

Abstract—Syntax analysis is an extremely significant phase of

natural language processing. This paper presents a comparison

of two methods for syntax analysis of the Serbian languages

based on context-free grammars. First, it describes building a

POS tagger with corpora. Secondly, it defines a context-free

grammar for the Serbian language. After that, it explains how

the syntax parser is created and compares its performance with a

parser implemented using NLTK. Finally, it explains the post-

processing layer which is added in order to reduce the number of

syntax trees generated due to grammar ambiguity. The

experiments showed that the implemented parser is on average

6115 times faster than the NLTK parser and that the post-

processing reduced the number of syntax trees by 54% on

average.

Index Terms— NLP; POS tagging; Context-free grammars;

Syntax analysis; CYK algorithm

I. INTRODUCTION

Natural language processing has been an essential theme in

computer science and engineering since its very inception as

evidenced by the postulation of the Turing test which was first

described by the renowned computer scientist and visionary

Alan Turing in 1950. Serving as the lingua franca of the

modern age the English language has been the most heavily

researched language in the NLP context. That being said,

many of the techniques developed for processing English

cannot be directly applied to many different languages

because of certain fundamental differences in language

structure. Each language has its own set of peculiarities that

need to be taken into consideration when developing

computer programs capable of comprehending them.

Syntax analysis or parsing is the process of analyzing a

sentence in natural languages conforming to the rules of a

grammar. Creating a successful syntax analyzer grants a good

foundation for building more sophisticated semantic

analyzers. Syntax analysis has its own role in Information

Extraction, Question Answering systems, Rule-based

Machine Translation, etc.

This paper presents a comparison between two parsers for

the Serbian language, one developed by using NLTK [1] and

the other implemented using the CYK algorithm [2]. Before

implementing a syntax parser, it is necessary to train a POS

tagger and then define a Context-free grammar for the Serbian

language. The next step after completing the parsers is adding

Teodora Đorđević is with the Faculty of Electronic Engineering, University

of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
teodora.djordjevic@elfak.ni.ac.rs).

Suzana Stojković is with the Faculty of Electronic Engineering, University of

Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
suzana.stojkovic@elfak.ni.ac.rs).

a post-processing layer in order to minimize the number of

syntax trees and to remove the trees that are completely

inconsistent with the language.

II. RELATED WORK

Syntax analysis is a process of generating syntax trees for

an input sentence. By applying syntax analysis, a sentence is

given specific structure. There are certain approaches in

syntax analysis or parsing. First, there is parsing with context-

free grammars. A context-free grammar [3] represents a list of

rules which are used to generate a syntax tree for a given

input. This approach has various problems due to inability to

predict every possible sentence structure. Also, adding more

rules can generate more syntax trees and not lead to parsing

improvements. The second group of algorithms is based on

statistics. The first approach can generate a large amount of

syntax trees, so adding statistics [4] is the best solution for this

problem, because it helps determine which syntax tree is most

likely to be correct. Before explaining algorithms for syntax

analysis, it is necessary to present search methods that can be

used. There are two strategies, top-down and bottom-up.

The top-down strategy is also called goal-directed search.

This technique does not consider input itself, as it only

considers whether a syntax tree can be generated from a given

grammar. The top-down method starts with the starting

symbol S and moves to the bottom. It is necessary to find all

the rules that have the starting symbol on the left side and

generate syntax trees with the starting symbol as the syntax

tree root. After that, those constituents are used to expand the

tree even more until the leaves are reached. At every level, the

algorithm considers rules with the current symbol on the left

side in order to expand a syntax tree. When the syntax tree

with leaves is generated, it is necessary to rule out all the rules

where the input sentence does not match the created syntax

tree. Syntax trees that are not ruled out in this phase are the

result of syntax analysis.

The bottom-up parsing represents a different approach. The

parser starts from the input sentence, and tries to build syntax

trees from input words, by going up. The parser attempts to

move up the branch for each potential syntax tree by

attempting to match the right side of the rule with the existing

nodes. The rule that is a match is reduced to its left side until

the starting symbol is reached. The parsing is successful if a

syntax tree for a given input sentence exists and contains the

starting symbol S as its root.

Each of these techniques has both its own advantages and

disadvantages. The top-down method does not attempt to

Different Approaches in Serbian Language

Parsing using Context-free Grammars

Teodora Đorđević and Suzana Stojković, University of Niš, Faculty of Electronic Engineering

RTI 2.3.1

create syntax trees that do not have the starting symbol as its

root, but also generates trees that are not a match to a given

input. The bottom-up method does not generate any syntax

trees that do not match the sentence being parsed, but it does

explore trees that do not begin with the starting symbol and

are thus invalid.

By using either one of the aforementioned methods parsing

can be implemented effectively. The first algorithms designed

for syntax analysis of natural languages used context-free

grammars as a set of rules for parsing. This approach requires

creating a context-free grammar and then choosing an

appropriate parsing algorithm to generate syntax trees. When

choosing a parsing algorithm, it is necessary to consider the

search method. The algorithms for parsing using a context-

free grammar-based approach are CKY, the Earley algorithm

[5] and Chart parsing [6]. This paper will later explain an

implementation of the CYK parser.

Parsing with context-free grammars can result in generating

multiple trees for a single sentence. This ambiguity problem

in most cases cannot be solved by adding more grammar

rules. It can be solved by adding statistics which leads to a

different approach – statistical parsing. Statistical parsing

calculates probabilities for every possible syntax tree and

chooses a syntax tree with the largest probability. A possible

way of assigning these probabilities to the syntax trees is by

using a Probabilistic Context-free grammar (PCFG) [7]. In

PCFG, the CFG rules are extended with an associated

probability which determines how likely it is that that specific

rule will be applied.

III. POS TAGGING

Tagging is an essential part of natural language processing.

Structurally, it is executed before parsing takes place with the

result of the tagging process being forwarded as an input to a

syntax analyzer. Tagging is applied on a per-word level; the

result of tagging is a tag which contains information regarding

the word’s Part of Speech. The Serbian language distinguishes

between ten different parts of speech: nouns, verbs, numbers,

adjectives, pronouns, conjunctions, prepositions, particles,

adverbs, and interjections. POS tagging is implemented using

classification. Classification is a supervised machine learning

method which needs a set of data for training. In natural

language processing this set of data is called a corpus of

words. Those words are pre-tagged and used for training.

Classification does not consist of only training, but it also

requires an evaluation using the test set.

Syntax analysis for the Serbian language cannot be

performed successfully by using only part of speech. Seeing

as how many words of the Serbian language take many forms

depending on their role in the sentence, a syntax analyzer

needs more information in order to assign a syntax structure to

a sentence. Some examples of the extra information needed

are case for nouns, adjectives, pronouns, and numbers,

whether a verb is a main or auxiliary verb, the type of

pronoun, etc. There are not many corpora for the Serbian

language. The one used for classification is srWaC [8]. srWac

is a web corpus formed from .rs top-level domain. The first

version contains 894 million of annotated tokens, and later

versions around 600 million.

This corpus was chosen because it contains deep tags with

lots of information. That being said, the corpus also contained

too much information for some of the POS, so those values

were filtered out in order to improve and simplify

classification. After filtering out certain fields, an additional

step of processing is applied in order to improve the usability

of the corpus. The tags for pronouns contained information on

pronoun type, whether it is personal, possessive, interrogative,

indefinite, etc. This pronoun type is not as useful for syntax

analysis as whether the pronoun is noun related or adjective

related. This division impacts whether the pronoun can stand

on its own or depends on some other word. Because of

pronouns, srWaC corpus needed to be altered to only

differentiate pronouns as noun or adjective related. These

alterations are based on current type and some common word

parts. For example, personal pronouns can only be noun

related, demonstrative pronouns can only be adjective related,

noun related pronouns often contain ‘ko’ or ‘šta’ inside the

pronoun itself. The current pronoun tags were removed, and

these rules are used to generate new tags for pronouns. After

updating this corpus, it was necessary to train the

classification model.

Classification is implemented using the nltk tool, more

specifically nltk’s Naive Bayes Classifier. First, the training

was implemented without reducing some of the unnecessary

information in tags, and this classification resulted in 89%

accuracy. After tag reducing, accuracy rose to 90%. The final

change in the corpus with pronoun tag simplification resulted

in 91% accuracy.

IV. SYNTAX ANALYSIS

The nltk implementation of syntax analyzer uses a Context-

free grammar of the target language. The definition of the

grammar includes [3]:

• A starting symbol of the grammar,

• Terminal symbols – strings which contain tags that

tagger recognizes,

• Grammar rules that have only one non-terminal

symbol on the left side.

Nltk expects that the file which contains grammar rules also

contains all the words that can be recognized in the target

language as terminal symbols. The problem with this

approach is that putting all words of one language in single

file is nearly impossible, so the terminals of this grammar are

not words, but rather tags that the POS tagger returned.

The CYK parser, on the other hand, uses a Context-free

grammar in Chomsky Normal Form [9]. This means that

every non-terminal can only be reduced as one terminal or

two non-terminals. For rules

 A → B, (1)

where A and B are non-terminals the parsing algorithm needs

to be extended.

RTI 2.3.2

A. Grammar

The designed grammar is intended for both the nltk and

CYK parser, so it is chosen to be in Chomsky normal form.

The grammar covers all the syntax units that can be detected

in one sentence of the Serbian language. The first part of the

grammar covers the sentence structure. One sentence consists

of sentence members, and sentence members can be subject,

object, predicate, adverbial provision, apposition, etc. [10]

Part of grammar that describes the structure of the sentence is

shown in Fig. 1.

Fig. 1. Part of the grammar rules

For each of the sentence members a new set of rules is

defined to describe them:

- Subject – there are two different types of subjects in the

Serbian language. One is logical and the other one is

grammatical. The logical subject is most likely to be in

genitive, dative or accusative. The grammatical subject is

a performer of the action expressed by predicate.

- Predicate – can be a noun or verb related. A verb predicate

can consist of a main verb, an auxiliary verb, affirmative

and negative particles, a verb in passive, etc. The set of

rules for a verb predicate considers a list that consists of

some of those parts. The noun predicate consists of a

verbal part and a noun part. A verbal part is an auxiliary

verb and a noun part can be a noun, adjective, or adverb.

- Object – can be direct or indirect. An object is an addition

to the predicate. The main difference between direct and

indirect objects is the case and the preposition absence.

- Adverbial provision – has similar definition as the indirect

object and also serves as an addition to the predicate. The

difference between the indirect object and the adverbial

preposition is meaning in the sentence. The indirect

object is a supplement to predicate, while the adverbial

provision is more focused on giving information related

to the action that predicate designates.

- Apposition and appositive - represent a syntax structure that

is surrounded by commas and gives an alternative

meaning to a noun or adjective it follows, respectively.

- Helper words – the words that have no syntactic meaning

but are often part of the sentence and they must be

covered by the grammar.

The total number of rules in the grammar is 406 so not all of

the rules can be displayed. An example of a syntax tree built

by defined grammar is shown in Fig 2.

While testing the NLTK parser with different texts, it has

been noticed that some of the sentences were not recognized,

Fig. 2. Example of a syntax tree

which resulted in adding more rules in order to cover more

sentence structures. A new problem that arose is the slowness

of the NLTK parser, which led to a parsing duration of half an

hour for a single sentence. Adding or altering the grammar

rules became nearly impossible because the testing for 20-30

sentences lasted almost all day. The new parser using CYK

algorithm was created as the solution for this problem.

B. CYK Parser

The CYK algorithm is a parsing algorithm for context free

grammars, which uses a bottom-up search strategy. It uses a

dynamic programming algorithm to tell whether a string is in

the language of a grammar. There is a difference between the

recognition and parsing algorithm. The recognition algorithm

only shows whether a sentence is recognized by the grammar

or not. The parsing algorithm returns all the possible syntax

trees for a given input. The pseudocode that is used for CYK

parser implementation is shown in Fig. 3.

Fig. 3. CYK parse pseudocode [4]

The CYK parser was implemented using Python. The

parser implementation requires generating a table of

dimensions (n+1) * (n+1) where n is the length of an input

sentence. The idea is to fill out the table’s diagonal with every

possible production that has the current input as a terminal

symbol in the grammar. After that, the parsing phase

implements matching certain cells according to algorithm in

order to climb up the tree until reaching starting symbol.

Every cell is designed to memorize a list of nodes. The

RTI 2.3.3

original pseudocode for CYK algorithm is expanded to fit the

unary rules. Every time a new node is added to a list of nodes

in a cell with indices [i][j], it is necessary to check whether

that node is on the right side of some unary rule. If so, then

the node to the left side of that unary rule is added to the node

list. After parsing is completed, all possible syntax trees are

found in cells with indices [0][n]. Generating the syntax trees

consists of finding all the nodes that start with the starting

symbol S and searching all the syntax trees by references.

V. POST-PROCESSING

The grammar is designed to recognize as many sentences as

possible, but that also led to generating a lot of syntax trees

for a single sentence. The NLTK parser and the CYK parser

always generated the same trees, but that number for the

longer sentences was often very large. In order to solve

ambiguity, a new layer is added after parsing and generating

the syntax trees and that layer is called the post-processing.

The post-processing was implemented by eliminating trees

that cannot be possible in the Serbian language. The rules that

generate these kinds of trees couldn’t be left out from the

grammar, so the solution was to search all the trees and to rule

out the impossible ones. Some examples of post-processing

rules are eliminating sentences that had multiple subjects and

multiple predicates (every simple sentence has only one

predicate). Also, the post-processing considered checking

whether recognized apposition really has a noun in the same

case on the left or the right side and whether recognized

appositive has an adjective in the same case on the left or the

right side, etc.

VI. EXPERIMENTAL RESULTS

The results of the implemented parser are shown with a

comparison of how much time was needed for both parsers to

generate the syntax trees for the same sentence. Besides the

performance of the parser, it is tested how post-processing

affected the reducing of the syntax trees.

The results for twenty sentences are shown in Table 1. The

results show that parser implemented using CYK algorithm is

thousands of times faster than the parser already implemented

in the NLTK tool. Also, in most of the cases the post

processing eliminated more than 50% of the trees and

improved parsing results.

VII. CONCLUSION

In this paper, it is explained how the corpus for the Serbian

language is updated and how the POS tagger for the Serbian

language that uses updated corpus is created. It is described

how the context-free grammar in Chomsky Normal Form for

the Serbian language is created. Finally, it is presented

creating of the syntax parser in two different ways using the

previously mentioned context-free grammar. Based on the test

results the CYK parser was 6115 times faster than the NLTK

on average. Also, the post-processing layer after parsing

reduced the number of syntax trees by 54% on average.

From all of the above, it can be concluded that although

creating a new syntax analyzer based on the CYK algorithm

and applying post-processing improved parsing and generated

mostly three or less syntax trees there is still room for

improvement. Improvement can be achieved by eliminating

ambiguity entirely and creating a syntax parser that will only

generate one syntax tree per sentence. One way to do that is

by using Probabilistic Context-free grammars.

TABLE I

PARSER COMPARISON

ACKNOWLEDGMENT

This work has been supported by the Ministry of Education,

Science and Technological Development of the Republic of

Serbia.

REFERENCES

[1] S. Bird, E. Klein, E. Loper, Natural Language Processing with Python,

Sebastopol, USA, O'Reilly Media, 2009.

[2] D.H. Younger, “Recognition and parsing of context-free languages in

n3”, Information and Control, vol. 10, no. 2, pp. 189-208, 1967.

[3] M. Stanković, S. Stojković, Ž. Tošić, Programski prevodioci, Niš,

Serbia, Elektronski fakultet, 2018.
[4] Jurafsky, J. Martin, Speech and Language Processing, 2nd edition, New

York, USA, Prentice-Hall, 2009.

[5] J. Earley, “An Efficient Context-Free Parsing Algorithm”, Ph.D.
dissertation, Carnegie-Mellon University, Pittsburgh, USA, 1968.

[6] R. M. Kaplan, Natural Language Processing, New York, Algorithmics

Press, 1973.
[7] T. L. Booth, "Probabilistic representation of formal languages", 10th

Annual Symposium on SWAT, pp. 74-81, Waterloo, Canada, 1969.

[8] srWaC – Serbian web corpus,
http://nlp.ffzg.hr/resources/corpora/srwac/, 12.07.2020.

[9] N. Chomsky, “On certain formal properties of grammar”, Information

and Control, vol. 2, no 2, pp. 137-167, 1959.
[10] Ž. Stanojčić, Lj. Popović, Gramatika srpskog jezika za gimnazije i

srednje škole, Belgrade, Serbia, Zavod za udžbenike, 2011

Len
CYK

trees
PP

PP

imp.

(%)

CYK

time (s)

NLTK

time (s)

NLTK /

CYK

(time)

6 2 1 50% 0.07 176 2514

10 8 2 75% 0.29 957 3300

7 2 1 50% 0.10 305 3050

7 26 9 65% 0.24 2301 9587

3 4 1 75% 0.01 224 22400

5 4 2 50% 0.07 350 5000

12 16 2 87% 0.76 1841 2422

10 52 9 83% 0.72 4975 6909

7 2 2 0% 0.12 179 1492

10 30 3 90% 0.48 2910 6062

6 6 6 0% 0.08 787 9837

4 1 1 0% 0.02 123 6150

5 2 1 50% 0.05 203 4060

8 10 2 80% 0.20 944 4720

5 10 2 80% 0.09 583 6477

5 4 2 50% 0.06 464 7733

6 2 1 50% 0.08 450 5625

8 18 6 66% 0.30 1813 6043

6 2 2 0% 0.08 212 2650

7 20 3 85% 0.21 1318 6276

Average: 54.3% 6115.3

RTI 2.3.4

http://nlp.ffzg.hr/resources/corpora/srwac/

