

Abstract—In this paper, we introduce an affordable IoT-based

solution aiming to increase COVID-19 indoor safety, covering

several relevant aspects: 1) contactless temperature sensing 2)

mask detection 3) social distancing check. Contactless

temperature sensing subsystem relies on Arduino Uno using

infrared sensor or thermal camera, while mask detection and

social distancing check are performed by leveraging computer

vision techniques on camera-equipped Raspberry Pi.

Index Terms—Arduino; computer vision; coronavirus;

COVID-19; Raspberry Pi, ontology.

I. INTRODUCTION

Since the last days of the previous year, the occurrence of

novel infectious flu-alike respiratory disease COVID-19

caused by SARS-Cov-2 virus (also known as coronavirus) has

affected almost every aspect of people’s lives globally. First,

it was discovered in China, but spread quickly to other

continents in just few weeks. According to [1], until July 11th,

2020, the total number of identified cases was 12,653,451,

while taking 563,517 lives worldwide.

Common symptoms of coronavirus disease include fever,

tiredness, sore throat, nasal congestion [2], loss of taste and

smell [3]. In most cases, it is transmitted directly (person to

person) through respiratory droplets, but also indirectly via

surfaces [4, 5]. Incubation period could be quite long and

varies (between 14 and 27 days in extreme cases) [6, 7].

Furthermore, even asymptomatic persons (almost 45% of

cases) can spread the disease [7] making the situation even

worse. Therefore, the usage of face masks and sanitizers has

shown positive results when it comes to disease spread

reduction [8]. However, the crucial problem is the lack of

approved vaccine and medication [9].

Due to these facts, many protection and safety measures

were taken by governments in order to reduce the disease

spread, such as obligatory indoor mask wearing, social

distancing, quarantine, self-isolation, limiting citizens’

movement within country boarders and abroad, often together

with prohibition and cancellation of huge public events and

gatherings [10]. Despite the fact that the pandemic seemed

weaker at some points, most of safety regulations are still

applied due to unstable situation. From workplace behavior to

social relations, sport and entertainment, coronavirus disease

Nenad Petrović is with the Faculty of Electronic Engineering, University

of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
nenad.petrovic@elfak.ni.ac.rs).

Đorđe Kocić is with the Faculty of Electronic Engineering, University of

Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
seriousdjoka@gmail.com).

poses many changes to our everyday routine, habits and

activities.

In this paper, cost-effective IoT-based system aiming to

help organizations respect the COVID-19 safety rules and

guidelines in order to reduce the disease spread is presented.

We focus on most common indoor measures - people with

high body temperature should stay at home, wearing mask is

obligatory and distance between persons should be at least

1.5-2 meters. For the first scenario, Arduino Uno

microcontroller1 board with contactless temperature sensor is

used, while we rely on Raspberry Pi2 single-board computer

equipped with camera making use of computer vision

techniques for other two scenarios. We decided to use these

devices due to their small size and affordability.

II. BACKGROUND

A. OpenCV

Python version of OpenCV [11], open-source computer

vision library was used for implementation of mask detection

and social distance check algorithms. We decide to use it, as it

was approved for usage with older Raspberry Pi devices [12].

Face and body detection algorithms rely on the existing

OpenCV implementation of Viola-Jones object detection

framework based on Haar feature cascades [13]. It is a

machine learning approach where cascade function is trained

from a large set of positive and negative images. After that,

this function is used to detect objects in new images. OpenCV

comes with both trainer and detector. However, OpenCV

offers pre-defined classifiers for detection of commonly used

objects, such as human face, whole body, body and face parts

(both front and back for some of them). Therefore, in this

paper, we leverage the existing classifiers provided by

OpenCV library, as they were enough to cover satisfy the

needs of the implemented solution.

In [12], face detector provided by OpenCV library was used

for control of multimedia reproduction systems based on

Raspberry Pi devices within museums and cultural heritage

sites, showing acceptable performance, even in real-time use

cases.

B. MQTT

In this paper, MQTT (Message Queuing Telemetry

Transport)3 was used for machine-to-machine communication

between the involved devices - Raspberry Pi, Arduino, Edge

1 https://store.arduino.cc/arduino-uno-rev3
2 https://www.raspberrypi.org/
3 http://mqtt.org/

IoT-based System for COVID-19 Indoor Safety

Monitoring

Nenad Petrović and Đorđe Kocić

RTI 3.1.1

https://store.arduino.cc/arduino-uno-rev3
https://www.raspberrypi.org/
http://mqtt.org/

servers and smartphones. It is a lightweight, publish-subscribe

messaging protocol on top of TCP/IP. MQTT is designed for

use cases where small code footprint is desired or network

bandwidth is limited, which is suitable for IoT solution

leveraging low-power computing devices presented in this

paper. Moreover, publish-subscribe messaging mechanism

requires a message broker. For that purpose, we use a Node.js

MQTT broker implementation within Node-RED4 deployed

on a server residing within the Edge. For IoT devices,

corresponding MQTT client libraries were used –

PubSubClient5 for Arduino, Paho-MQTT6 for Raspberry Pi

and Paho Android Service7 for smartphones. The devices

measuring body temperature, detecting masks and social

distancing send MQTT messages to Edge servers in cases

when a person does not satisfy conditions to pass some of the

safety check steps. Furthermore, the Edge server processes the

received messages and forwards them to corresponding

security workers to notify them about breaking of COVID-19

safety rules. Each message is sent in a form of JSON-encoded

string.

C. Semantic knowledge representation

The role of semantic technology is to enable encoding the

meaning of data separately from the content itself and related

applications, which provides the ability to understand data,

exchange its understanding and perform reasoning on top of it

[14]. In this case, the formalization of knowledge is done in a

form that is understandable for both humans and machines.

Within the semantic knowledge bases, the data is represented

with respect to ontologies.

In IoT systems, ontologies are often used to achieve

interoperability and integrate data coming from heterogeneous

devices and their sensors in order to enable their control in

unified way [15]. For example, in [16], we introduced Smart

Grid Response Ontology to enable reasoning about the events

that occurred within the IoT-based system for smart grid

monitoring and generate adequate response in a particular

context. In this paper, we adopt similar approach to semantic

representation in context of COVID-19 safety monitoring, but

extend it with the elements of spatial reasoning.

III. RELATED WORK

 There are several existing works that contain some of the

elements relevant to the work presented in this paper.

However, to the best of our knowledge, there is no such

solution covering all these aspects together to achieve this

goal while allowing execution on low-cost IoT devices at the

same time.

In [17], a dataset for masked face recognition is introduced

and its application by different algorithms in context of

campus and enterprise coronavirus prevention discussed.

Moreover, in [18], a high-accuracy method for facial mask

detection using semantic segmentation based on fully

4 https://nodered.org/
5 https://github.com/knolleary/pubsubclient
6 https://pypi.org/project/paho-mqtt/
7 https://github.com/eclipse/paho.mqtt.android

convolutional networks, gradient descent and binomial cross

entropy was presented. However, performance-wise, it is too

heavy for low-power IoT devices, such as Raspberry Pi. On

the other side, in [19], a state model-based solution for face

mask detection relying on Viola-Jones algorithm in context of

ATM center security was described.

When it comes to temperature sensing, there are several

variants of Arduino-based solutions. In [20], Arduino was

used for real-time temperature visualization using MATLAB.

However, the used sensor does not allow contactless

temperature sensing. Moreover, in [21], a similar system

incorporating the usage of smartphones for remote

temperature monitoring using Arduino Uno was presented.

The system architecture presented in this paper is inspired

by our previous work on remote smart grid monitoring

anomaly, power consumption monitoring and relay protection

using IoT devices (smartphones and Arduino Uno) [16] and

video surveillance system relying on Raspberry Pi single-

board computers and Edge servers [22]. Our main goal is to

provide a comprehensive solution for COVID-19 safety

monitoring which relies on IoT devices as much as possible in

order to be affordable at the same time.

IV. IMPLEMENTATION

A. System overview

Our solution consists of the following subsystems: 1)

temperature measurement subsystem based on Arduino Uno

2) computer vision subsystem for mask detection and social

distancing check based on Raspberry Pi 3) server side 4)

smartphone application for security guards.

First, all people that try to the enter building have to pass

contactless temperature check. For that purpose, we rely on

Arduino Uno equipped with infrared thermometer (such as

MLX906148) or thermal camera sensor (AMG88339 for

example). Moreover, it uses ESP8266 WiFi module for

communication with Edge servers using MQTT protocol. In

case that person has body temperature higher than normal, the

door is locked and MQTT message sent to server, containing

both the temperature value and location where it was

recorded. Server receives this message, parses it and forwards

to smartphone application used by security guards, so they can

arrive to make sure that person does not try to enter the

building further. Otherwise, if passenger’s temperature is

normal, Arduino will send signal to open the door.

After that, passengers proceed to next step of checking –

mask detection. For this task, computer vision subsystem

based on Raspberry Pi single-board computer equipped with

camera module version 110 revision 3 was used. In case that

passenger does not wear mask or it does not cover nose,

security guards will be informed via MQTT message, so they

can provide a mask or warn that person to leave. Otherwise, if

8https://maker.pro/arduino/projects/build-an-infrared-thermometer-

arduino-and-mlx90614
9https://learn.adafruit.com/adafruit-amg8833-8x8-thermal-camera-

sensor/arduino-wiring-test
10 https://www.raspberrypi.org/documentation/hardware/camera/

RTI 3.1.2

https://nodered.org/
https://github.com/knolleary/pubsubclient
https://pypi.org/project/paho-mqtt/
https://github.com/eclipse/paho.mqtt.android
https://maker.pro/arduino/projects/build-an-infrared-thermometer-arduino-and-mlx90614
https://maker.pro/arduino/projects/build-an-infrared-thermometer-arduino-and-mlx90614
https://learn.adafruit.com/adafruit-amg8833-8x8-thermal-camera-sensor/arduino-wiring-test
https://learn.adafruit.com/adafruit-amg8833-8x8-thermal-camera-sensor/arduino-wiring-test
https://www.raspberrypi.org/documentation/hardware/camera/

the person that is being checked wears mask, the door will be

opened. Furthermore, once they enter the building, Raspberry

Pi devices check whether social distancing is applied properly

or not at given locations. In a similar way, MQTT message

will be sent to inform the security guards when social

distancing is not applied properly in some of the rooms.

On the server side, the MQTT broker and semantic triple

store are deployed, while message processing, event logging,

reasoning and message forwarding are done. Edge servers

receive messages, perform their semantic annotation and

reasoning to find the right security guard that will be notified.

A simple Android mobile application used by security guards

receives MQTT messages from server side and visualizes the

data about rule violation and location where it occurred within

the building. In Fig. 1, an overview of the proposed IoT-based

solution that aims to ensure that COVID-19 safety guidelines

are applied properly indoors is given.

Fig. 1. COVID-19 indoor safety IoT system overview: 1-Passenger arrival 2-
Temperature value 3-Door open/close signal 4-MQTT message warning that

someone has higher body temperature than average 5-Wears mask/doesn’t

wear mask 6-Social distancing satisfied/not satisfied 7-MQTT warning
message telling that person without mask tries to enter 8-MQTT warning

message that passengers do not respect social distance measures 9-MQTT

notification messages sent to security worker’s smartphone about people
breaking COVID-19 safety measures at various building rooms.

B. Mask detection algorithm

For implementation of mask detection algorithm, we rely

on three OpenCV library classifiers11: 1)

haarcascade_frontalface_default – which is used for detection

of human face from frontal side 2) haarcascade_mcs_mouth –

recognizes human mouth within the provided image 3)

haarcascade_mcs_nose – to detect nose. For each frame

coming from camera stream, the procedure given in Listing 1

is executed.

11 https://github.com/opencv/opencv/tree/master/data/haarcascades

Listing 1. Pseudo-code of mask detection algorithm.

First, the camera frame is converted to a gray scale image

which is used for face detection, as it required by the

OpenCV’s Haar cascade classifier. Moreover, additional black

and white version of camera frame is also created as a new

copy. It was empirically noticed that in most cases of person

wearing a white mask, OpenCV classifier cannot identify the

face correctly if gray scale image is used, but performs better

with black and white images instead.

After that, face detection is performed against both images.

In case that array length of detected faces is 0 in both cases,

then it is assumed that there isn’t any human present within

the camera’s view. Otherwise, if a face was detected, mouth

and nose detection are further applied to the corresponding

camera frame version. In case that image does not contain

mouth and nose, it means that person wears mask properly

and corresponding door will be opened. However, if mouth is

detected and its coordinates are within the area of the detected

face, then the person is warned that mask is needed in order to

proceed. If nose is detected within face area, then the person is

warned to put the mask properly (covering nose). The

algorithm is working in both single- or multi- person mode. In

single-person mode, it is assumed that people pass one by one

Input: image

Output: label

Steps:

1. gray_image = ConvertToGray(image);

2. bw_image = ConvertToBw(gray_image);

3. faces = DetectFaces(gray_image);
4. faces_bw = DetectFaces(bw_image);

5. if(faces.length==0 and faces_bw.length==0)

6. label = ”No face found!”
7. else

8. if(faces_length==0 and faces_bw.length>0)

9. mouths = DetectMouth(bw_image);
10. noses = DetectNose(bw_image);

11. else

12. mouths = DetectMouth(gray_image);
13. noses = DetectNose(gray_image);

14. end if;

15. if(mouths.length==0 && noses.length==0)

16. label = “Thank you!”

17. OpenDoor();

18. else
19. for each m in mouths

20. for each f in faces

21. if(m.y> y and m.y<f.y+f.h and m.x>x and m.x<f.x+f.w)
22. label = “Please put mask on!”;

23. sendMQTT(“no mask”, “location name”);

24. end if;
25. end for;

26. end for;

27. for each n in noses
28. for each f in faces

29. if(n.y> y and n.y<f.y+f.h and n.x>x and n.x<f.x+f.w)

30. label = “Please put mask over nose!”;
31. sendMQTT(“improper mask”, “location name”);

32. end if;

33. end for;
34. end for;

35. end if;

36. end if;
37. return label;

38. end.

Social distancing check

Raspberry Pi

Arduino Uno

Passengers

Mask detection

1.5m

COMPUTER VISION SUBSYSTEM

TEMPERATURE MEASUREMENT SUBSYSTEM SERVER SIDE
1

3

Entrance door

4

5

6

7

2

MOBILE APP

Security

9

8

Edge servers

RTI 3.1.3

https://github.com/opencv/opencv/tree/master/data/haarcascades

near the mask detection system’s camera. In case of multi-

person mode, the check whether mouth and nose coordinates

lie inside a face is done for each pair of face-mouth and face-

nose pair, as more than one person can be allowed to pass near

camera at once. In Fig. 2, a screenshot of successful mask

detection on Raspberry Pi model 2B is given.

Fig. 2. Mask detection on Raspberry Pi 2B.

C. Social distancing check algorithm

When it comes to social distancing check algorithm, it

leverages OpenCV’s haarcascade_fullbody classifier for

human body detection within the captured image. In Listing 2,

the previously described algorithm for social distancing check

based on computer vision is given.

Listing 2. Pseudo-code of social distancing check algorithm.

In a similar way as mask detection algorithm, each camera

frame is converted to a gray scale image. Furthermore, body

detection is applied. If more than one human body is detected,

the distance between each two persons is calculated and

compared against a given threshold distance thresholdd, given

in meters. However, all distances should be normalized

depending on the camera characteristics and object position

before comparison. The mapping of pixels to real world

distances in meters is performed with respect to formula [23]:

image dimension object dimension

focal length distance to object
= (1)

If the distance between each two bodies is greater or equal

to thresholdd, then social distancing is applied correctly in a

given scenario. Otherwise, if this condition does not hold for

at least one pair of bodies, then the message will be sent to the

server and security operator notified. Fig. 3 shows the

screenshot of social distance check application.

Fig. 3. The authors testing the social distancing check algorithm for

thresholdd=1m.

D. Temperature measurement

In Listing 3, an excerpt of code running on Arduino is

given.

Listing 3. Excerpt from temperature measurement code run on Arduino Uno
positioned at faculty building entrance.

The temperature measurement subsystem based on Arduino

Uno measures passenger’s temperature using contactless IR

sensor. The passengers pass one by one. In case that

passenger’s temperature exceeds average human body (37

°C), then Arduino Uno generates signal to lock the door in

order to prevent the person from entering the building and

sends MQTT message which tells that person with high body

temperature was detected at a certain location. Otherwise, the

door is opened to let the person in.

E. COVID-19 Indoor Safety Monitoring Ontology

The highest-level concept in this ontology is Monitoring

System. It consists of heterogeneous Devices, such as

Raspberry Pi, Arduino Uno and conventional laptop. Each

device is equipped with different sensors and is able to detect

Input: image, thresholdd

Output: label
Steps:

1. gray_image=ConvertToGray(image);

2. bodies=DetectFaces(gray_image);
3. if(bodies.length≤1)

4. text=”Not enough people for check!”

5. else
6. for each b1 in bodies

7. for each b2 in bodies
8. d=sqrt((b1.x-b2.x)2 +(b1.y-b2.y)2);

9. dm=ConvertPixelsToMeters(d);

10. if(b1 ≠ b2 and dm< thresholdd)

11. label=“Social distancing not applied!”;

12. sendMQTT(“social distancing alert”, “location name”);

13. end if;
14. end if;

15. return label;

16. end.

void loop() {

 temp = sensor.readCelsius();

 if (temp > 37) {

digitalWrite(13, HIGH);

snprintf (msg, 100, "Temperature:#%ld;

location:faculty entrance", temp);

client.publish("tempTopic", msg);

 }

 else {

digitalWrite(13, LOW);

 }

}

RTI 3.1.4

different types of safety rule Violations. Several types of

safety rule violations are considered: Social Distancing, No

Mask and High Temperature. In case that some violation

occurs, then the corresponding Action is taken as a response,

such as closing Door or notifying Security Guard. For both

the physical objects (Device, Door, Security Guard) and

Violation events, the Room where it resides or occurs is

relevant. Each Room is located on a Floor. This way, it is

enabled to find the available Security Guard from the same

Floor where Violation occurred and send him/her notification.

Otherwise, the first guard that is available is selected. In Fig.

4, an excerpt from the described ontology is given.

Fig. 4. An excerpt from COVID-19 Indoor Safety Monitoring Ontology.

In Listing 4., an example of SPARQL query for simple

location matching in case of Violation of a type Social

Distancing violation leveraging Floor is given.
PREFIX cismo: http://www.example.com/CISMO/

SELECT ?sg

WHERE {

 GRAPH <http://www.example.com/example1> {

 ?sg cismo:locatedAt ?r1.

 ?v cismo:locatedAt ?r2.

 ?v rdf:Type cismo:SocialDistancing.

 ?r1 cismo:onFloor ?f1.

 ?r2 cismo:onFloor ?f2.

 ?sq cismo:isAvailable 1.

 FILTER(?f1=?f2)

 }

}

Listing 4. SPARQL query for finding the security guard from the same floor
where social distancing violation occurred.

V. EXPERIMENTS AND EVALUATION RESULTS

For evaluation, the following, the following devices were

used: a laptop equipped with Intel i7 7700-HQ quad-core

CPU running at 2.80 GHz with 16GB of DDR4 RAM and

1TB HDD acting as Edge server, Raspberry Pi 2B (RPi 2B),

Raspberry Pi 3 (RPi 3) and Arduino Uno Rev. 3 with both IR

sensor and thermal camera. In Table I, the results of

performance evaluation for various scenarios, devices and

settings are given. The first column denotes the name of the

scenario (mask detection, distance check, contactless

temperature measurement). The second column shows the

hardware configuration used in the experiment. Moreover, the

third column is the frame size expressed as number of

horizontal multiplied by vertical pixels. Furthermore, the next

column shows performance results achieved for given

configuration expressed as number of processed frames (fps)

or measurements per second (mps). Finally, the last column

represents the accuracy achieved for the observed scenario. It

is expressed as average percentage of successfully detected

cases for mask detection and social distancing, while in case

of temperature measurement it is average measurement error

for corresponding sensor.
TABLE I

EVALUATION RESULTS

Considering the results shown in Table I, it can be

concluded that RPi 3 has better performance than RPi 2B. It

can be explained by the fact that RPi 3 utilizes newer quad-

core ARM Cortex-A53 running at 1200 MHz then RPi 2B’s

900 MHz ARM Cortex-A7. However, they both have only

1GB of RAM and their performance is still much behind the

laptop. For lower resolutions, all devices show better

performance, as expected.

Comparing the mask detection and social distancing check

performance, we see that the second is faster as it only uses

one classifier (full body), while mask detection uses three of

them (face, nose and mouth). In all social distancing check

experiments, the performance for two persons was evaluated,

while it is expected to reduce as the number of people within

the camera view increases. The performance of distancing

check varies together with distance of objects from camera, as

it changes with respect to initially calculated ratio between

pixels and meters. The accuracy of both computer vision

scenarios increases with resolution, but the cost is paid with

performance decrease. Despite the acceptable accuracy of

mask detection algorithm, it is not designed to detect

transparent masks and face shields, which is a potential

drawback.

On the other side, regarding the contactless temperature

measurement, we can see that thermal camera is less accurate

more demanding for computation, as it includes 64

measurements (8x8 matrix). However, its main advantage

over IR sensor is the ability to measure the temperature of

several persons at once, but requires additional data

processing.

Finally, when it comes to time needed to find the

Scenario Device Frame

size

[W x H]

Frame

rate

[fps/mps]

Accuracy

Mask

detection

RPi 2B

640x480 0.48 84-91%

 320x240 1.71

RPi 3 640x480 0.76

320x240 2.83

Laptop

640x480 11.94

320x240 38.46

Distancing

check

RPi 2B 640x480 0.72 65-73%

320x240 2.65

RPi 3 640x480 1.12

320x240 4.29

Laptop 640x480 16.77

320x240 61.17

Temperature

sensing

IR
(MLX90614)

1 8 0.5°C

Thermal

camera
(AMG8833)

8x8 2 2.5°C

Device

Violation

Action

hasDetected

domain
range

triggersResponse

domain

range

Social distancingNo Mask

subClassOf
subClassOf

locatedAt

Room

domainrange

occursAt
domain

range

executedBy

domain

range

High Temperature

subClassOf

Monitoring System

containsDevice

domain

range

canDetect domainrange

Notify Guard Close Door

Security

Guard

domain

domain

Arduino Uno

Raspberry Pi

subClassOf

subClassOf

subClassOf

subClassOf

LaptopsubClassOf
Door

domain

onFloor

domain

range

Timestamp

isAvailable

domain
Availability

range

Floor

RTI 3.1.5

appropriate security guard and generate MQTT message, in all

the experiments, it does not exceed 1 second.

VI. CONCLUSION AND FUTURE WORK

According to the achieved results, the proposed solution is

usable for its purpose under certain performance limitations

(such as number of processed frames or measurements per

second). Moreover, it relies on both open hardware and free

software, being definite and desirable advantage for such

systems.

In future, it is planned to experiment with various deep

learning and computer vision frameworks for object detection

on Raspberry Pi in order to achieve higher framerate.

Moreover, we would like to extend this solution with

environment sensing mechanisms for adaptive building air

conditioning and ventilation airborne protection in order to

reduce the spread of coronavirus indoors [4, 8, 24], especially

during summer. Furthermore, we will consider the

implementation of mechanisms for transparent face shield

detection. Finally, the ultimate goal is to integrate the system

presented in this paper with our framework for efficient

resource planning during pandemic crisis [25] in order to

enable efficient security personnel scheduling and mask

allocation, together with risk assessment based on statistics

about respecting the safety guidelines and air quality.

ACKNOWLEDGMENT

This work has been supported by the Ministry of Education,

Science and Technological Development of the Republic of

Serbia.

REFERENCES

[1] Coronavirus Update (Live) [online]. Available on:
https://www.worldometers.info/coronavirus/, last accessed: 11/07/2020.

[2] P. Zhai et al., “The epidemiology, diagnosis and treatment of COVID-

19”, International Journal of Antimicrobial Agents vol. 55 issue 5, May
2020, 105955, pp. 1-13, 2020.

https://doi.org/10.1016/j.ijantimicag.2020.105955

[3] P. Dawson et al., “Loss of Taste and Smell as Distinguishing Symptoms
of COVID-19”, Clinical Infectious Diseases June 2020, pp. 1-4, 2020.

https://doi.org/10.1093/cid/ciaa799

[4] L. Morawska, “How can airborne transmission of COVID-19 indoors be
minimised?”, Environment International vol. 142, September 2020,

105832, pp. 1-7, 2020. https://doi.org/10.1016/j.envint.2020.105832

[5] T. Galbadage, B. Peterson, R. Gunasekera, “Does COVID-19 Spread
Through Droplets Alone?”, Frontiers in Public Health, vol. 8, April

2020, pp. 1-4, 2020. https://doi.org/10.3389/fpubh.2020.00163

[6] Coronavirus Incubation Period [online]. Available on:
https://www.worldometers.info/coronavirus/coronavirus-

incubationperiod/ , last accessed: 11/07/2020.

[7] D. Oran, E. Topol, Prevalence of Asymptomatic SARS-CoV-2

Infection: A Narrative Review, Annals of Internal Medicine, June 2020,

pp. 1-7, 2020. https://doi.org/10.7326/M20-3012

[8] T. Dbouk, D. Drikakis, “On respiratory droplets and face masks”,

Physics of Fluids 32, 063303, pp. 1-11, 2020.
https://doi.org/10.1063/5.0015044

[9] Y. Song et al., “COVID-19 Treatment: Close to a Cure? – A Rapid

Review of Pharmacotherapies for the Novel Coronavirus” [preprint], pp.
1-25, 2020. https://doi.org/10.20944/preprints202003.0378.v1

[10] V. Balachandar et al., “COVID-19: emerging protective measures”,

European Review for Medical and Pharmacological Sciences vol. 24
(6), pp. 3422-3425, 2020.

https://doi.org/10.26355/eurrev_202003_20713

[11] Open Computer Vision [Online]. Available on: https://opencv.org/ , last
accessed: 07/07/2020.

[12] N. Petrović, “Upravljanje multimedijalnim sistemom pomoću algoritma

za detekciju lica na Raspberry PI arhitekturi u realnom vremenu”,
IEEESTEC – 8th Student Projects Conference, Niš, Serbia, pp. 21-24,

2015.

[13] P. Viola, M. Jones, “Rapid Object Detection using a Boosted Cascade of
Simple Features”, 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pp. 511-518, 2001.

[14] J. Davies, R. Studer and P. Warren, Semantic Web Technologies: Trends
and Research in Ontology‐based Systems, John Wiley & Sons, 2006.

[15] A. Venceslau et al., “IoT Semantic Interoperability: A Systematic

Mapping Study”, ICEIS 2019, pp. 535-544, 2019.
https://doi.org/10.5220/0007732605350544

[16] N. Petrović, Đ. Kocić, “Data-driven Framework for Energy-Efficient

Smart Cities”, Serbian Journal of Electrical Engineering, Vol. 17, No. 1,
Feb. 2020, pp. 41-63. https://doi.org/10.2298/SJEE2001041P

[17] Z. Wang et al., “Masked Face Recognition Dataset and Application”

[preprint], pp. 1-3, 2020. https://arxiv.org/pdf/2003.09093.pdf
[18] T. Meenpal, A. Balakrishnan, A. Verma, “Facial Mask Detection using

Semantic Segmentation”, 2019 4th International Conference on

Computing, Communications and Security (ICCCS), pp. 1-5, 2020.

https://doi.org/10.1109/CCCS.2019.8888092

[19] M. Kavitha, S. M. M. Roomi, K. Priya, K. B. Devi, “State model based

face mask detection”, International Journal of Engineering &
Technology, 7 (2.22), pp. 35-38, 2018.

[20] R. Biswas, A. Roy, “Real Time Temperature Graph using MATLAB

and Arduino”, International Journal of Engineering Research &
Technology (IJERT) vol. 9 issue 5, pp. 624-625, 2020.

https://doi.org/10.17577/IJERTV9IS050482

[21] M. J. Pramila, P. S. Shewta, “Wireless Temperature detector System
using ARDUINO and IOT”, International Journal of Computer Trends

and Technology (IJCTT) vol. 67 issue 11, pp. 82-83, 2019.

https://doi.org/10.14445/22312803/IJCTT-V67I11P113
[22] N. Petrovic, “Surveillance System Based on Semantic Video and Audio

Annotation Leveraging the Computing Power within the Edge”, XIV

International SAUM 2018, pp. 281-284, 2018.
[23] How to calculate meters per pixel for a given camera? [online].

Available on:
https://engineering.stackexchange.com/questions/32892/how-to-

calculate-meters-per-pixel-for-a-given-camera, last accessed:

11/07/2020.
[24] R. V. Gomeseria, “Building Services Design to Prevent the Spread of

COVID19”, pp. 1-18, 2020. https://doi.org/10.17605/OSF.IO/BQM2F

[25] N. Petrovic, Dj. Kocic, “Framework for Efficient Resource Planning in
Pandemic Crisis”, CIIT 2020, pp. 1-6, 2020.

RTI 3.1.6

https://www.worldometers.info/coronavirus/
https://doi.org/10.1016/j.ijantimicag.2020.105955
https://doi.org/10.1093/cid/ciaa799
https://doi.org/10.1016/j.envint.2020.105832
https://doi.org/10.3389/fpubh.2020.00163
https://www.worldometers.info/coronavirus/coronavirus-incubationperiod/
https://www.worldometers.info/coronavirus/coronavirus-incubationperiod/
https://doi.org/10.7326/M20-3012
https://doi.org/10.1063/5.0015044
https://doi.org/10.20944/preprints202003.0378.v1
https://doi.org/10.26355/eurrev_202003_20713
https://opencv.org/
https://doi.org/10.5220/0007732605350544
https://doi.org/10.2298/SJEE2001041P
https://arxiv.org/pdf/2003.09093.pdf
https://doi.org/10.1109/CCCS.2019.8888092
https://doi.org/10.17577/IJERTV9IS050482
https://doi.org/10.14445/22312803/IJCTT-V67I11P113
https://engineering.stackexchange.com/questions/32892/how-to-calculate-meters-per-pixel-for-a-given-camera
https://engineering.stackexchange.com/questions/32892/how-to-calculate-meters-per-pixel-for-a-given-camera
https://doi.org/10.17605/OSF.IO/BQM2F

