



Abstract—This paper presents a technique for optical

character recognition of machine-written Serbian Cyrillic text

based on deep Convolutional Neural Networks. The described

OCR system makes use of distinct preprocessing, character

segmentation and character classification modules. For

preprocessing, an adaptive gaussian threshold was used, while

character segmentation used horizontal and vertical projection

as well as connected component analysis. The classifier itself is a

deep convolutional neural network. The entire system gave good

results, with scanned documents yielding strings with a

Levenshtein distance of less than 1% of the string length to the

actual value present on the image.

Index Terms—Optical Character Recognition; Neural

Networks; Artificial Intelligence; Computer Vision; Image

Processing

I. INTRODUCTION

The oldest and most widespread mediums humans have

used historically for storing information are visual mediums.

As evidenced by a multitude of prehistoric cave paintings and

ancient texts, humans have expressed their ideas, histories,

and experiences in visual form since the dawn of humanity

itself. Computer vision attempts to replicate the success of the

human brain in recognizing optical patterns in order to

decipher their meaning.

Optical character recognition, which in the modern context

can be considered a subfield of computer vision, traces its

roots to the first half of the 20th century, when the public was

first introduced to practical machines capable of using optical

signals as inputs. These machines, such as the Optophone [1],

designed by Irish inventor Edmund Fournier d'Albe, were

primarily created as aides for the visually impaired, thus

allowing blind people to read regular print by producing a

white noise of differing pitch.

In the post-war world of the second half of the 20th century,

the market experienced a huge surge in both the availability

and demand of consumer digital electronics. With the growing

sophistication and power of these devices, as evidenced by

Moore’s law, the need to properly digitize “legacy” stores of

information, such as books, newspapers, and letters, arose. In

Jovan Vještica is a student of Masters Studies at the Faculty of Electronic

Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia

(e-mail: jovan.vjestica@elfak.rs).

Teodora Đorđević is with the Faculty of Electronic Engineering, University

of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

teodora.djordjevic@elfak.ni.ac.rs).

Suzana Stojković is with the Faculty of Electronic Engineering, University

of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

suzana.stojkovic@elfak.ni.ac.rs).

order to improve the searchability and usability of these

document stores, OCR techniques have been developed and

applied in order to translate matrices of pixels into arrays of

characters.

This paper presents a technique developed to analyze

scanned documents written in the Serbian variant of the

Cyrillic script. The approach that was developed contains

following phases:

 image binarization by using an adaptive gaussian threshold,

 image rotation so that the text is parallel to the lower edge

of the image,

 extracting the regions containing individual character based

on connected component analysis and

 classification of image contents with a deep convolutional

neural network.

II. RELATED WORK

Optical character recognition is a branch of computer vision

that concerns itself with developing approaches to

transforming a picture into characters. Typically, this process

is broken up into multiple phases, each feeding its output into

the input of the next [2]. At its most basic form, OCR involves

two steps – generating rectangular regions which contain text

and character extraction from those regions. This processing

pipeline is often augmented in real applications by adding

various preprocessing steps, mostly in the form of various

filters. Postprocessing is also typically employed, primarily to

increase the accuracy of the system for complex languages.

A. Binarization

Image binarization is one of the most important steps to

consider when creating an OCR model. Image binarization

attempts to map a matrix of pixels into a matrix of ones and

zeros, with the intention of accentuating different structural

components of individual letters by segmenting them from

neighboring characters. The simplest approach of binarization

is applying a fixed global threshold, but this approach

typically gives poor results. Otsu’s method [3] is vastly more

popular and is widely used in OCR applications before and

during text segmentation. Otsu’s method determines a global

threshold value that minimizes the foreground-background-

class variances, which ensures good results when the image

histogram has two distinct peaks. A new, iterative method

based on Otsu’s method has been proposed, which classifies

pixels into three classes – foreground, background and to-be-

determined, where the latter class is iteratively distributed into

the foreground and background, respectively [3].

SerbOCR - Optical Character Recognizer of the

Serbian Cyrillic Alphabet

Jovan Vještica, Teodora Đorđević, Suzana Stojković, University of Niš, Faculty of Electronic

Engineering

RTI 4.2.1

By applying an adaptive approach, not only was the pixel

that is being processed taken into account, but also its

immediate surroundings. The value being processed is either

the mean value of the surrounding pixels or a gaussian-

weighted sum [4].

A neural network-based approach has been proposed in [5]

which uses the form of the histogram as well as a priori

knowledge about the image as inputs to the general regression

neural network that produces the final output.

B. Character segmentation

Character segmentation yields the locations of different

characters presented on the image. Depending on the type of

image being analyzed, different approaches may need to be

applied. Identifying segmenting lines is important in document

analysis, since it allows more efficient text segmentation. The

most often used approach for line segmentation is horizontal

projection, where different valleys indicate line breaks, typically

represented as new line characters in documents. By analogy, an

individual line segment can be split into word segments by

applying vertical segmentation. The simplest and most direct
approach to character segmentation is connected component

analysis which can give satisfactory results when applied to

preprocessed scanned documents [6]. Holistic methods exist

which attempt to recognize words in their entirety thus evading

the need for per-character segmentations [7].

C. Character classification

After properly segmenting the image, the final step is to apply

the classification algorithm. Fundamentally, the goal of this step

is to assign a class label based on an input matrix of fixed

dimensions, where each class corresponds to each of the

identifiable characters. Several methods can be applied here,

including methods based on matrix-matching, feature

engineering and neural networks [2]. A method based on neural

network committees, which employ 7 different neural networks,

has been applied very successfully to the MNIST dataset [8].

Additionally, there is no need to explicitly assign labels to

characters – instead, a clustering algorithm may be applied to
identify the different clusters, where each cluster represents a

character. After postprocessing and human verification, the user

can assign an explicit label in the form of an ASCII character to

the cluster [9].

III. IMAGE PREPROCESSING AND CHARACTER SEGMENTATION

Since this paper deals with machine written documents that

were scanned by a scanner, two key assumptions could be

made – namely that all of the text lines present in the image

were typed out at the same angle (this means that all the lines

in the image were parallel) and that the lighting was

consistent. The scanner itself, as well as the printing process

of the document, can add noise to the scanned document. To

denoise the image, preprocessing steps of edge extraction and

thresholding are applied. Edge extraction is applied to remove

the effects of background color and to better segment the

individual characters [10]. The standard Canny edge detector

from the OpenCV library is used, as it gave satisfactory

results. The resulting edges are cleaned up and binarized by

applying a global thresholding operation with a gaussian

valued window.

After denoising the image, skew correction is applied.

Skew correction is, in essence, a rotation of the image such

that the text present on the rotated image spans horizontally

instead of at an angle [11]. Since the image has been properly

denoised and binarized, this is achieved by computing the

minimal rotated rectangle that contains colored pixels. Next,

an approach based on horizontal and vertical line projections

is adopted to extract the different regions of interest that

contain potential characters, while also applying connected

component analysis to ensure that no characters are split.

To extract the regions containing characters, a horizontal

projection to identify the text lines is applied. The begging of

each line is denoted as a sharp decrease in the median value of

the pixels along the scan line, while the end of a line is

denoted as a sharp increase in the value. Similarly, the same

method of splitting vertically in order to isolate individual

characters can be applied. Since machine-written Serbian does

not contain any ligatures nor does it contain any pair of letters

that are connected, this approach works well. A potential

problem that can arise in this phase of processing is the

splitting of individual characters. To combat this, a variant of

connected component analysis is applied by disallowing a

vertical line to split a region if there are any colored pixels

that have neighboring colored pixels in the next column.

Additionally, once more a horizontal projection is applied on

the newly extracted window. This is because lines will

typically contain both capital and regular letters, which have

varying heights. By choosing a fixed height for the entire line

being analyzed, all regular letters would end up having a large

blank upper portion, which would convey no information to

the classifier later. Moreover, even regular letters in Serbian

Cyrillic come in vastly different heights (for instance а and ђ),

which becomes very evident in certain fonts.

As the last step in character extraction, the defined region is

resized to a fixed 32 x 32 resolution. This is mandatory since

the classifier can only classify 32 x 32 tensors. The resizing

algorithm applied is based on bilinear interpolation, which is

one of the commonly used algorithms for image resizing [12].

IV. CHARACTER CLASSIFICATION IN SERBOCR

After extracting all the regions that contain characters,

classification is applied to transform the image, which is in

this stage a 32 x 32 binary matrix, into a character. Several

different classifier architectures were considered. Firstly, a

standard multi layer perceptron network was used for

classification, but it had severe drawbacks – namely, the loss

function was never optimized fully, or the network would

severely overfit, causing low precision on the testing data.

After this, a shallow but wide convolutional network was

considered, which gave acceptable results. Ultimately, a

deeper network gave the best results. This architecture has
found wide applications in image classification [13].

Before training the classifier, a dataset needed to be

constructed. By applying the document segmentation

algorithm, as described earlier, it was possible to isolate the

individual characters present on the images that comprised the

dataset. This ensured that both the format and position of the

RTI 4.2.2

individual character in the region would be similar to what the

classifier would encounter in a production environment, as

well as having the added benefit of preserving the noise

present on the initial image. This region was then classified

using Tesseract, an open source OCR solution [14]. Based on

the results of this classification process, the image was then

stored onto the disk in the directory corresponding with the

given class. In total 82 distinct classes were used,
corresponding to the digits 0-9, all of the letters of the Serbian

alphabet in both their regular and capital variants, as well as

several special characters, such as parentheses, the

exclamation mark, the question mark, and others. To increase

the robustness of the classifier, all of the images in the dataset

had a salt-and-pepper noise applied to them. This additional

noise was meant to force the classifier to actually extract

meaningful features from the images being analyzed. Taking

into account the statistical properties of natural languages, it

was expected that certain classes would be heavily favored,

while others would conversely be neglected. Some classes,

such as the vowels, were overrepresented in the dataset, while
others were almost entirely absent. To combat this, data

augmentation was applied to the underrepresented classes,

such as applying paddings, slight stretches or small rotations

and randomly cropping the resulting image to bring it to the

needed size [15]. Each augmented data point used its own salt

and pepper noise. Since the overrepresented classes had

certain data points that were virtually identical to each other, a

random sampling of these classes was applied. This dataset

was then split into a training, testing and validation dataset,

with an 8:1:1 ratio. In total, approximately 50 000 data points

were used to train the classifier.
The most natural way of encoding the labels for the dataset

was using the categorical encoding strategy (one-hot

encoding). This approach unraveled the label column into 82

binary columns, where a value of 1 at index i denoted that the

data point was a member of class i. Naturally, the new label

vector can only feature a single 1 value, with the rest of the

values being zeroes.

The classifier itself is a feed forward deep convolutional

neural network. The network consists of four blocks, with an

additional global maximum pooling layer and a fully

connected layer at the end. Each neural network block

consists of a two-dimensional convolution layer, followed by

a batch normalization block. The entire network has been

implemented using the keras library for interacting with the

tensorflow backend.

The convolutional layers act as feature extractors, which

operate by applying a learned convolution kernel to the data

being processed. A standard square kernel with a dimension

of 3 was used. Each convolutional layer uses the rectified

linear unit activation function. By applying a padding

operation and setting the convolution stride to 2 in both

directions, a down sampling operation was applied by

reducing the dimensionality of data by a factor of two in each

dimension. Thus, there is no need to apply a maximum

pooling operation, although this is common.

Batch normalization is a technique that can be used in

convolutional neural networks to increase their training speed

and stability and is often used to regularize deep

convolutional models as a powerful alternative to the classic

dropout approach [16]. A batch normalization layer is applied

after each convolutional layer.

The penultimate layer in the neural network is a global

maximum pooling layer, which reduces the dimensionality of

the network to a single extracted feature vector. This vector

serves as the input to the final layer of the neural network,

which is a fully connected layer. This layer has 82 neurons,
each corresponding to a potential class. The activation

function of the final layer is the softmax activation function.

This ensures that the 82 output values of the network can be

interpreted as probabilities, specifically as the probability that

image being classified belongs to the class associated with the

neuron. The final value of the classification is inferred as the

most probable class.

For training purposes, a loss function needed to be defined.

Since at this stage this is essentially a multiclass classification

problem, a natural candidate for the loss function is the

categorical crossentropy function [17]. As the final

performance metric, the validation loss is chosen instead of
training loss, choosing to save the model version which

minimized the validation loss rather than the training loss.

V. EVALUATION

The implemented OCR solution was evaluated by using a

series of documents issued by the Council of the University of

Niš. These documents contained text with various formatting

options, such as bold letters, italic letters, letters of different

font size and letters of different fonts in general. In addition,

all the documents are written in the Cyrillic script.

A. Character segmentation

Character segmentation was the part of the pipeline that
introduced most errors. Typically, the errors were introduced

by character pairs, that when printed together had no space

between them and appeared as a single character. The most

represented pair that fits this description was ‘ст’. Also, the

errors were common with pairs: ‘гл’, ‘УЈ’, ‘Уј’, ‘ту’, ‘ут’,

‘уд’, etc.

TABLE I

CHARACTER SEGMENTATION

In Table I is shown the success of segmentation that was

achieved. On average the segmentation algorithm detected

less characters that were present. This was because of

implemented connected component analysis, which ensured

that a single character is never detected as many characters.
The average accuracy of the segmentation algorithm was

90%.

B. Classifier accuracy

The classifier achieved good accuracy on the train and

validation sets. The accuracy was over 96% on the validation

set. The accuracy on the test set was lower owing to the fact

that not all characters were equally present in the training set.

For instance, the letter ‘a’ was over a hundred times more

Paragraph Length
Estimated

length

Success of

segmentation

Paragraph1 228 202 88%

Paragraph2 169 154 91%

Paragraph3 351 322 92%

RTI 4.2.3

present than the letter ‘џ’. The classifier mainly produced

errors when it came to underrepresented letters and symbols

in the training set such as ‘џ’, ‘Ћ’, ‘Ж’, ‘ж’, ’;’. Since these

symbols are also statistically underrepresented in the Serbian

language the overall classifier accuracy was not lowered

substantially achieving a final accuracy of 95%.

C. Paragraph level analysis

The measure that was used to evaluate the performance of

the system is the Levenshtein distance. The Levenshtein

distance is a metric that measures how many edits need to be

applied to a certain string in order to transform it into a

different string [18]. A valid edit is considered an insertion,

deletion, or substitution.

The following table shows the Levenshtein distance in

relation to the string length on a per-paragraph basis for a

selected document. Seeing as the Levenshtein distance
depends primarily on distance, the following table displays

both the paragraph length, expressed as the number of

characters present in the paragraph, and the Levenshtein

distance between the detected content of the paragraph and the

actual content.
TABLE II

PER-PARAGRAPH LEVENSHTEIN DISTANCES

The first paragraph was very text dense, with not a small

number of whitespace characters and special symbols. The

second paragraph was structurally similar to the first,

containing mostly plain text. Paragraph 3 contained a high
number of punctuation characters. The fourth paragraph was

like the first two.

The deep CNN consistently outperformed the shallow

CNN, having on average fewer mistakes than the shallow

CNN in every paragraph used for analysis. This was

especially noticeable in examples 2 and 4, where the deep

CNN outperformed the shallow CNN by a factor of 2.5.

As can be seen, most of the errors were induced by special

symbols and whitespace characters. Special symbols were

severely underrepresented in the training dataset, and after

resizing, the classifier struggled to identify them correctly.

White space characters get detected as part of the text
segmentation process, and not the classifier, and thus

improvement in the dataset would not improve this.

VI. CONCLUSION

This paper has outlined an OCR system created for the

Serbian Cyrillic script. First, it is described how to perform

the character segmentation from a scanned, machine written

document. After this, the way the dataset used to train the

classifier is generated, is described. Finally, the architecture of

the classifier is shown and explained.

From all the above, it is shown that general purpose OCR

techniques can be effectively specialized to be applied to

machine written Cyrillic. There is still a lot of opportunity to

improve the system described in this paper, primarily in the

way special characters such as white spaces and others are

handled. The analysis of cursive, handwritten Cyrillic also

poses several new and interesting problems.

ACKNOWLEDGMENT

This work has been supported by the Ministry of Education,

Science and Technological Development of the Republic of

Serbia.

REFERENCES

[1] Albe E. E. Fournier, L. O. Joseph, “On a type-reading Optophone”,

Proceseedings of the Royal Society, vol. 90, no. 619, pp. 373-375, July

1914

[2] S. Singh, “Optical Character Recognition Techniques: A Survey”,

Journal of Emerging Trends in Computing and Information Sciences,

vol. 4, no. 6, pp. 2009-2015, June 2013

[3] N. Senthilkumaran, S. Vaithegi, “Image segmentation by using

thresholding techniques for medical images”, Computer Science &

Engineering: An International Journal, vol.6, no.1, February 2016

[4] S. Khurana, “Comparative Study on Threshold Techniques for Image

Analysis”, International Journal of Engineering Research &

Technology, vol. 4, no. 6, June 2015

[5] J. Lázaro, J. L. Martin, J. Arias, A. Astarloa, C. Cuadrado, “Neuro

semantic thresholding using OCR software for high precision OCR

applications”, Image and Vision Computing, vol. 28, no. 4, pp. 571–578,

2010

[6] A. Kaur, S. Baghila, S. Kumar, “Study of various character

segmentation techniques for handwritten off-line cursive words: a

review”, International Journal of Advances in Science Engineering and

Technology, vol. 3, no. 3, pp. 154-158, July 2015

[7] R. G. Casey, E. Lecolinet, “A survey of methods and strategies in

character segmentation”, IEEE Transactions on Pattern Analysis and

Machine Inteligence, vol. 18, no. 7, pp. 690-706, August 1996

[8] D. C. Cires, U. Meier, L. M. Gambardella, J. Schmidhuber,

“Convolutional Neural Network Committees For Handwritten Character

Classification”, 2011 International Conference on Document Analysis

and Recognition, Bejing, China, pp. 1135-1139, September 2011

[9] G. Vamvakas, B. Gatos, N. Stamatopoulos, S. J. Perantonis, “A

Complete Optical Character Recognition Methodology for Historical

Documents”, Document Analysis Systems, IAPR International

Workshop, pp. 525-532, September 2008

[10] M. Zaharescu, I. C. Petrescu, “Edge detection in document analysis”,

Journal of Information Systems & Operations Management, vol. 7, pp.

156-165, May 2013

[11] R. Ahmad, S. F. Rashid, M. Z. Afzal, M. Liwicki, A. Dengel, T. Breuel,

“A novel skew detection and correction approach for scanned

documents”, Document Analysis Systems, IAPR International

Workshop, April 2016

[12] E. E. Danahy, S. S. Agaianb, K. A. Panettaa, “Algorithms for the

resizing of binary and grayscale images using a logical transform”,

Image Processing: Algorithms and Systems V, vol. 6497, February 2007

[13] W. Rawat, Z. Wang, “Deep Convolutional Neural Networks for Image

Classification: A Comprehensive Review”, Neural Computation, vol.

29, pp. 1-98, June 2017

[14] R. Smith, “An Overview of the Tesseract OCR Engine”, Ninth

International Conference on Document Analysis and Recognition, vol.

2, pp. 629-633, September 2007

[15] A. Starynska, R. L. Easton, Jr. D. Messinger, “Methods of data

augmentation for palimpsest character recognition with Deep Neural

Network”, 4th International Workshop on Historical Document Imaging

and Processing, pp. 54-58, November 2017

[16] E. Chai, M. Pilanci, B. Murmann, “Separating the Effects of Batch

Normalization on CNN Training Speed and Stability Using Classical

Adaptive Filter Theory”, February 2020

[17] Z. Zhang, M. R. Sabuncu, “Generalized Cross Entropy Loss for

Training Deep Neural Networks with Noisy Labels”, May 2018

[18] G. Cormode, S. Muthukrishnan, “The String Edit Distance Matching

Problem with Moves”, ACM Transactions on Algorithms, vol. 3, no. 1,

February 2007

Length CNN Deep CNN

308 42 19

660 69 25

390 55 26

749 69 28

RTI 4.2.4

	I. Introduction
	II. Related work
	A. Binarization
	B. Character segmentation
	C. Character classification

	III. Image preprocessing and character segmentation
	IV. Character classification in SerbOCR
	V. Evaluation
	VI. Conclusion
	Acknowledgment
	References

