
 

  

Abstract— Linux is widely used for servers and embedded 

systems which require a high level of security and reliability. 

Although Linux is secure in general, traditional defense 

methods, such as signature-based detection, fail to detect new 

malicious programs. A more advanced approach is based on 

prediction of malicious behavior with dynamic analysis of the 
executed process. One method of observing the process 

execution on a Linux system is the use of system tracers such as  

ftrace and strace. This paper presents an overview of solutions 

for malware detection by using system tracers on Linux. 

Different malware detection strategies are discussed and 
compared with the presented approach. Results of several 

research projects done in this area are discussed, as well as the 

observed drawbacks. Technical details of this approach 

including the tracing utilities on Linux, sandboxing methods 

and machine learning models are discussed. 

 
Index Terms—Computer Security, Dynamic Analysis, 

System Tracers, Linux.  

I. INTRODUCTION 

Computer security is an important topic for many existing 

infrastructures. With the introduction of Internet of things 

(IoT), increasing number of devices have network access. 

These trends may bring additional convenience to everyday 

life, but also introduce new risks to security and privacy. 

Different threats can be identified for a particular system, 

such as DDoS attacks, sniffing attack, SQL injection, XSS, 

or even social engineering methods. Most of the currently 

used defense mechanisms are based on anti-virus tools, 

encryption, authentication, policies, user education, 

backups, or physical security [1]. 

Traditional defense mechanisms fail to detect zero-day 

malware as they are mostly based on identifying programs 

that are already known to be malicious [2][3]. A more 

complete defense includes protection against new malware. 

Accurate detection of new malicious programs is a difficult 

task due to the sophisticated behavior of malware [4] that 

hides its malicious functionality, and the number of false 

positives. This is a classification task that cannot be solved 

with the same methods as detecting existing malware.  

One approach to this problem is the application of 

machine learning classification algorithms. In this approach 

a dataset with benign and malicious execution information is 
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used to train a model that detects one or the other type of 

behavior [5][6][7][8]. System tracers present a universal 

solution for obtaining the execution information. 

Linux is a popular choice for servers [9] and embedded 

systems [10], because of its benefits in performance, 

reliability and ease of development. These types of systems 

are at a  higher security risk, as they may be a database 

server, network equipment, or a  control unit of a  safety 

critical device. The above-mentioned approach to detecting 

zero-day malware is applicable to Linux systems, as there 

are several system tracers available for this platform. 

This paper presents an overview of research focused on 

malware detection using system tracers on Linux. The 

following section presents related research projects. Section 

III presents existing types of malware and detection 

methods. Section IV presents sandboxing environments for 

simulating malware execution, and section V presents the 

available system tracing tools on Linux. Pros and cons of the 

solutions described in the related research are discussed in 

section VI. Final section presents the conclusion of this 

paper. 

II. OVERVIEW OF RELATED RESEARCH 

This section contains an overview of several researches of  

malware detection methods using system traces on Linux. 

Results of these researches, as well as the applied 

approaches are presented in this section and further 

discussed in the section VI.  

Authors in [5] proposed an approach based on machine 

learning technique which uses system calls as features. 

Malware dataset is obtained from VX-heavens, and it 

contains 226 malware samples. Used dataset contains 226 

malware and 442 benign samples. Results of the 

experiments presented in this research show a 97% 

classification accuracy. Malicious samples were executed in 

a virtual machine in order to collect system calls using 

strace. After each execution, the virtual machine was 

restored to clean sta te. System calls are divided in four 

categories: union, intersection, discriminating features for 

malware and discriminating features for benign programs. 

From each category the features are selected using multiple 

methods: Class Discrimination Measure (CDM), Odds Ratio 

(OR), Elimination of Sparse features (ESF). Authors 

examined how the choice of input data , classifier and feature 

length would affect the detection accuracy. In this study 

multiple classifiers are used: Naïve Bayes, J48, AdaboostMl 

(148), IBKS and Random Forest. It is experimentally shown 

that best accuracy is achieved with union and intersection 

sets as input data, Odds Ratio as feature selection method 

and Random Forest for cla ssification. Accuracy of this 

model is 97,3%. It is also shown that discriminating features 

does not provide a good accuracy for distinguishing 
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malwares from benign programs. 

Research [6] was done by same authors as [5] and it is an 

upgraded version of technique described in the previous 

work. Authors presented 99,4% accuracy which is even 

higher than in the previous research. Accuracy was 

improved by changing the feature selection method. 

Previously used CDM, OR and ESF have been replaced 

with eXtended-Symmetric Uncertainty. In X-Symmetric 

Uncertainty, two-step dimensionality reduction is employed, 

and the features are ranked based on feature to class 

correlation and feature to feature inter-correlation. This 

approach allowed to pick features that had the biggest ability 

to predict the correct class and to elimina te features that are 

highly correlated, because they do not bring any useful 

information about the predicted classes. Best results have 

been achieved using Random Forest classifier with 27 

features selected by eXtended-Symmetric Uncertainty. In 

this way, the authors managed to make a faster classifier 

with higher precision compared to their previous work. 

Home routers and IoT devices are sensitive to DDoS 

malware. These devices usually run on Linux. One research 

[7] examined the applica tion of system call analysis in order 

to classify behavioral anomalies occurring when the device 

is infected. Virtual machines running ARM based router 

firmware were used to simulate the victim device. Traffic 

simulation was done with a dataset of real anonymized 

internet traffic and ftrace was used to collect system calls. 

Two of the most popular DDoS botnet malware types for 

IoT device were detected, MrBlack and Mirai. These types 

of malware work by scanning the network for unsecured 

devices and infecting them by SSH or HTTP authentication 

with most commonly used credentials. After the device has 

been infected, it performs DDoS attacks and keeps 

spreading the malware in the same way. Raw system ca lls 

were processed for classification algorithms by extracting n-

grams of system calls and applying TF-IDF transformation. 

This is an NLP approach that is commonly used to 

transform system call logs into machine learning data. 

Classification was done in different approaches, PCA 

anomaly detection, one-class SVM classification, naive 

detection based on identifying the set of n-grams that 

appears in normal traffic. Results of this research presented 

a 100% accuracy of all three approaches with sufficiently 

long n-grams. The rationale behind such a high accuracy of 

anomaly detection is the fact that these devices are highly 

specialized, therefore have strong patterns of normal 

behavior that are easily broken by malware. 

A different approach was taken in a research that 

represents system calls as hyper-grams [8]. In this research 

the limita tions of using n-grams for this kind of analysis is 

mentioned. These limitations mostly come down to 

observing system calls as raw sequences, without analyzing 

their individual functionalities and feeding the machine 

learning algorithms with small raw data  that holds no 

generalized information about the characteristics of process 

behavior. Hyper-grams used in this research are a concise 

representation of system calls that occurred during a certain 

period of execution. Every system call is represented in a 

separate dimension, where the value in each dimension 

tracks the history of occurrences for that system call. This 

hyper-gram is parametrized with diminishing, addition, and 

sloping factors, that determinate the importance of new vs 

old information about specific system calls. These 

parameters allow a hyper-gram to contain a longer or a  

shorter history of a specific system call occurrence during 

the execution. For achieving best performance, genetic 

algorithms were used to optimize these parameters. In this 

way, a certain period of execution is described as a point in 

a multidimensional space. Benign and malicious points are 

identified by the number of their occurrences in benign and 

malicious processes. In-execution classification proposed in 

this research is based on re-calculating the point of the 

observed process with every new system call, and when the 

average point of this process is dominantly seen in malicious 

examples, the process is classified as malicious. An 

experiment was performed to test the approach, where 72 

malicious and 72 benign processes were observed on a 

Linux virtual machine. Results of this experiment presented 

an AUC of 87,85 with the application of hyper-grams. For 

comparison, the same experiment was done with n-grams 

with different values of n and different classification 

algorithms (JRIP, J48, Naïve Bayes, SVM, and Instance 

based learner). Maximum AUC of 87,30 was achieved with 

Naïve Bayes for a 6-gram. 

III. MALWARE DETECTION STRATEGIES 

Malware detection methods can be separated into 

different groups based on detection methods and types of 

program analysis. Common types of malware and detect ion  

methods are presented in this section. 

A. Malware identification methods 

The signature-based approach [2] is the most popular a nd  

widely used by commercial antivirus software. Signature-

based methods rely on patterns extracted from malicious 

software binary files. This approach has a small error rate, 

but it cannot deal with simple obfusca tion. Behavior-based 

[3] malware detection techniques observe the behavior of a 

program to conclude whether it is malicious or not. This 

approach has a better result in detecting polymorphic 

malware than a signature-based approach, but has issues 

detecting packers. The heuristic approach [11] relies on data 

mining and machine learning techniques to learn the 

behavior of a  malicious program. This is the most modern 

approach which is still under research. It has the potential to 

resolve the issues of signature-based and behavior-based 

methods. 

B. Type of analysis 

During static analysis [12] the executable is analyzed on a 

file structure bases without execution. As the file is not 

executed, this type of analysis is fast and simple to deploy. 

On the other hand, using only static properties of an 

executable file might not accurately distinguish between 

benign and malicious executable due to malware’s ability to 

modify or hide the binary code in order to preserve the same 

malicious behavior. The following techniques are commonly 

applied to hide the malicious properties of a program: 

 

1) Metamorphism 

Metamorphic malware will change its code on every 

execution. This is achieved by replacing existing 

instructions with a similar one. Despite the permanent 

changes to code, each iteration of metamorphic malware 

functions the same way. 
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2) Polymorphism 

Polymorphic malware is a type of malware that changes 

its shape as well as signatures. It has two parts, but one of 

them will remain the same with each iteration, so this type 

of malware is easier to detect. 

 

3) Packing 

Packed malware is a type of malware that has been 

modified using some compression or encryption algorithm. 

The original executable is compressed, and an unpacked 

stub is appended to it. When loaded, the unpacked stub will 

unpack the whole executable and start original malware. 

C. Limitations of analysis 

Unlike static analysis, dynamic analysis does not include 

inspection of the binary code, instead, a malicious program 

is executed in a controlled environment. During this 

execution, malware will make a trace, or it will make 

behavior patterns that can be used to detect malicious 

behavior. The main advantage of dynamic malware analysis 

is that it is reliable for detecting unknown, metamorphic, 

and polymorphic malware. The disadvantage of dynamic 

analysis is that it is neither fast nor safe, and suffers from 

incomplete code coverage because it monitors only a single 

execution pa th. Additional limitation of dynamic analysis is 

the ability of modern malware to detect a controlled 

environment. 

As static analysis suffers from severe limitations, this 

paper focuses on dynamic malware analysis using machine 

learning techniques. In the following chapters, the most 

common techniques used in dynamic malware analysis are 

presented. 

IV. MALWARE SIMULATION INFRASTRUCTURE 

Dynamic malware analysis poses several challenges. The 

execution of malicious software can damage the host device, 

or another device connected to the same network. To protect  

the host from getting infected, a  technique called 

sandboxing is used. This technique is often used by malware 

analysts to conduct dynamic analysis of untrusted files. A 

good sandboxing environment fulfills the following 

properties: 

A. Secure isolation 

The sandbox is an environment completely isolated from 

live systems, but it should simulate a live system to ensure 

that malware will run in the same way as in a real 

environment. By executing malicious code in a  sandbox 

malware analyst can observe any impact on the potential 

victim, such as system configuration changes, network calls, 

or file system changes. 

B. Ability to revert the environment to clean state 

In automated malware analysis it is important that the 

system is reverted to a clean state every time new malware 

is analyzed. If the system is not reverted to a clean state data 

collected in this way is unreliable as the executed test may 

compromise the execution of the next test. 

C. Realistic simulation of execution environment 

Hiding a sandboxed environment consists of hiding 

virtual environments, as well as any tool used for malware 

analysis. Authors in [13] have shown that 17% of malware 

has mechanisms to detect a  virtualized environment. 

Authors in [14] revealed that around 5% of the 110,000 

malware samples attempted to evade analysis. Malware  ha s 

a mechanism to identify whether they are being executed on  

a real system or a fake one. They show malicious behavior 

only after some period of time, or after a  specific user 

action. A sandbox should have a mechanism to mimic real 

user behavior to provoke malicious behavior.  

D. Automated execution of multiple samples 

Development of a malware analysis method usually 

consists of executing a big number of malicious program 

samples. Therefore, an efficient and automated way of 

extracting traces for each ma lware has to be applied. 

Automated execution environments have the ability to 

uncover artifacts about the malware in a fast manner. There 

are several open-source tools for isolating malware 

execution, but they do not meet the mentioned criteria of a 

good sandboxing environment. On the other hand, these 

tools can be used for orchestration of multiple virtual 

machines on which the malware can be executed, and in th is 

way help in automation of extracting malware traces. In the 

sense of providing a highly controlled environment, 

sandboxes may be a specific example of virtualization. 

Usually, sandboxes are implemented using virtual machines 

and nested virtualization, but authors in [15] also proposed 

sandboxing using Docker and LXC containers. 

Some of the well-known open-source sandbox systems 

are Cuckoo and Lemon. They are very similar, and both rely  

on nested virtualization. On the first level of virtualization a 

virtual machine controls multiple virtual machines on the 

second level of virtualization. Malware is executed on the 

nested virtual machines to provide security and isolation. All 

nested virtual machines are in a virtual network together 

with a virtual machine on the first level. Fig.  1. Sandbox 

architecture presents the architecture of the described 

sandboxing environments. 

 
 

Fig.  1. Sandbox architecture 
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V. TRACING UTILITIES ON LINUX 

System tracers are used to obtain various information 

about the state of the system or executed processes. In the 

context of malware detection, data produced by tracers can 

be used to feed machine learning models that predict 

malicious behavior or anomalies. Authors in [16][17] 

showed that system calls can be used with high precision to 

recognize non-benign behavior. 

Linux kernel has an extensive tracing infrastructure useful 

for debugging, and there are many tools available for system 

tracing on Linux. These tracers rely on the same 

mechanisms, but their use cases differ. A brief overview of 

kernel and user space tracers with tracing mechanisms is 

presented in Table 1 and Table 2. Most popular kernel 

tracers are presented in the following text. 

 
TABLE 1  

KERNEL TRACERS OVERVIEW 
 

        Tool 

Tracer 

Function  

tracing 

Static  

tracepoints 
Trap Trampoline 

Ftrace X X X X 

LTTng X  X X 

Perf X  X X 

eBPF X  X X 

SystemTap   X X 

 
TABLE 2  

USER SPACE TRACERS OVERVIEW 

 

        Tool 

Tracer 

Function  

tracing 

Static  

tracepoints 
Trap Trampoline 

LTTng X X X  

Printf  X   

Extrae X   X 

 

Ftrace is a  tool that traces Linux kernel internal function 

calls and interactions between user space and kernel space. 

This tracer is included in Linux kernel since version 2.6.27. 

It is a  framework of several sub-tracers from which the most  

typical is the function tracer. Ftrace can be used to trace 

kernel events like system calls, network traffic, memory 

access, etc. It relies on several tracing mechanisms including 

function instrumentation, static tracepoints, and dynamic 

tracepoints. Ftrace can be enabled or disabled in runtime. 

Ftrace is manipulated through a set of files in debugfs 

pseudo-filesystem. Aside from choosing a sub-tracer, ftrace 

configuration includes setting the size of the trace buffers, 

and selection of the clock source to use to timestamp the 

events. Users can choose which events to trace, so the 

execution overhead of ftrace is small when enabled, and 

negligible when disabled. 

LTTng stands for Linux Trace Toolkit: next generation, 

and it is used for correlated tracing of the user applications, 

Linux kernel, and user libraries. LTTng da tes from 2006, 

around the same time as ftrace, but LTTng is still not a  part 

of the Linux kernel mainline. It consists of multiple Linux 

kernel modules for kernel tracing, and dynamically loaded 

libraries for user space tracing. There are multiple variations 

of LTTng besides the standard LTTng, these include 

LTTng-kprobe used for kernel tracing, LTTng UST and 

LTTng using tracefs for user space tracing. Within the same 

tracing session, the user can interact with multiple tracers. 

Most of today's development environments support a  

graphical interface to inspect LTTng logs. 

Perf is a  profiler tool for Linux 2.6+ based systems. It 

serves to monitor the performance of the system. Even 

though perf uses the same infrastructure as ftrace and 

LTTng, it is more commonly used as a  profiler rather than a 

tracer. Perf has the ability not only to profile kernel 

functions but also user space applications. Perf can gather 

hardware PMU information such as different levels of cache 

misses, TLB misses, CPU cycles, missed branch predictions, 

etc. Perf on the other hand is limited to a single process. The 

events and counters reported by perf are those which 

occurred within the context of the traced process, and thus 

have been accounted for it. 

SystemTap and eBPF allow users to write programs that 

can be inserted at run time at any location in kernel using 

Kprobes. They serve for aggregating and live monitoring of 

the system rather than for tracing, but can be re-configured 

to behave like tracers by writing probes that will make 

samples over time and store them. 

Strace is a tool for system calls tracing. It does not come 

as a part of Linux kernel, so it must be additionally installed. 

It uses ptrace hooks infrastructure. Once attached to a 

process it will intercept all its system calls. Strace adds a 

large overhead, and is commonly used only for testing 

environments. LTTng and ftrace can achieve the same 

functionalities as Strace, but they are more lightweight. 

VI. ANALYSIS OF THE APPROACH 

This chapter presents an overview of the approach to 

detect malware on Linux using system traces based on 

existing research. Pros and cons of the methods applied in 

the previously presented research are discussed. 

A. Selection of the tracing tool 

Picking the suitable tracer is essential to get correct data 

and to make study expandable in the future. Most of the 

studies described in section II use strace to extract system 

calls from program samples.  

 Strace uses ptrace infrastructure, meaning that malicious 

file can easily check whether it is under analysis and can 

change its malicious behavior. Strace is not a  standard part 

of Linux kernel and it must be additionally installed. This 

can be a pain point for embedded devices which use custo m  

Linux build with Yocto or Buildroot. Strace is limited to 

tracing system calls only, so no additional information about 

system state can be obtained. This limits amount of 

information that could be used for a resea rch. Due to lack o f  

its portability and performance strace would not be suitable 

for a real-time malware detection tool. 

Strace displays system call names and human readable 

arguments instead of system call numbers which allows an 

easier platform independent interpretation of system logs. It 

does not require root privileges and in terms of usability is 

by far the easiest tracer to be used on Linux. Arguments can 

be used to enhance the model to be more accurate in 

detecting malicious binary files. Mentioned limitations of 
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strace can be overcome by using another tracer such as 

ftrace. 

B. Sandbox environment  

Properties of a good sandboxing environment are 

presented in section IV. Quality of the sandboxing 

infrastructure can greatly impact the results, but most of the 

presented papers lack detailed descriptions of these 

environments. 

C. Machine learning applications 

A common approach to the classification problem in the 

related research is machine learning. This kind of approach 

requires well prepared datasets and an accurate quality 

evaluation method to be reliable.  

All research mentioned in section II suffer from 

imbalanced or incomplete datasets. Datasets are either sma ll 

and contain up to 700 samples or are heavily imbalanced 

containing 80% of malwares and 20% of benign programs. 

N-grams of system calls are usually used as a feature set. 

When a dataset is small and has a  vast number of features 

the problem of sparse data occurs. In case of uni-grams, 

number of features is around 350, and in case of bi-grams, 

number of features is around 3502. In these cases 

classification can be improved by using one-class 

algorithms, reinforcement learning or obtaining more data. 

Malwares are usually distributed as statically linked 

executables for improved portability, which allows them to 

infect more devices. On the other hand, benign elf files are 

usually dynamically linked and taken from /bin, /sbin, 

/usr/bin or /usr/sbin. When executing dynamically 

linked executables system calls for loading shared libraries 

can occur. An example of a  sequence for loading shared 

libraries is shown on Fig.  2. Important observation is that 

the majority of malware does not contain these sequences a s 

they are statically linked, but benign programs do. This can 

introduce a bias towards classifying statically linked 

executables as ma lware, and dynamica lly linked as benign, 

which could explain a very high accuracy in previously 

presented research. Two ways of overcoming this problem 

are compiling Linux commands as statically linked 

executables or filtering sequences related to loading shared 

libraries. 

 

 
 

Fig.  2. System call sequence for loading shared libraries 

 

Linux commands are used as benign samples in most of 

the presented research, but criteria for choosing individual 

commands has not been described. Most of the Linux 

commands access the file system, but malicious samples 

usually make significantly more network calls, which can 

lead to inaccurately biased models. Vast majority of benign 

Linux commands print on the console while malicious files 

do not, which can lead to a  similar bias problem. System 

calls used for obtaining information about the console is 

shown on Fig.  3. 

 

 
 

Fig.  3. System calls for getting information about console 

 

System call sequences made by both benign and 

malicious samples should be as diverse as possible in order 

to avoid this kind of bias. This can be achieved by a proper 

selection of benign samples. 

An NLP approach has been mostly used, where system 

trace entries are treated as a set of individual smaller 

sequences which are then processed with bag-of-words 

a lgorithms. The NLP approach is considered to be robust in 

general but could lead to a  less reliable classification if 

normalization such as TF-IDF is not applied or the size of n-

grams is not optimal. In the context of malware detection, 

this approach can identify smaller patterns of execution tha t  

can frequently appear only in malicious programs. This 

approach lacks complete information about the execution 

since the individual sequences of a program are not 

independent. Data representation using feature vectors such 

as hyper-grams overcomes this limitations to a certain 

extent, but does not seem to provide significant 

improvement over n-grams [8]. High classification accuracy 

is presented in the related research, where most results show 

over 90%. This amount of accuracy is mathematically 

correct, but may not reflect the predictive power the 

classifier has in reality [18]. In cases where small or 

unbalanced datasets are used, a  high accuracy will give a 

false measure of quality. 

VII. CONCLUSION 

Analysis of Linux system trace logs for malware 

classification has been a topic of several research presented 

in this paper. Approaches presented in the related research 

consist of executing benign and malware programs in a 

controlled environment to obtain system trace logs, which 

are then processed with machine learning algorithms to 

implement a classifier. Most results of these research present 

high classification accuracies but may lack appropriate 

datasets and real predictive power. From a critical analysis 

of the related resea rch, it has been concluded that this 

approach requires a bigger, more well-prepared machine 

learning dataset, and a realistic simulation of the execution. 

Presented approach to malware detection has a lot of further 

research potential, with the ultimate goal of having robust 

real-time detection of zero-day malware on Linux systems. 
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