

Abstract— Linux is widely used for servers and embedded

systems which require a high level of security and reliability.

Although Linux is secure in general, traditional defense

methods, such as signature-based detection, fail to detect new

malicious programs. A more advanced approach is based on

prediction of malicious behavior with dynamic analysis of the
executed process. One method of observing the process

execution on a Linux system is the use of system tracers such as

ftrace and strace. This paper presents an overview of solutions

for malware detection by using system tracers on Linux.

Different malware detection strategies are discussed and
compared with the presented approach. Results of several

research projects done in this area are discussed, as well as the

observed drawbacks. Technical details of this approach

including the tracing utilities on Linux, sandboxing methods

and machine learning models are discussed.

Index Terms—Computer Security, Dynamic Analysis,

System Tracers, Linux.

I. INTRODUCTION

Computer security is an important topic for many existing

infrastructures. With the introduction of Internet of things

(IoT), increasing number of devices have network access.

These trends may bring additional convenience to everyday

life, but also introduce new risks to security and privacy.

Different threats can be identified for a particular system,

such as DDoS attacks, sniffing attack, SQL injection, XSS,

or even social engineering methods. Most of the currently

used defense mechanisms are based on anti-virus tools,

encryption, authentication, policies, user education,

backups, or physical security [1].

Traditional defense mechanisms fail to detect zero-day

malware as they are mostly based on identifying programs

that are already known to be malicious [2][3]. A more

complete defense includes protection against new malware.

Accurate detection of new malicious programs is a difficult

task due to the sophisticated behavior of malware [4] that

hides its malicious functionality, and the number of false

positives. This is a classification task that cannot be solved

with the same methods as detecting existing malware.

One approach to this problem is the application of

machine learning classification algorithms. In this approach

a dataset with benign and malicious execution information is

Igor Vurdelja is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

vi195024p@student.etf.bg.ac.rs).
Ivan Blažić is with the School of Electrical Engineering, University o f

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

blazic.ivan@outlook.com).
Drazen Draskovic is with the School of Electrical Engineering,

University of Belgrade, 73 Bulevar kralja Aleksandra, 1 10 20 Belgrad e,
Serbia (e-mail: drazen.draskovic@etf.bg.ac.rs).

Bosko Nikolic is with the School of Electrical Engineering, University
of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
bosko.nikolic@etf.bg.ac.rs).

used to train a model that detects one or the other type of

behavior [5][6][7][8]. System tracers present a universal

solution for obtaining the execution information.

Linux is a popular choice for servers [9] and embedded

systems [10], because of its benefits in performance,

reliability and ease of development. These types of systems

are at a higher security risk, as they may be a database

server, network equipment, or a control unit of a safety

critical device. The above-mentioned approach to detecting

zero-day malware is applicable to Linux systems, as there

are several system tracers available for this platform.

This paper presents an overview of research focused on

malware detection using system tracers on Linux. The

following section presents related research projects. Section

III presents existing types of malware and detection

methods. Section IV presents sandboxing environments for

simulating malware execution, and section V presents the

available system tracing tools on Linux. Pros and cons of the

solutions described in the related research are discussed in

section VI. Final section presents the conclusion of this

paper.

II. OVERVIEW OF RELATED RESEARCH

This section contains an overview of several researches of

malware detection methods using system traces on Linux.

Results of these researches, as well as the applied

approaches are presented in this section and further

discussed in the section VI.

Authors in [5] proposed an approach based on machine

learning technique which uses system calls as features.

Malware dataset is obtained from VX-heavens, and it

contains 226 malware samples. Used dataset contains 226

malware and 442 benign samples. Results of the

experiments presented in this research show a 97%

classification accuracy. Malicious samples were executed in

a virtual machine in order to collect system calls using

strace. After each execution, the virtual machine was

restored to clean sta te. System calls are divided in four

categories: union, intersection, discriminating features for

malware and discriminating features for benign programs.

From each category the features are selected using multiple

methods: Class Discrimination Measure (CDM), Odds Ratio

(OR), Elimination of Sparse features (ESF). Authors

examined how the choice of input data , classifier and feature

length would affect the detection accuracy. In this study

multiple classifiers are used: Naïve Bayes, J48, AdaboostMl

(148), IBKS and Random Forest. It is experimentally shown

that best accuracy is achieved with union and intersection

sets as input data, Odds Ratio as feature selection method

and Random Forest for cla ssification. Accuracy of this

model is 97,3%. It is also shown that discriminating features

does not provide a good accuracy for distinguishing

Detection of Linux Malware Using System
Tracers – An Overview of Solutions

Igor Vurdelja, Ivan Blažić, Dražen Drašković, Boško Nikolić

RTI 2.5.1

malwares from benign programs.

Research [6] was done by same authors as [5] and it is an

upgraded version of technique described in the previous

work. Authors presented 99,4% accuracy which is even

higher than in the previous research. Accuracy was

improved by changing the feature selection method.

Previously used CDM, OR and ESF have been replaced

with eXtended-Symmetric Uncertainty. In X-Symmetric

Uncertainty, two-step dimensionality reduction is employed,

and the features are ranked based on feature to class

correlation and feature to feature inter-correlation. This

approach allowed to pick features that had the biggest ability

to predict the correct class and to elimina te features that are

highly correlated, because they do not bring any useful

information about the predicted classes. Best results have

been achieved using Random Forest classifier with 27

features selected by eXtended-Symmetric Uncertainty. In

this way, the authors managed to make a faster classifier

with higher precision compared to their previous work.

Home routers and IoT devices are sensitive to DDoS

malware. These devices usually run on Linux. One research

[7] examined the applica tion of system call analysis in order

to classify behavioral anomalies occurring when the device

is infected. Virtual machines running ARM based router

firmware were used to simulate the victim device. Traffic

simulation was done with a dataset of real anonymized

internet traffic and ftrace was used to collect system calls.

Two of the most popular DDoS botnet malware types for

IoT device were detected, MrBlack and Mirai. These types

of malware work by scanning the network for unsecured

devices and infecting them by SSH or HTTP authentication

with most commonly used credentials. After the device has

been infected, it performs DDoS attacks and keeps

spreading the malware in the same way. Raw system ca lls

were processed for classification algorithms by extracting n-

grams of system calls and applying TF-IDF transformation.

This is an NLP approach that is commonly used to

transform system call logs into machine learning data.

Classification was done in different approaches, PCA

anomaly detection, one-class SVM classification, naive

detection based on identifying the set of n-grams that

appears in normal traffic. Results of this research presented

a 100% accuracy of all three approaches with sufficiently

long n-grams. The rationale behind such a high accuracy of

anomaly detection is the fact that these devices are highly

specialized, therefore have strong patterns of normal

behavior that are easily broken by malware.

A different approach was taken in a research that

represents system calls as hyper-grams [8]. In this research

the limita tions of using n-grams for this kind of analysis is

mentioned. These limitations mostly come down to

observing system calls as raw sequences, without analyzing

their individual functionalities and feeding the machine

learning algorithms with small raw data that holds no

generalized information about the characteristics of process

behavior. Hyper-grams used in this research are a concise

representation of system calls that occurred during a certain

period of execution. Every system call is represented in a

separate dimension, where the value in each dimension

tracks the history of occurrences for that system call. This

hyper-gram is parametrized with diminishing, addition, and

sloping factors, that determinate the importance of new vs

old information about specific system calls. These

parameters allow a hyper-gram to contain a longer or a

shorter history of a specific system call occurrence during

the execution. For achieving best performance, genetic

algorithms were used to optimize these parameters. In this

way, a certain period of execution is described as a point in

a multidimensional space. Benign and malicious points are

identified by the number of their occurrences in benign and

malicious processes. In-execution classification proposed in

this research is based on re-calculating the point of the

observed process with every new system call, and when the

average point of this process is dominantly seen in malicious

examples, the process is classified as malicious. An

experiment was performed to test the approach, where 72

malicious and 72 benign processes were observed on a

Linux virtual machine. Results of this experiment presented

an AUC of 87,85 with the application of hyper-grams. For

comparison, the same experiment was done with n-grams

with different values of n and different classification

algorithms (JRIP, J48, Naïve Bayes, SVM, and Instance

based learner). Maximum AUC of 87,30 was achieved with

Na ïve Bayes for a 6-gram.

III. MALWARE DETECTION STRATEGIES

Malware detection methods can be separated into

different groups based on detection methods and types of

program analysis. Common types of malware and detect ion

methods are presented in this section.

A. Malware identification methods

The signature-based approach [2] is the most popular a nd

widely used by commercial antivirus software. Signature-

based methods rely on patterns extracted from malicious

software binary files. This approach has a small error rate,

but it cannot deal with simple obfusca tion. Behavior-based

[3] malware detection techniques observe the behavior of a

program to conclude whether it is malicious or not. This

approach has a better result in detecting polymorphic

malware than a signature-based approach, but has issues

detecting packers. The heuristic approach [11] relies on data

mining and machine learning techniques to learn the

behavior of a malicious program. This is the most modern

approach which is still under research. It has the potential to

resolve the issues of signature-based and behavior-based

methods.

B. Type of analysis

During static analysis [12] the executable is analyzed on a

file structure bases without execution. As the file is not

executed, this type of analysis is fast and simple to deploy.

On the other hand, using only static properties of an

executable file might not accurately distinguish between

benign and malicious executable due to malware’s ability to

modify or hide the binary code in order to preserve the same

malicious behavior. The following techniques are commonly

applied to hide the malicious properties of a program:

1) Metamorphism

Metamorphic malware will change its code on every

execution. This is achieved by replacing existing

instructions with a similar one. Despite the permanent

changes to code, each iteration of metamorphic malware

functions the same way.

RTI 2.5.2

2) Polymorphism

Polymorphic malware is a type of malware that changes

its shape as well as signatures. It has two parts, but one of

them will remain the same with each iteration, so this type

of malware is easier to detect.

3) Packing

Packed malware is a type of malware that has been

modified using some compression or encryption algorithm.

The original executable is compressed, and an unpacked

stub is appended to it. When loaded, the unpacked stub will

unpack the whole executable and start original malware.

C. Limitations of analysis

Unlike static analysis, dynamic analysis does not include

inspection of the binary code, instead, a malicious program

is executed in a controlled environment. During this

execution, malware will make a trace, or it will make

behavior patterns that can be used to detect malicious

behavior. The main advantage of dynamic malware analysis

is that it is reliable for detecting unknown, metamorphic,

and polymorphic malware. The disadvantage of dynamic

analysis is that it is neither fast nor safe, and suffers from

incomplete code coverage because it monitors only a single

execution pa th. Additional limitation of dynamic analysis is

the ability of modern malware to detect a controlled

environment.

As static analysis suffers from severe limitations, this

paper focuses on dynamic malware analysis using machine

learning techniques. In the following chapters, the most

common techniques used in dynamic malware analysis are

presented.

IV. MALWARE SIMULATION INFRASTRUCTURE

Dynamic malware analysis poses several challenges. The

execution of malicious software can damage the host device,

or another device connected to the same network. To protect

the host from getting infected, a technique called

sandboxing is used. This technique is often used by malware

analysts to conduct dynamic analysis of untrusted files. A

good sandboxing environment fulfills the following

properties:

A. Secure isolation

The sandbox is an environment completely isolated from

live systems, but it should simulate a live system to ensure

that malware will run in the same way as in a real

environment. By executing malicious code in a sandbox

malware analyst can observe any impact on the potential

victim, such as system configuration changes, network calls,

or file system changes.

B. Ability to revert the environment to clean state

In automated malware analysis it is important that the

system is reverted to a clean state every time new malware

is analyzed. If the system is not reverted to a clean state data

collected in this way is unreliable as the executed test may

compromise the execution of the next test.

C. Realistic simulation of execution environment

Hiding a sandboxed environment consists of hiding

virtual environments, as well as any tool used for malware

analysis. Authors in [13] have shown that 17% of malware

has mechanisms to detect a virtualized environment.

Authors in [14] revealed that around 5% of the 110,000

malware samples attempted to evade analysis. Malware ha s

a mechanism to identify whether they are being executed on

a real system or a fake one. They show malicious behavior

only after some period of time, or after a specific user

action. A sandbox should have a mechanism to mimic real

user behavior to provoke malicious behavior.

D. Automated execution of multiple samples

Development of a malware analysis method usually

consists of executing a big number of malicious program

samples. Therefore, an efficient and automated way of

extracting traces for each ma lware has to be applied.

Automated execution environments have the ability to

uncover artifacts about the malware in a fast manner. There

are several open-source tools for isolating malware

execution, but they do not meet the mentioned criteria of a

good sandboxing environment. On the other hand, these

tools can be used for orchestration of multiple virtual

machines on which the malware can be executed, and in th is

way help in automation of extracting malware traces. In the

sense of providing a highly controlled environment,

sandboxes may be a specific example of virtualization.

Usually, sandboxes are implemented using virtual machines

and nested virtualization, but authors in [15] also proposed

sandboxing using Docker and LXC containers.

Some of the well-known open-source sandbox systems

are Cuckoo and Lemon. They are very similar, and both rely

on nested virtualization. On the first level of virtualization a

virtual machine controls multiple virtual machines on the

second level of virtualization. Malware is executed on the

nested virtual machines to provide security and isolation. All

nested virtual machines are in a virtual network together

with a virtual machine on the first level. Fig. 1. Sandbox

architecture presents the architecture of the described

sandboxing environments.

Fig. 1. Sandbox architecture

RTI 2.5.3

V. TRACING UTILITIES ON LINUX

System tracers are used to obtain various information

about the state of the system or executed processes. In the

context of malware detection, data produced by tracers can

be used to feed machine learning models that predict

malicious behavior or anomalies. Authors in [16][17]

showed that system calls can be used with high precision to

recognize non-benign behavior.

Linux kernel has an extensive tracing infrastructure useful

for debugging, and there are many tools available for system

tracing on Linux. These tracers rely on the same

mechanisms, but their use cases differ. A brief overview of

kernel and user space tracers with tracing mechanisms is

presented in Table 1 and Table 2. Most popular kernel

tracers are presented in the following text.

TABLE 1

KERNEL TRACERS OVERVIEW

 Tool

Tracer

Function

tracing

Static

tracepoints
Trap Trampoline

Ftrace X X X X

LTTng X X X

Perf X X X

eBPF X X X

SystemTap X X

TABLE 2

USER SPACE TRACERS OVERVIEW

 Tool

Tracer

Function

tracing

Static

tracepoints
Trap Trampoline

LTTng X X X

Printf X

Extrae X X

Ftrace is a tool that traces Linux kernel internal function

calls and interactions between user space and kernel space.

This tracer is included in Linux kernel since version 2.6.27.

It is a framework of several sub-tracers from which the most

typical is the function tracer. Ftrace can be used to trace

kernel events like system calls, network traffic, memory

access, etc. It relies on several tracing mechanisms including

function instrumentation, static tracepoints, and dynamic

tracepoints. Ftrace can be enabled or disabled in runtime.

Ftrace is manipulated through a set of files in debugfs

pseudo-filesystem. Aside from choosing a sub-tracer, ftrace

configuration includes setting the size of the trace buffers,

and selection of the clock source to use to timestamp the

events. Users can choose which events to trace, so the

execution overhead of ftrace is small when enabled, and

negligible when disabled.

LTTng stands for Linux Trace Toolkit: next generation,

and it is used for correlated tracing of the user applications,

Linux kernel, and user libraries. LTTng da tes from 2006,

around the same time as ftrace, but LTTng is still not a part

of the Linux kernel mainline. It consists of multiple Linux

kernel modules for kernel tracing, and dynamically loaded

libraries for user space tracing. There are multiple variations

of LTTng besides the standard LTTng, these include

LTTng-kprobe used for kernel tracing, LTTng UST and

LTTng using tracefs for user space tracing. Within the same

tracing session, the user can interact with multiple tracers.

Most of today's development environments support a

graphical interface to inspect LTTng logs.

Perf is a profiler tool for Linux 2.6+ based systems. It

serves to monitor the performance of the system. Even

though perf uses the same infrastructure as ftrace and

LTTng, it is more commonly used as a profiler rather than a

tracer. Perf has the ability not only to profile kernel

functions but also user space applications. Perf can gather

hardware PMU information such as different levels of cache

misses, TLB misses, CPU cycles, missed branch predictions,

etc. Perf on the other hand is limited to a single process. The

events and counters reported by perf are those which

occurred within the context of the traced process, and thus

have been accounted for it.

SystemTap and eBPF allow users to write programs that

can be inserted at run time at any location in kernel using

Kprobes. They serve for aggregating and live monitoring of

the system rather than for tracing, but can be re-configured

to behave like tracers by writing probes that will make

samples over time and store them.

Strace is a tool for system calls tracing. It does not come

as a part of Linux kernel, so it must be additionally installed.

It uses ptrace hooks infrastructure. Once attached to a

process it will intercept all its system calls. Strace adds a

large overhead, and is commonly used only for testing

environments. LTTng and ftrace can achieve the same

functionalities as Strace, but they are more lightweight.

VI. ANALYSIS OF THE APPROACH

This chapter presents an overview of the approach to

detect malware on Linux using system traces based on

existing research. Pros and cons of the methods applied in

the previously presented research are discussed.

A. Selection of the tracing tool

Picking the suitable tracer is essential to get correct data

and to make study expandable in the future. Most of the

studies described in section II use strace to extract system

calls from program samples.

 Strace uses ptrace infrastructure, meaning that malicious

file can easily check whether it is under analysis and can

change its malicious behavior. Strace is not a standard part

of Linux kernel and it must be additionally installed. This

can be a pain point for embedded devices which use custo m

Linux build with Yocto or Buildroot. Strace is limited to

tracing system calls only, so no additional information about

system state can be obtained. This limits amount of

information that could be used for a resea rch. Due to lack o f

its portability and performance strace would not be suitable

for a real-time malware detection tool.

Strace displays system call names and human readable

arguments instead of system call numbers which allows an

easier platform independent interpretation of system logs. It

does not require root privileges and in terms of usability is

by far the easiest tracer to be used on Linux. Arguments can

be used to enhance the model to be more accurate in

detecting malicious binary files. Mentioned limitations of

RTI 2.5.4

strace can be overcome by using another tracer such as

ftrace.

B. Sandbox environment

Properties of a good sandboxing environment are

presented in section IV. Quality of the sandboxing

infrastructure can greatly impact the results, but most of the

presented papers lack detailed descriptions of these

environments.

C. Machine learning applications

A common approach to the classification problem in the

related research is machine learning. This kind of approach

requires well prepared datasets and an accurate quality

evaluation method to be reliable.

All research mentioned in section II suffer from

imbalanced or incomplete datasets. Datasets are either sma ll

and contain up to 700 samples or are heavily imbalanced

containing 80% of malwares and 20% of benign programs.

N-grams of system calls are usually used as a feature set.

When a dataset is small and has a vast number of features

the problem of sparse data occurs. In case of uni-grams,

number of features is around 350, and in case of bi-grams,

number of features is around 3502. In these cases

classification can be improved by using one-class

algorithms, reinforcement learning or obtaining more data.

Malwares are usually distributed as statically linked

executables for improved portability, which allows them to

infect more devices. On the other hand, benign elf files are

usually dynamically linked and taken from /bin, /sbin,

/usr/bin or /usr/sbin. When executing dynamically

linked executables system calls for loading shared libraries

can occur. An example of a sequence for loading shared

libraries is shown on Fig. 2. Important observation is that

the majority of malware does not contain these sequences a s

they are statically linked, but benign programs do. This can

introduce a bias towards classifying statically linked

executables as ma lware, and dynamica lly linked as benign,

which could explain a very high accuracy in previously

presented research. Two ways of overcoming this problem

are compiling Linux commands as statically linked

executables or filtering sequences related to loading shared

libraries.

Fig. 2. System call sequence for loading shared libraries

Linux commands are used as benign samples in most of

the presented research, but criteria for choosing individual

commands has not been described. Most of the Linux

commands access the file system, but malicious samples

usually make significantly more network calls, which can

lead to inaccurately biased models. Vast majority of benign

Linux commands print on the console while malicious files

do not, which can lead to a similar bias problem. System

calls used for obtaining information about the console is

shown on Fig. 3.

Fig. 3. System calls for getting information about console

System call sequences made by both benign and

malicious samples should be as diverse as possible in order

to avoid this kind of bias. This can be achieved by a proper

selection of benign samples.

An NLP approach has been mostly used, where system

trace entries are treated as a set of individual smaller

sequences which are then processed with bag-of-words

a lgorithms. The NLP approach is considered to be robust in

general but could lead to a less reliable classification if

normalization such as TF-IDF is not applied or the size of n-

grams is not optimal. In the context of malware detection,

this approach can identify smaller patterns of execution tha t

can frequently appear only in malicious programs. This

approach lacks complete information about the execution

since the individual sequences of a program are not

independent. Data representation using feature vectors such

as hyper-grams overcomes this limitations to a certain

extent, but does not seem to provide significant

improvement over n-grams [8]. High classification accuracy

is presented in the related research, where most results show

over 90%. This amount of accuracy is mathematically

correct, but may not reflect the predictive power the

classifier has in reality [18]. In cases where small or

unbalanced datasets are used, a high accuracy will give a

false measure of quality.

VII. CONCLUSION

Analysis of Linux system trace logs for malware

classification has been a topic of several research presented

in this paper. Approaches presented in the related research

consist of executing benign and malware programs in a

controlled environment to obtain system trace logs, which

are then processed with machine learning algorithms to

implement a classifier. Most results of these research present

high classification accuracies but may lack appropriate

datasets and real predictive power. From a critical analysis

of the related resea rch, it has been concluded that this

approach requires a bigger, more well-prepared machine

learning dataset, and a realistic simulation of the execution.

Presented approach to malware detection has a lot of further

research potential, with the ultimate goal of having robust

real-time detection of zero-day malware on Linux systems.

RTI 2.5.5

REFERENCES

[1] Lee Brotherston, Amanda Berlin, Defensive Security Handbook: Best
Practices for Securing Infrastructure, Newton, Massachu setts, US,
O’Reilly Media, Inc, 2017.

[2] P. Gutmann. “The Commercial Malware Industry”, available at
https://www.cs.auckland.ac.nz/~pgut001/pubs/malware_biz.pdf

[3] W. Liu, P. Ren, K. Liu, H. Duan, “Behavior-Based Malware Analysis

and Detection”, First International Workshop on Complexity and Data
Mining, NW Washington, DC, United States, pp. 39-42, 2011.

[4] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, Davide
Balzarotti, “Understanding Linux Malware”, IEEE Sy mpo sium o n

Security and Privacy (SP), San Francisco, CA, USA, p p. 1 61-175 ,
2018.

[5] K. A. Asmitha, P. Vinod, “A Machine Learning Approach for L in ux
Malware Detection”, International Conference on Issues and

Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad,
India, pp. 825-830, 2014.

[6] K. A. Asmitha, P. Vinod, “Linux Malware Detection Using
eXtended-Symmetric Uncertainty”, International Conference on

Security, Privacy, and Applied Cryptography Engineering, Pune,
India, pp. 319-332, 2014.

[7] N. An, A. Duff, G. Naik, M. Faloutsos, S. Weber and S. Mancoridis,

"Behavioral anomaly detection of malware on home ro uters, " 1 2 th
International Conference on Malicious and Unwanted Software
(MALWARE), Fajardo, Puerto Rico, United States of America, 2017.

[8] B. Mehdi, F. Ahmed, S. A. Khayyam, M. Farooq, "Towards a Theory

of Generalizing System Call Representation for In-Execution
Malware Detection", IEEE International Conference on
Communications, Cape Town, South Africa, 2010.

[9] “Usage Statistics and Market Share of Operating Systems for

Websites, August 2020", W3Techs, accessed 09.09.2020,
https://w3techs.com/technologies/overview/operating_system.

[10] “2019 Embedded Markets Study”, AspenCore, accessed 09.09.202 0,

https://www.embedded.com/wp-
content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Mar
kets_Study.pdf.

[11] Z. Bazrafshan, H. Hashemi, S. Mehdi Hazrati Fard, A. Hamzeh, “A

survey on heuristic malware detection techniques”, 5th Conference on
Information and Knowledge Technology, Shiraz, Iran, pp. 1 1 3-120 ,
2013.

[12] M. G. Schultz, E. Eskin, E. Zadok, S. J. Stolfo, “Data mining methods

for detection of new malicious executables”, Proceedin gs o f IEEE
Symposium on Security and Privacy (S&P), Oakland, California , p p
38-49, 2001.

[13] “Carbank Malware – Ninety Five Percent Exhibits Stealthy or

Evasive Behaviors”, available at
https://www.lastline.com/labsblog/carbanak-malware-ninety- f iv e-
percent-exhibits-stealthy-or-evasive-behaviors/, date accessed 8. June

2020.
[14] D. Kirat, G. Vigna, C. Kruegel, “BareCloud: Bare-metal An aly sis-

based Evasive Malware Detection”, USENIX Security Sy mp osium ,
San Diego, California, pp. 287-301, 2014.

[15] D. Hellinger, L. M. Xuan, P. Gahlot, “Dynamic Analysis of Evasiv e
Malware with a Linux Container Sandbox”, available at
https://www.researchgate.net/publication/330500642_Dynamic_Anal
ysis_of_Evasive_Malware_with_a_Linux_Container_Sandbox

[16] S. Forrest, S. Hofmeyr, A. Somayaji, T. Longstaff, “A sen se o f s elf
for Unix processes”, IEEE Symposium o n Secu rity an d Pr ivacy ,
Oakland, California, pp. 120-128, 1996.

[17] K. Denney, C, Kaygusuz, J. Zuluaga, “A Survey of Malware

Detection Using System Call Tracing Techniques”, 2018.
[18] F. J Valverde-Albacete, C. Peláez-Moreno “100% Classification

Accuracy Considered Harmful: The Normalized Information Transfer

Factor Explains the Accuracy Paradox”, PloS one, 2014

RTI 2.5.6

https://www.cs.auckland.ac.nz/~pgut001/pubs/malware_biz.pdf
https://w3techs.com/technologies/overview/operating_system
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.lastline.com/labsblog/carbanak-malware-ninety-five-percent-exhibits-stealthy-or-evasive-behaviors/
https://www.lastline.com/labsblog/carbanak-malware-ninety-five-percent-exhibits-stealthy-or-evasive-behaviors/
https://www.researchgate.net/publication/330500642_Dynamic_Analysis_of_Evasive_Malware_with_a_Linux_Container_Sandbox
https://www.researchgate.net/publication/330500642_Dynamic_Analysis_of_Evasive_Malware_with_a_Linux_Container_Sandbox

