Uticaj sinteze početnih prahova na mikrostrukturna i električna svojstva BaTiO₃ keramike

Sandra Veljković, Student Member, IEEE, Miloš Đorđević, Student Member, IEEE, Vesna Paunović, Member, IEEE, Zoran Prijić, Member, IEEE, Vojislav Mitić

Apstrakt – U ovom radu ispitivana su mikrostrukturna i dielektrična svojstva čistog i La/Mn dopiranog BaTiO3 čiji su početni prahovi dobijeni različitim metodama. Metode dobijanja početnih prahova bile su konvencionalna metoda pripreme polazeći od čistih oksida i Pechini metoda koja polazi od organsko-metalnog kompleksa kao prekursora. Sistemi su sinterovani na 1310°C dva sata. Analiza mikrostrukture nedopirane BaTiO₃ keramike pokazala je da je za keramiku dobijenu konvencionalnom metodom karakterističan diskontinualni rast zrna i veličina zrna od 3 do 15 µm, dok je za uzorke dobijene Pechini metodom karakteristična uniformna mikrostruktura i zrna od 1 do 10 µm. Za La/Mn dopiranu keramiku dobijenu Pechini metodom karakteristična je bimodalna mikrostruktura i homogena raspodela aditiva. Dielektrična konstanta ispitivana je u frekventnom opsegu od 100 Hz do 20 kHz. Najveću vrednost i promenu dielektrične konstante sa temperaturom pokazivala je La/Mn dopirana BaTiO₃ keramika dobijena Pechini metodom. Dielektrična konstanta ove keramike na Kirijevoj temperaturi bila je 7837. Kiri-Vajsov zakon i modifikovani Kiri-Vajsov zakon korišćeni su za proračun parametara kao što su Kirijeva konstanta, Kirijeva temperatura i parametar γ koji opisuje difuzivnost i stepen nelinearnosti promene & od temperature iznad Kirijeve temperature.

Ključne reči – BaTiO3, Pechini metoda, dielektrična konstanta.

I. UVOD

U cilju istraživanja i razvijanja novih elektronskih materijala, velika pažnja se posvećuje proučavanju konsolidacije barijum-titanatne (BaTiO₃) keramike. Karakteristike keramike na bazi BaTiO3, kao što su velika kapacitivnost, pozistorski i varistorski efekti, otvaraju mogućnost razvijanja različitih tipova elektronskih komponenata. Pri tome, promenom sastava i dodavanjem primesa polaznom materijalu, kao i kontrolisanjem uslova dobijanja, mogu nastati različiti tipovi poluprovodničke keramike. Neke od mogućih primena su kod termistora sa

visokim vrednostima pozitivnog temperaturnog koeficijenta (PTC) otpornosti, optoelektronskih elemenata, višeslojnih kondenzatora, dinamičkih memorija sa slučajnim pristupom (DRAM) u integrisanim kolima, kao i u sistemima za konverziju energije [1, 2]. Električna svojstva polikristalnih materijala zavise od mikrostrukturnih konstituenata, pre svega od metode koja je korišćena za sintezu početnih prahova, postupka sinterovanja, gustine, poroznosti, kao i od raspodele i veličine zrna i pora.

Prisustvo poroznosti utiče na smanjenje dielektrične konstante i povećava dielektrične gubitke [3]. Takođe, usled prisustva poroznosti, smanjuje se čvrstoća keramičkog materijala. Ispitivanja su pokazala da se usled povećanja temperature sinterovanja, povećava i gustina i veličina zrna porozne keramike, dok poroznost opada [4]. Utvrđeno je i da relativna propustljivost raste usled smanjenja poroznosti materijala. Tako se kontrolom poroznosti može dobiti keramika sa velikom dielektričnom konstantom i malim dielektričnim gubitkom [4].

Poznato je da električna svojstva, pre svega PTC efekat, u velikoj meri zavise od rasta zrna tokom sinterovanja, kao i od vrste i koncentracije donorskih ili akceptorskih primesa. Dopanti koji se dodaju barijum-titanatnoj keramici imaju ulogu da prilagode električna i poluprovodnička svojstva prema zahtevima elektronskih komponenata [5, 6]. Takođe, električne karakteristike u mnogome zavise od afiniteta jona dopanata prema određenoj poziciji u BaTiO₃ rešetki.

Usled nesavršenosti rešetke barijum-titanata (koji ima perovskitnu strukturu), postoji veliki broj mogućnosti jonskih zamena u strukturnim rešetkama. To direktno utiče na dielektrična i poluprovodnička svojstva ovakvih materijala. Joni sa većim jonskim radijusom pretenduju da zauzmu mesto Ba²⁺ u perovskitnoj strukturi, pri čemu je poželjno da to budu joni retkih zemalja. Takvi su na primer trovalentni katjoni Yb³⁺, Er³⁺, Ho³⁺, Dy³⁺. Ovakva supstitucija zahteva formiranje negativno naelektrisanih defekata, kako bi se očuvala elektroneutralnost [7-9]. Sa druge strane, joni sa manjim jonskim radijusom, kao što je Nb5+, pretenduju da zauzmu mesto Ti4+ u perovskitnoj strukturi. Ukoliko je, pri supstituciji Ba²⁺, koncentracija aditiva, npr. La, niska (ispod 0.5 at%), dolazi do formiranja čvrstih rastvora. U suprotnom slučaju, ukoliko je koncentracija aditiva viša (iznad 0.5 at%), nezavisno da li se radi o supstituciji Ba2+ ili Ti4+ jona, uočen je porast specifične električne otpornosti uzorka, reda veličine $10^8 \Omega m$ [9].

Sandra Veljković - Univerzitet u Nišu, Elektronski fakultet, Aleksandra Medvedeva 14, 18000 Niš, Srbija (e-mail: sandra.veljkovic@elfak.rs).

Miloš Đorđević – Univerzitet u Nišu, Elektronski fakultet, Aleksandra Medvedeva 14, 18000 Niš, Srbija (e-mail: milos.djordjevic@elfak.ni.ac.rs).

Vesna Paunović – Univerzitet u Nišu, Elektronski fakultet, Aleksandra Medvedeva 14, 18000 Niš, Srbija (e-mail: vesna.paunovic@elfak.ni.ac.rs). Zoran Prijić – Univerzitet u Nišu, Elektronski fakultet, Aleksandra

Medvedeva 14, 18000 Niš, Srbija (e-mail: zoran.prijic@elfak.ni.ac.rs).

Vojislav Mitić – Univerzitet u Nišu, Elektronski fakultet, Aleksandra Medvedeva 14, 18000 Niš, Srbija (e-mail: vojislav.mitic@elfak.ni.ac.rs).

Još jedan od razloga korišćenja modifikovane barijumtitanatne keramike je i taj da aditivi utiču na pomeranje Kirijeve temperature, odnosno na smanjenje njene vrednosti [4].

U ovom radu ispitivana su mikrostrukturna svojstva $BaTiO_3$ keramike čiji su početni prahovi dobijeni različitim metodama. Takođe ispitivan je i uticaj tako dobijene mikrostrukture i dopiranja na električna svojstva $BaTiO_3$ keramike.

II. EKSPERIMENTALNI DEO

A. Pechini metoda

Uzorci La/Mn dopirane BaTiO₃ keramike pripremljeni su iz citratnih rastvora Ti, La, Mn i Ba actetata, odnosno od njihovih organo-metalnih kompleksa primenom modifikovane Pechini metode [10]. Ova metoda omogućava sintezu praha na niskim temperaturama (ispod 800°C), dobru stehiometriju i laku ugradnju dopanata u kristalnu rešetku. Koncentracija dodatog oksida, La₂O₃, bila je 0.5 at%, dok je koncentracija MnO₂ bila 0.05 at% u svim uzorcima. Poređenja radi, uzorci bez La i Mn pripremljeni su na isti način. Modifikovani Pechini postupak je izveden kao trofazni postupak za pripremu prekursora. Detaljni postupak sinteze je ranije opisan u radovima [10,11]. Nakon kalcinacije na 700°C, prah je mleven i presovan pri pritisku od 100MPa u pelete prečnika 10 mm i debljine 2 mm. Uzorci su potom sinterovani u atmosferi vazduha na temperaturi od 1310°C tokom 2 sata, a brzina zagrevanja je bila 10°C/min. Zapreminska gustina merena je Arhimedovom metodom.

B. Konvencionalna metoda

Uzorci La/Mn dopirane keramike korišćeni u ovom istraživanju dobijeni su iz komercijalnog BaTiO3 praha, ELMIC BT 100 Rhone Poulenc: veličine čestica 0,1 µm -0,7 μ m. Stehiometrijski odnos BaO/TiO₂ bio je 0,996 \pm 0,004. La₂O₃ (Merck, Darmstadt) je korišćen kao donorski dopant. Koncentracija donora bila je 0.5 at% kao i kod Pechini metode. MnO₂ sa koncentracijom od 0.05 at%, korišćen je kao akceptor. Praškovi su mleveni sa Al₂O₃ kuglicama u suspenziji etil-alkohola. Vreme homogenizacije i mlevenja je 24h. Praškovi su zatim sušeni na 200°C nekoliko sati i izostatski presovani na 100 MPa u tablete (pelete) cilindričnog oblika, prečnika 10 mm (Hidraulic Press VPM VEB -Thuringer Industrieverg Raunestein). Pripremljene tablete sinterovane su u laboratorijskoj peći (Lenton Thermal Design LTD) na 1310°C u keramičkim posudama. Sinterovanje je sprovedeno u atmosferi vazduha tokom 2 sata. Režim zagrevanja je bio 5°C/min do temperature od 850°C, a zatim od 12°C/min do željene temperature sinterovanja. Brzina hlađenja je bila 10°C/min do sobne temperature. Arhimedov metod je korišćen za merenje gustine.

Skenirajući elektronski mikroskop (JSM-5300), opremljen energetsko disperzivnim spektrometrom (EDS-QX 2000S system), korišćen je za ispitivanje mikrostrukture uzoraka dobijenih posle sinterovanja. Uzorci su prekriveni Au elektrodama da bi se poboljšala provodljivost tokom merenja. Kapacitivnost i tangens ugla gubitka sinterovanih uzoraka mereni su pomoću LCR-metra Agilent 4284A u frekventnom opsegu između 100 Hz i 20 kHz. Relativna dielektrična konstanta izračunata je iz izmerenih kapacitivnosti. Temperaturni interval u kome je izmerena dielektrična konstanta je od 20°C do 180°C. Dielektrični parametri kao što su Kirijeva temperatura (T_c), Kiri-Vajsova temperatura (T_0), Kirijeva konstanta (C), zajedno sa kritičnim eksponentom nelinearnosti γ izračunate su korišćenjem Kiri-Vajsovog i modifikovanog Kiri-Vajsovog zakona.

III. REZULTATI I DISKUSIJA

A. Mikrostrukturna svojstva

Za gustinu uzoraka nedopirane BaTiO₃ keramike karakteristično je da se kretala od 80% teorijske gustine (TG) za keramiku dobijenu konvencionalnom metodom do 85% TG za keramiku dobijenu Pechini metodom. Kod uzoraka dopiranih La/Mn zabeležena je veća gustina i ona se kretala od 90 do 95% TG pri čemu je, kao i kod nedopiranih uzoraka, veća gustina zabeležena kod La/Mn dopiranih uzoraka dobijenih Pechini metodom.

Mikrostrukturne karakteristike nedopirane $BaTIO_3$ keramike prikazane su na Sl. 1 i Sl. 2. Za uzorke $BaTiO_3$ dobijene konvencionalnom metodom karakterističan je diskontinualni rast zrna i veličina zrna od 3 do 15 µm (Sl. 1).

Sl. 1. SEM mikrostruktura nedopiranog BaTiO_3 dobijenog konvencionalnom metodom.

Sl. 2. SEM mikrostruktura nedopiranog BaTiO₃ dobijenog Pechini metodom.

Kod uzoraka nedopiranog $BaTiO_3$ dobijenog Pechini metodom (Sl. 2) karakteristična je sitnija mikrostruktura i srednja veličina zrna koja se kretala u opsegu od 1-10 μ m.

Glavna karakteristika uzoraka La/Mn-BaTiO₃ keramike dobijene konvencionalnom metodom je uniformna sitnozrnasta mikrostruktura sa normalnim rastom zrna i veličinom zrna koja se kretala od 0.5 do 2 μ m (Sl. 3).

Mikrostruktura La/Mn-BaTiO₃ keramike dobijene Pechini metodom data je na Sl. 4. Za La/Mn-BaTiO₃ keramiku dobijenu Pechini metodom karakteristična je bimodalna mikrostruktura i postojanje dve oblasti koje se razlikuju po obliku i veličini zrna. Nasuprot sitnozrne matrice sa poligonalnim zrnima veličine od 1-2 μ m, postoje i lokalna područja sa sekundarnim abnormalnim zrnima nepravilnog oblika i veličinom zrna do 10 μ m (Sl. 4).

EDS analize La/Mn dopiranih uzoraka dobijenih konvencionalnom metodom, uzete iz različitih područja istog uzorka, pokazale su postojanje oblasti sa povećanim sadržajem La što je ukazalo na neuniformnu raspodelu dopanata (Sl. 5).

Sl. 3. SEM mikrostruktura La/Mn-BaTiO $_{3}$ dobijenog konvencionalnom metodom.

Sl. 4. SEM mikrostruktura La/Mn-BaTiO_3 dobijenog Pechini metodom.

Postojanje pika X-zračenja za lantan (L α -La) na EDS spektru ukazuje da regioni bogati La postoje istovremeno sa nominalnom perovskitnom fazom BaTiO₃.

Sl. 5 EDS spektar La/Mn dopirane $BaTiO_3$ keramike dobijene konvencionalnom metodom.

Za razliku od ovih uzoraka, EDS analiza uzoraka dobijenih Pechini metodom, nije pokazivali pikove La i Mn što ukazuje na homogenu raspodelu donorskih i akceptorskih primesa i vodi ka keramici sa visokim vrednostima dielektrične konstante.

B. Električna svojstva

Električne karakteristike dopirane i nedopirane BaTiO₃ keramike dobijene različitim metodama ispitivane se kroz promenu dielektrične konstante sa frekvencijom i temperaturom. Frekventni opseg za sve ispitivane uzorke kretao se od 100 Hz do 20 kHz. Zavisnost dielektrične konstante u funkciji frekvencije data je na Sl. 6. U slučaju nedopirane keramike može se videti da je tok promene dielektrične konstante sa frekvencijom isti u oba slučaja sa tim što je kod uzoraka dobijenih Pechini metodom vrednost dielektrične konstante nešto veća nego kod uzoraka dobijenih konvencionalnom metodom. Ovakve vrednosti su direktna posledica veće gustine uzoraka dobijenih Pechini metodom kao i uniformnije mikrostrukture kod ovih uzoraka.

Sl. 6. Zavisnost dielektrične konstante od frekvencije

U slučaju dopirane keramike za obe metode procesiranja početnih prahova dobijaju se znatno veće vrednosti dielektrične konstante u odnosu na nedopiranu keramiku. Takođe može se primetiti da su više vrednosti dielektrične konstante primećene kod uzoraka dobijenih Pechini metodom. Najveća vrednost dielektrične konstante na sobnoj temperaturi na 100 Hz iznosi 4500 i to kod La/Mn-BaTiO₃ dopirane keramike dobijene Pechini metodom. Ove uzorke karakteriše bimodalna mikrostruktura, homogeni sastav kao i najveća gustina. Dielektrična konstanta za sve ispitivane uzorke posle početnih visokih vrednosti na nižim frekvencijama opada sa porastom frekvencije i postiže konstantnu vrednost za f > 5 kHz

sinteze prahova i dopiranja na dielektrične Uticai karakteristike BaTiO₃ keramike ispitivan je preko zavisnosti dielektrične konstante ε_r od temperature (Sl. 7). Kao i kod uticaja frekvencije na ε_r i ovde su zabeležene veće vrednosti dielektrične konstante kod donor akceptor dopiranih uzoraka. Na osnovu krivih zavisnosti dielektrične konstante od temperature može se videti da najvišu vrednost dielektrične konstante na Kirijevoj temperaturi ε_r =7837 kao i najveću promenu sa temperaturom pokazuju La/Mn-BaTiO₃ uzorci dobijeni Pechini metodom. Niže vrednosti dielektrične konstante kod uzoraka dobijenih konvencionalnom metodom posledica su sa jedne strane manje relativne gustine ovih uzoraka i sa druge strane nehomogene mikrostrukture. Kod uzoraka nedopirane BaTiO₃ keramike dobijenih konvencionalnom metodom kriva promena dielektrične konstante sa temperaturom nema tako izraženi maksimum kao što je slučaj sa dopiranim uzorcima i uzorkom čistog BaTiO₃ dobijenog Pechini metodom. Maksimalna vrednost ε_r kod ovih uzoraka je 3491 za razliku od ε_r vrednosti kod uzoraka dobijenih Pechini metodom gde je ε_r =5488. Više vrednosti dielektrične konstante kod nedopiranih uzoraka dobijene Pechini metodom, proizilaze iz činjenice da ovi uzorci imaju bolju homogenost mikrostrukture i veću relativnu gustinu.

Sl. 7. Zavisnost dielektrične konstante od temperature.

Za sve ispitivane uzorke došlo je do pomeranja Kirijeve temperature ($T_{\rm C}$) ka nižim vrednostima u odnosu na Kirijevu temperaturu nedopirane keramike dobijene konvencionalnom metodom koja iznosi 132°C. Najniža vrednost $T_{\rm C}$ zabeležena je kod La/Mn-BaTiO₃ keramike dobijene Pechini metodom i iznosi 118°C.

Više vrednosti dielektrične konstante u keramici sa donorskim (La) i akceptorskim (Mn) primesama mogu se pripisati smanjenju koncentracije kiseoničnih vakancija u odnosu na nedopiranu keramiku, čime se povećava gustina keramike i dobija se keramika sa visokim vrednostima dielektrične konstante.

Za sve ispitivane uzorke, bez obzira na način dobijanja, karakterističan je oštar prelaz iz feroelektrične u paraelektričnu fazu na Kirijevoj temperaturi. Ovo se može potvrditi odnosom dielektrične konstante na Kirijevoj temperaturi (ε_{rmax}) i na sobnoj temperaturi (ε_{rmin}), tj. ($\varepsilon_{rmax}/\varepsilon_{rmin}$). Kao što se iz Tabele 1 može videti, najveća vrednost odnosa dielektričnih konstanti ($\varepsilon_{rmax}/\varepsilon_{rmin}=1.7$) izračunat je kod uzoraka La/Mn-BaTiO₃ dobijenih Pechini metodom.

Fitovanjem krivih koje predstavljaju zavisnosti recipročne vrednosti dielektrične konstante od temperature (Sl. 8) izračunate su vrednosti Kirijeve konstante (C) za sve uzorke (Tabela 1). Najvišu vrednost Kirijeve ispitivane konstante ima La/Mn-BaTiO₃ keramika dobijena konvencionalnom metodom ($C=3.38\cdot10^5$ K) a najnižu nedopirana keramika dobijena konvencionalnom metodom $(C=7.76 \cdot 10^4 \text{ K})$. Vrednosti za Kirijevu konstantu su u saglasnosti sa promenom gustine ispitivanih uzoraka kao i sa mikrostrukturnim karakteristikama.

Za Kiri–Vajsovu temperaturu (T_0) su karakteristične niže vrednosti u odnosu na Kirijevu temperaturu (T_c) za sve ispitivane uzorke (Tabela 1).

Sl. 8 Recipročna vrednost dielektrične konstante u funkciji temperature.

Kritični eksponent nelinearnosti γ izračunat je fitovanjem krive $ln(1/\varepsilon_r-1/\varepsilon_{rmax})$ u funkciji od $ln(T-T_{max})$, gde T_{max} predstavlja temperaturu na kojoj je vrednost ε_r maksimalna, i

predstavlja nagib te krive (Sl. 9).

TABELA I Dielektrični parametri za ispitivane uzorke

Uzorci	ε_r na T=300K	ε_r na T_C	T_c [°C]	<i>T</i> ₀ [°C]	$C [K] \cdot 10^4$	γ
BaTiO ₃ –kon.	1680	3491	132	94	7.67	1.38
BT –Pechini	2230	5488	130	101	8.65	1.32
La/Mn-BT – kon.	4140	6491	126	58	33.8	1.47
La/Mn-BT – Pechini	4500	7837	118	95	20.4	1.05

S1. 9. Zavisnost $ln(1/\epsilon_r-1/\epsilon_{max})$ od $ln(T-T_{max})$

Za ispitivane uzorke BaTiO₃ vrednost kritičnog eksponenta γ kretala se od 1.05 do 1.47 što je u skladu sa eksperimentalnim podacima jer je za ove uzorke karakterističan oštar prelaz iz feroelektrične u paraelektričnu oblast. Najizrazitija promena iz feroelektrične u paraelektričnu oblast zapažena je kod La/Mn-BaTiO₃ dobijenog Pechini metodom za koju je γ =1.05.

IV. ZAKLJUČAK

U ovom radu ispitivan je uticaj početnih prahova dobijenih različitim metodama na mikrostrukturne i dielektrične karakteristike nedopirane i La/Mn dopirane BaTiO₃ keramike. SEM/EDS ispitivanja su pokazala da je za keramiku dobijenu Pechini metodom karakteristična sitnozrna i homogena mikrostruktura kao i homogeni kompozicioni sastav bez pikova La i Mn. Ovakva mikrostruktura dovela je do viših vrednosti dielektrične konstante. Najvišu vrednost dielektrične konstante na Kirijevoj temperaturi ε_r =7837 kao i najveću promenu sa temperaturom pokazala je La/Mn-BaTiO₃ keramika dobijena Pechini metodom. Kod svih ispitivanih uzoraka došlo je do pomeranja Kirijeve temperature ka nižim

vrednostima u odnosu na Kirijevu temperaturu nedopirane keramike. Na osnovu Kiri–Vajsovog zakona izračunati su parametri poput Kiri-Vajsove temperature (T_0) i Kirijeve konstante (C). Najviša vrednost Kirijeve konstante izračunata je kod La/Mn-BaTiO₃ keramike dobijene konvencionalnom metodom (C=3.38·10⁵ K), a najniža za nedopiranu keramiku dobijenu konvencionalnom metodom (C=7.76·10⁴ K). Kritični eksponent nelinearnosti γ kretao se u opsegu od 1.05 do 1.47 što je u skladu sa eksperimentalnim podacima jer je za sve uzorke karakterističan oštar prelaz iz feroelektrične u paraelektričnu oblast.

ZAHVALNICA

Ovaj rad je finansiran od strane Ministarstva prosvete, nauke i tehnološkog razvoja Republike Srbije na čemu se autori iskreno zahvaljuju.

LITERATURA

- C. Pithan, D. Hennings, R. Waser, "Progress in the Synthesis of Nanocrystalline BaTiO₃ Powders for MLCC", Int. J. Appl. Ceram. Tech., vol. 2, no. 1, pp. 1–14, 2005.
- [2] D.H. Kuo, C.H.Wang, W.P.Tsai, "Donor and acceptor cosupstitued BaTiO3 for nonreducible multilayer ceramic capacitors", *Ceram. Int.* vol. 32, pp. 1-5, 2006.
- [3] H.I. Hsiang, F. S. Yen, C. Y. Huang, "Effects of porosity on dielectric properties of BaTiO₃ ceramics", *Jpn. J. Appl. Phys.*, vol. 34, pp. 1922– 1925, 1995.
- [4] V. Paunovic, V. V. Mitic, Lj. Kocic, "Dielectric characteristics of donor-acceptor modified BaTiO₃ ceramics", *Ceram. Int.* vol. 42, no. 10, pp. 11692-11699, 2016.
- [5] W. Caia, C. Fu, Z. Lin, X. Deng, W. Jiang, "Influence of Lanthanum on Microstructure and Dielectric Properties of Barium Titanate Ceramics by Solid State Reaction", *Advanced Materials Research*, vol. 412 pp. 275-279, 2012
- [6] A. Ianculescu, Z.V. Mocanu, L.P. Curecheriu, L. Mitoseriu, L. Padurariu, R. Trusca, "Dielectric and Tunability Properties of La-doped BaTiO₃ ceramics", *Journal of Alloys and Compounds*, vol. 509, Issue 41, pp. 10040–10049, 2011.
- [7] V. Paunovic, V. V. Mitic, M. Dorđević, M. Marjanović, Lj. Kocic, "Electrical Characteristics of Er Doped BaTiO₃ Ceramics", *Sci. Sinter.*, vol. 49, no. 2, pp. 129-137, 2017.
- [8] V. Paunovic, V. V. Mitic, M. Miljkovic, V. Pavlovic, Lj. Živkovic, "Ho₂O₃ Additive Effects on BaTiO₃ Ceramics Microstructure and Dielectric Properties" *Sci. Sinter.*, vol. 44, no. 2, pp. 223-233, 2012.
- [9] M. Đorđevic, M. Marjanovic, V. Paunovic, V. MItic, Z. Prijic, "Električne karakteristike i fazna transformacija Yb dopirane BaTiO₃ keramike", ETRAN, Silver lake, Serbia, Proceedings 59th Conference ETRAN, pp. NM 1.1, jun 2015.
- [10] M. P. Pechini, Method of preparing lead and alkaline earth titanates and coating method using the same to form a capacitor, US Patent No. 3.330.697, 1967.
- [11] Vesna Paunović, Zoran Prijić, Miloš Đorđević, Vojislav Mitić, Enhanced dielectric properties in La modified barium titanate ceramics, Facta Universitatis, Series: Electronics and Energetics, University of Niš, Vol. 32, No 2, June 2019, pp. 179-193

ABSTRACT

In this paper, the microstructural and dielectric properties of pure and La/Mn doped BaTiO₃, whose initial powders were obtained by different methods, were investigated. The methods for obtaining the initial powders were the conventional method of preparation starting from pure oxides and the Pechini method starting from the organicmetal complex as a precursor. The systems were sintered at 1310° C for two hours. The analysis of the microstructure of undoped BaTiO₃ ceramics showed that the ceramics obtained by the conventional method are characterized by a discontinuous grain growth and grain size of 3 to 15 µm, while the samples obtained by the Pechini method are characterized by a uniform microstructure and grains of 1 to 10 µm. The La/Mn doped ceramics obtained by the Pechini method are characterized by a bimodal microstructure and a homogeneous distribution of additives. The dielectric constant was tested in the frequency range from 100 Hz to 20 kHz. The highest value and change of dielectric constant with temperature was shown by La/Mn doped BaTiO₃ ceramics obtained by the Pechini method. The dielectric constant of this ceramic at the Kiri temperature was 7837.

The Curie-Weiss law and the modified Curie-Weiss law were used to calculate parameters such as the Curie constant, the Curie temperature, and the parameter γ which describes the diffusivity and degree of nonlinearity of the change α from the temperature above the Curie temperature.

Influence of initial powder synthesis on microstructural and electrical properties of BaTiO₃ ceramics

Sandra Veljković, Miloš Đorđević, Vesna Paunović, Zoran Prijić, Vojislav Mitić