 

structures in Fig. 3. The results are presented in the same color order as 

described in Fig. 3. 

IV. CONCLUSION 

In this paper a model of the U-Net CNN architecture was 

proposed and successfully applied for the segmentation of 

different tumor structures in the 2D MRI contracts, as well 

as tumor regions formed from them. The segmentation 

results are evaluated using Dice coefficient and can be 

compared to the results proposed at the BRATS 2015 

benchmark. It is also shown that the promising segmentation 

results can be achieved for all tumor regions, with mean 

Dice values greater than 0.5, despite the poor segmentation 

results of some of the tumor structures.  

Possible improvements could be achieved by modifying 

the U-Net architecture and tuning some of its parameters as 

hyper-parameters, such as the number of layers in the 

contracting and expansive path, number of convolutional 

layers applied at the input layer of the contractive path, or 

loss function and metrics used for the evaluation of the 

network training. Employing data augmentation could create 

more input images available during the training process and 
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thus prevent the network from early overfitting. 

Furthermore, as the consecutive axial slices of the MRI 

contrasts are mutually dependent, transforming the network 

architecture so that it extracts information from 3D volumes, 

instead of 2D images, could also improve results, as 

proposed in [19, 22].   
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