

Abstract— Structural quality of the source code has a great

impact on the efficiency of software development processes.

The cost and the complexity of adding functionalities or fixing

a bug depend on how well-structured the code is. A standard

way of measuring the structural quality of software is the

calculation of code quality metrics, which are statistical data

obtained by static source code analysis. This paper presents a

software system for calculating code quality metrics by

analyzing the network of dependencies between source code

elements. Adaptations of well-known metrics can be calculated

using this method, but with a more advanced application of

network science new metrics can be introduced. Description of

the applied method, the implemented system, as well as the

results of a use case analysis are presented.

Index Terms—Code quality metrics, network science, static

source code analysis.

I. INTRODUCTION

Code complexity rapidly increases the cost of performing

changes to a software system, but also the risk of

introducing bugs and errors [1]. For this reason, code

maintainability becomes an important aspect of the software

development process as a way of overcoming complexity

issues. Maintainability is related to the effort needed to

analyze, modify, or test a software system. It is usually

achieved with a proper architecture and good coding

practices that keep the components as simple and

independent as possible [2]. This property is strongly

affected by the structural quality of the software system.

Evaluation of the structural quality is usually done by

calculating the code quality metrics, a collection of

statistical data about the code structure [3]. Calculation of

these metrics is commonly performed by simple static code

analysis, which mostly consists of counting the number of

elements and specific relationships, such as lines of code,

number of classes, or number of methods called from a

certain class. Common approach to source code quality

analysis consists of combining traditional metrics in order to

form a quality evaluation system [4][5].

Another approach to such analysis is the application of

network science, the study of complex networks [6].

Software systems consist of code elements (e.g. classes,

functions, or variables) and their dependencies (e.g. calls,

inheritance, or variable access) which can be represented as

a complex network [7]. The main benefit of the proposed

Ivan Blažić is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

blazic.ivan@outlook.com).
Marko Mišić is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

marko.misic@etf.bg.ac.rs).
Zaharije Radivojević is with the School of Electrical Engineering,

University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade,

Serbia (e-mail: zaki@etf.bg.ac.rs).

network-based approach to source code analysis is the focus

on the architecture and global topological properties of a

software system as a whole, rather than a summary of local

features [8]. For example, metrics based on advanced

network analysis presented in the section IV imply the

application of complex networks and cannot be calculated

with a traditional approach.

In this paper, an approach to calculating code quality

metrics by analyzing different types of dependency

networks generated from the source code, as well as a

software system that implements such approach, are

presented.

The paper is divided as follows. The following section

presents related work on the topic. A more detailed

description of the dependency networks and applied

approach is given in section III. Section IV describes used

metrices, while functionalities of the implemented system

are described in Section V. The results of use case code

analysis are discussed in Section VI. Conclusion and

directions for future work are given in the final section.

II. RELATED WORK

Analysis of software systems using complex networks is

an ongoing topic in the research community. This section

provides a brief overview of the network-based approaches

to software analysis applied in the related research.

Common application of network science is the study of

social networks. Social network measure of the influence of

an individual researcher called h-index has served as an

inspiration to a new class centrality metric that has been

introduced in [7].

Network-based measures have been used to predict

defects on a program class or module level in several

research papers [9][10][11]. Results have shown correlation

between network properties and the number of defects on a

class or module level. In some cases, the network-based

measures can outperform the standard ones.

Structural quality measures based on network analysis

have been introduced in previous research [12][13][14].

Network properties such as degree distribution, clustering,

average path length, or modularity have been used to

identify component cohesion, stability, complexity, and

modular structure.

The related research is focused on the theory behind the

proposed metrics, but few of them presents the technical

implementation.

III. DEPENDENCY NETWORKS

Code quality evaluation process presented in this paper

consists of generating 3 types of dependency networks that

are used to calculate 15 metrics. Each metric is calculated by

Source Code Quality Evaluation

Using Network Science

Ivan Blažić, Marko Mišić, Zaharije Radivojević

RTI 2.1.1

mailto:blazic.ivan@outlook.com
mailto:marko.misic@etf.bg.ac.rs
mailto:zaki@etf.bg.ac.rs

analyzing one or two types of these networks. Values of all

metrics are used to calculate a numerical grade for different

aspects of quality. Final quality grade is the average of all

sub-grades for individual quality aspects. The implemented

software system allows the user to configure the influence of

the individual metric to the quality grade and define aspects

of quality.

The reason for using multiple types of networks is to

separate the information needed for calculating different

metrics. For simplicity, the following constraints are

introduced in our approach:

- Focus is strictly on the software written in object-

oriented paradigm.

- Only the source code written in Java language is

supported.

- Annotations are ignored.

- Method implementations within interfaces are

ignored, as this is considered as an improper use of

interfaces.

- Dependencies to external libraries are ignored to

avoid incomplete dependency networks.

- Built-in types and classes of Java standard library are

ignored, as they considered to be a part of the

language.

- All information is obtained by direct syntax-based

analysis of explicitly defined dependencies.

Therefore, any dependencies created by dynamic

properties such as Java reflection or polymorphism

are ignored. All implicit declarations such as

inherited members or default constructors are not

modeled.

All used networks are in a form of a directed simple graph.

Each node, no matter the network type, has the following

attributes:

- Identifier used in the code (e.g. class, method, or

variable name).

- Type of the node (class, interface, method, field, or

enum definition).

- Access modifier (public, private, protected, or

default).

Links are commonly defined by a source node, a destination

node, weight, and dependency information. Since two nodes

can have multiple types of dependencies, link attributes are

used to store this information. Self-links do not exist,

therefore the source and destination nodes are always

different. Types of source code dependencies covered in the

presented approach are:

- Field type dependency (a class depends on all classes

that are types of its members)

- Implementation (a class depends all on interfaces it

implements)

- Inheritance (a class depends on its parent class)

- Inner class definition (a class depends on all inner

classes it defines)

- Instantiation (a class depends on all classes that are

types of objects it instantiates)

- Method call (a class depends on all classes that

define methods it calls)

- Field definition (a class depends on its member

variables and constants)

- Method definition (a class depends on its methods)

Depending on the actual source code dependencies they

model, used networks are divided in the following 3 types.

A. Call graph

This network represents the dependencies between

methods created by nested calls. Nodes represent the

methods, and links represent calls. Direction of the links

indicate the call hierarchy. This graph correlates to all

method calls in the system.

B. Class structure graph

This network consists of several weakly connected

components that represent each class. These components

model the membership of fields (methods, constants,

variables, and inner classes) to a class. Nodes can represent

a class (central node), or different types of class members

(peripheral nodes). Links represent field membership or a

field usage in a method. Weight of the links between the

central class node and a method node is the cyclomatic

complexity [15] of the method.

C. Type dependency graph

This is a network of dependencies of any kind between

each type (class or interface) in the system. Nodes represent

types, and links are created between classes that have at

least one of these dependencies between them. Figure 1

shows one part of a sample type dependency network.

Fig. 1. Partial example of a type dependency network.

IV. USED METRICS

This section provides an overview of code quality metrics

used in the presented approach. All metrics used in this

paper are based on network analysis. To have a better

overview of the contribution that network science brings to

software quality analysis, applied metrics are divided to the

following two categories:

A. Metrics based on simple network analysis

This category includes the adaptations of a well-known

set of metrics [3][15][16]. Adaptations are made for some

metrics to fit the network-based approach. The use of

networks in this category of metrics comes down to

identifying and counting nodes and links with certain

properties. This set includes the following metrics:

RTI 2.1.2

1) Interface Size (IS)

Total number of publicly accessible members of the class.

This metric is a simple measure of the complexity of

interfacing a class. It is calculated as the degree of the class

node in the class structure graph, by observing only public

members.

2) Number of Methods (NOM)

Total number of methods in a class, calculated as a class

node degree in the class structure graph, by observing the

method node neighbors. Methods with overloaded

signatures are modeled as separate methods.

3) Weighted Method Count (WMC)

Sum of cyclomatic complexities of all methods in a class.

Cyclomatic complexity is not calculated with a network-

based approach, but with a simple abstract syntax tree

traversal and count of branching elements. The value of

method complexity is embedded as the weight of the link

between a class node and a method node. Therefore, this

metric is calculated in the same way as NOM, but with

using a weighted degree instead.

4) Response for Class (RFC)

Sum of the number of public methods and the number of

methods called from those methods. This is calculated by

identifying the public method nodes in the class structure

graph and summarizing their count with their degree in the

call graph.

5) Number of Implemented Interfaces (NII)

This is an adaptation of Number of Superclasses metric.

Since Java does not support multiple inheritance, this metric

can only be applied to implementing interfaces. Calculated

as the degree of a class node in the type dependency graph,

by observing only links that represent the implementation

dependency.

6) Coupling Between Objects (CBO)

Total number of other classes a class is coupled with.

Coupling in this context means having any kind of

dependency besides inheritance between two classes.

Calculated as the degree of a class node in the type

dependency graph, with filtering out the implementation and

inheritance dependency.

7) Tight Class Cohesion (TCC)

This is a class modularity measure that evaluates the

degree of member re-use. It is the ratio between the number

of pairs of methods that commonly use at least one field

variable and the total number of pairs of methods in a class.

Pairs of methods are identified by searching the class

structure graph for method definition and field usage links,

the rest of the calculation is a simple formula for this metric.

8) Number of Variable Fields (NOVF)

Total number of member variables declared in a class.

Calculated as a degree of the class node in the class structure

graph, by observing only the variable member nodes as

neighbors.

9) Number of Subclasses (NSUB)

Total number of classes inherited from the observed class

or interface. Calculated as the in-degree of the node in the

inheritance graph.

B. Metrics based on advanced network analysis

This category represents a set of metrics that are based on

network properties [7][17] of three modelled networks, such

as betweenness centrality of the nodes, network path

lengths, cycle count, etc. A network-based approach to

calculating these metrics is either required or more

convenient due to their definition. Metrics from this

category rely on complex network properties instead of

simple link or node counts. These are the following metrics:

1) Depth of Inheritance Tree (DIT)

The longest inheritance path in the system. A longest path

in a tree is its depth. Inheritance graph is created by

selecting inheritance and implementation links from the type

dependency graph. As the inheritance graph consists of

multiple trees, the value of this metric is the maximum of

depths of all trees.

2) Number of Circularly Dependent Classes (NCDC)

Total number of classes that are involved in at least one

circular dependency. Calculated by identifying all cycles in

the type dependency graph and counting the number of

classes involved in those classes.

3) Number of Disconnected Groups (NDG)

Total number of groups of classes that are disconnected

from other groups in the system. In terms of network

science, this metric is the number of weakly connected

components of the type dependency graph. Ideally, the

whole network is weakly connected and there are no

disconnected groups. Calculated by evaluating the

connectivity of the type dependency graph and counting the

number of weakly connected components.

4) Degree of Interdependency (DOI)

Ratio between the total number of existing dependencies

between classes and interfaces in the system and the

theoretical maximum number of those dependencies. This

metric measures the total density of dependencies between

all classes and interfaces. Calculated as the density of type

dependency graph.

5) Maximal Call Indirection (MCI)

Length of the longest call path in the system. Calculated

as the longest path in the call graph.

6) Decoupling Impact (DI)

Ratio between the number of type dependency paths that

pass through the observed class and the total number of

those paths. From a network science perspective, this is the

betweenness centrality of class node in the type dependency

graph. This metric measures the degree in which the node

acts like a bridge between different groups of nodes.

From the quality analysis aspect, metrics are divided in

class-level metrics (IS, NOM, WMC, RFC, NII, CBO, TCC,

NOVF, NSUB and DI) and system-level metrics (DIT,

NCDC, NDG, DOI and MCI). All metrics except TCC and

DI represent a negative measure of quality, which means

that higher quality structures should have as low values of

these metrics as possible. The reason for this is that they all

measure complexity and size, which are not desirable

properties of software components. High cohesion on the

other hand is desirable, as it measures modularity and re-

use. The impact of the value of DI metric on quality can not

be generalized, because it depends on the expected role of

the observed class. Observations made regarding the use of

this metric shall be presented in the results.

RTI 2.1.3

V. SOFTWARE SYSTEM IMPLEMENTATION

A software system that applies the described approach

was implemented within this paper [18]. It is a configurable

console application for Java 1.8 platform. Configuration of

the system allows the user to define various analysis

parameters by simply editing JSON files available within

the system. If the user does not change any parameters, the

default configuration remains in use. With the system

configuration the user is free to decide how the metric

values influence the quality grade and which metric values

are considered ideal. The system reads the configuration

files, takes a source code directory as input, and performs

the following functionalities:

A. Generating and exporting dependency networks

All dependency networks described previously are

generated based on the source code given as an input. One

additional network is generated, which is the mix of all

networks called unified graph. This network is not used for

the purpose of quality evaluation, but for a visual

representation of all dependencies. These networks are

exported as CSV, DOT, GEXF or GML files and can be

used for a custom user analysis of the networks using other

network analysis tools and libraries.

B. Quality grade evaluation

A grading system was introduced to present the quality

evaluation results more intuitively. The user defines a

reference value Mref for each metric. A metric grade Gm is

calculated based on the reference value and the real metric

value M as shown in (1) and represents a quality grade from

a single metric perspective. TCC metric is an exception

where Gm value is always the actual value.

A quality property grade P is defined by a name and a

weighted sum of selected metric grades. For example,

“Architecture” property grade can be influenced by NCDC,

NDG, DOI and DIT with respective weights. The weight of

each metric grade for a specific property is defined by the

user as the metric factor F.

Actual quality grades range from 0 to Gmax defined by

the user. Quality grade for a single property is calculated as

shown in (2), and the final quality grade is the average of all

quality property grades.

𝐺𝑚 =

𝑀𝑟𝑒𝑓

𝑀
 , 𝑀 > 𝑀𝑟𝑒𝑓

 1 , 𝑀 ≤ 𝑀𝑟𝑒𝑓

 (1)

𝑃 = (𝐹(𝑖) ∗ 𝐺𝑚(𝑖))

𝑁

𝑖 = 1

 ∗ 𝐺𝑚𝑎𝑥

 (2)

C. Generating a quality analysis report

The results of the quality evaluation, based on the

selected metrics, are presented in a form of a HTML report.

This report contains the values of all metrics together with

all grades and some additional information regarding the

results (e.g. names of the classes involved in a circular

dependency or names of the methods that make the longest

call chain).

The system works by generating an abstract syntax tree

(AST) of the source code, which is then traversed in order to

create an abstract model of the code that later used when

generating graphs, as shown on Figure 2. Each type of graph

is created separately by iterating through the code model,

filtering the elements and dependencies that are of interest

for a specific graph, and converting this data into nodes and

links. For example, the inheritance graph is created by

extracting code elements that are represent classes or

interfaces, and dependencies that represent inheritance or

implementation. Spoon [19] library was used for generating

the AST, and JGraphT [20] for working with graphs and

networks.

Soure code AST

Code model

Call graph

Class

structure

graph

Type

dependency

graph

Fig. 2. Process of generating dependency networks from the source code.

VI. RESULTS

 All metrics covered in this paper are successfully

implemented with the presented network-based approach.

Each of the implemented metrics are covered with several

automated test cases to verify their accuracy. This section

presents a use-case of the approach, where the source code

of the implemented software system is analyzed. Metrics

that had the highest impact on the quality grade are

presented, as well as the interpretation of DI metric. A more

advanced analysis has been done for the exported type

dependency network, and the results of this analysis are

presented and discussed at the end of this section.

A. Analysis of metric results

Default system configuration was used in the presented

use-case. In case of the source code of the implemented

system NCDC, MCI and NDG metric values had the

greatest impact on the quality grade. Table 1 presents the

metric grades Gm for each system-level metric, as well as

their actual and reference values. As described in section V,

a metric grade is calculated based on actual and reference

value of a metric. Reference values are specified in the

system configuration. Class-level metrics did not have a

significant impact on the quality grade.

TABLE I

VALUES OF SYSTEM-LEVEL METRICS

Metric
Reference value

(Mref)

Actual

value (M)
Metric grade (Gm)

NCDC 0 30 0

MCI 4 10 0,4

DIT 5 2 1

DOI 0.3 0.025 1

NDG 0 2 0

RTI 2.1.4

B. Interpretation of DI metric

The impact of betweenness centrality on the structural

quality of the source code cannot be generalized. This

metric is a measure of separation between distinct groups of

nodes. Depending on the predicted position of the node

(class or interface), a high value of this metric may or may

not be desirable. For example, utility classes that are

accessed from many different parts of the code or interfaces

that are intended to separate two bigger components are

expected to have a high DI. Since these are special

architectural roles, in most cases high DI values are not

desirable.

Several classes in the implemented system have

unexpectedly high DI, twice the average value or more. The

cause of such values is the direct dependency to classes that

normally have a high DI. In this way the observed class also

has a high DI due to transitive dependencies inherited from

another node.

C. Advanced analysis of the type dependency network

Properties of the exported network of type dependencies

have been additionally analyzed outside of the implemented

software tool. This analysis was done with Gephi [21] with

the goal to study the community structure of the network as

well as to examine the real-world properties.

1) Community structure

Community detection algorithm with default parameters

of Gephi was applied to the network. Visualization of the

results is shown in Figure 3, where a strong community

structure can be observed. Nodes are grouped and colored

by their association to communities.

The detected communities strongly resemble the

relationship between classes in the same package or

functionality. Amount of correlation between the

community structure and source code module separation can

indicate architectural flaws. Two examples are observed in

the given network.

A certain node has been identified to strongly belong in

the community of another package. This can be caused

either by the lack of an appropriate interface or a mistake in

functional decomposition.

Software modules should be strongly decoupled, which

should reflect in strongly separated communities. Not all

communities in the presented network are clearly separated,

which indicates weak module decoupling.

2) Real world properties

Networks that model real systems are expected to have

special properties comparing to ones that are random or

trivial [22]. These properties include a strongly expressed

community structure, a short average path length relative to

the network size, and a power-law degree distribution that

resembles the distinction of central and peripheral nodes that

can be seen in preferential attachment network models.

Degree distribution of type dependency graph of the

analyzed system is shown in Figure 4. Network diameter is

10, while the average path length is 4.03. All those

properties of the presented network clearly show that it

resembles real-world networks.

Fig. 3. Visual representation of the type dependency network of the

implemented software system.

Fig. 4. Degree distribution of type dependency graph of analyzed system.

VII. CONCLUSION

This paper presents a software structure quality

evaluation method based on the analysis of dependency

networks generated from the source code. Three types of

dependency networks were used to calculate a set of code

quality metrics. Several well-known metrics have been

adapted for this approach, and new network-based metrics

were introduced. A software system that applies this

approach has been implemented. A use-case of the

implemented system, as well as an advanced analysis of one

of the dependency networks are presented in the results.

Proposed approach has been successfully implemented

and tested with the introduced software system. Additional

examination of the properties of one generated network

provided more information about architectural flaws and

real-world properties of the source code. The downside of

the proposed approach is the additional complexity of

analyzing dependency networks that is not necessary for

calculating simple metrics. This additional complexity also

implies a lower calculation performance comparing to the

traditional approach.

Implemented software system can be improved to support

fine-grained dependency networks on the lexical level, such

RTI 2.1.5

as control and data dependency graphs. Support for other

programming languages would further improve the usability

of the system. Topics of future research would include

additional network-based metrics, such as class instability,

clustering coefficient, and modularity. Another approach to

future research would be the study of correlation between

dependency network properties and reliable quality

measurements.

ACKNOWLEDGMENT

This work has been partially funded by the Ministry of

Education, Science, and Technological Development of the

Republic of Serbia. Grant numbers III44009 and TR32047.

REFERENCES

[1] V. Antinyan, M. Staron, A. Sandberg, “Evaluating code complexity

triggers, use of complexity measures and the influence of code

complexity on maintenance time”, Empirical Software Engineering,
vol. 22, no. 6, pp. 3057-3087, Mar, 2017.

[2] R. C. Martin, Clean Architecture: A Craftsman's Guide to Software

Structure and Design, Prentice Hall, Upper Saddle River, New Jersey,
US, 2017.

[3] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object

oriented design”, IEEE Transactions on Software Engineering, vol.
20, no. 6, pp. 476-493, Jun, 1994.

[4] H. Washizaki, R. Namiki, T. Fukuoka, Y. Harada, H. Watanabe, “A

Framework for Measuring and Evaluating Program Source Code
Quality”, Proc. Product-Focused Software Process Improvement, 8th

International Conference, PROFES, Riga, Latvia, vol. 4589, pp. 284-

299, Jul. 2-4, 2007.
[5] F. Madou, M. Agüero, G. Esperón, D. López De Luise, “Software for

Improving Source Code Quality”, World Academy of Science,

Engineering and Technology, no. 59, pp. 1259-1265, 2011.
[6] National Research Council, Network Science, The National

Academies Press, Washington, DC, US, 2005.

[7] Y. L. Ding, , B. He. Peng, “An Improved Approach to Identifying
Key Classes in Weighted Software Network”, Mathematical

Problems in Engineering, vol. 2016, pp. 1-9, Jan, 2016.

[8] W. Pan, “Applying complex network theory to software structure
analysis”, World Academy of Science, Engineering and Technology,

vol 60, pp 1636-1642, Dec, 2011.

[9] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, “An Empirical Study
of Social Networks Metrics in Object-Oriented Software”, Advances

in Software Engineering, vol. 2010, pp. 1-21, Jan, 2010.

[10] T. H. D. Nguyen, B. Adams, A. E. Hassan, "Studying the impact of

dependency network measures on software quality", Proc. 2010 IEEE
International Conference on Software Maintenance, Timisoara,

Romania, pp. 1-10, Sep. 12-18, 2010.

[11] M. Orrù, C. Monni, M. Marchesi, G. Concas, R. Tonelli, “Predicting
Software Defectiveness through Network Analysis”, Proc. Seminar

On Advanced Techniques and Tools for Software Evolution, Mons,

Belgium, vol. 1820, pp. 36-47, Jul. 6-8, 2010.
[12] M. Savić, Ivanović Mirjana, “Graph clustering evaluation metrics as

software metrics”, Proc. 3rd Workshop on Software Quality Analysis,

Monitoring, Improvement and Applications, Lovran, Croatia, vol.
1266, pp. 81-89, Sep. 19-22, 2014.

[13] L. Šubelj, M. Bajec, “Software systems through complex networks

science: review, analysis and applications”, Proc. First International
Workshop on Software Mining, Beijing, China, pp. 9-16, Dec., 2012.

[14] W. Pan, C. Chai, “Measuring software stability based on complex

networks in software”, Cluster Computing, vol. 22, no. 2, pp. 2589-
2598, Mar, 2019.

[15] T. J. McCabe, “A Complexity Measure”, IEEE Transactions on

Software Engineering, vol. SE-2, no. 4, pp. 308-320, Dec., 1976.
[16] J. M. Bieman, B-K- Kang, “Cohesion and reuse in an object-oriented

system”, ACM SIGSOFT Software Engineering Notes, vol. 20, no. SI,

pp. 259-262, Aug, 1995.
[17] T. D. Oyetoyan, “Dependency cycles in software systems: quality

issues and opportunities for refactoring.”, Ph.D. dissertation, NTNU,

Faculty of Information Technology, Mathematics and Electrical
Engineering, Department of Computer and Information Science,

Trondheim, Norway, 2015.

[18] I. Blažić, “Code Quality Analysis Using Network Science”, Source
code, https://github.com/BlazicIvan/Net-CQA, 2020.

[19] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, L. Seinturier,

“Spoon: A Library for Implementing Analyses and Transformations
of Java Source Code”, Software: Practice and Experience, vol. 46,

no. 9, pp. 1155-1179, Sep, 2016.

[20] D. Michail, J. Kinable, B. Naveh, J. V. Sichi, “JGraphT—A Java
Library for Graph Data Structures and Algorithms”, ACM

Transactions of Mathematical Software, vol. 46, no. 2, Article 16,

Jun, 2020.
[21] M. Bastian, S. Heymann, M. Jacomy, “Gephi: an open source

software for exploring and manipulating networks”, Proc.
International AAAI Conference on Weblogs and Social Media, San

Jose, California, May 17 - 20, 2009.

[22] R. Albert, A-L. Barabási, “Statistical Mechanics of Complex
Networks”, Reviews of Modern Physics, vol 74, no. 1, pp 47–97, Jan,

2002.

RTI 2.1.6

https://github.com/BlazicIvan/Net-CQA

