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Abstract—The problem that we tried to solve is the processing 

of digital images collected by photographing agricultural land 

from the air. Images created in this way are most often used in 

the process of assessing the condition of sown crops on 

productive agricultural land. In order to obtain high quality 

images, anemone aircraft equipped with high-resolution cameras 

are in use. High-resolution photos usually require a large storage 

space, so we must work on their compression, which must not 

affect the quality of the photos themselves. Singular Value 

Decomposition has taken a significant place in the 

implementation of image processing applications in recent years. 

It’s importance is especially reflected in the fact that it provides 

quality compression of images, and object recognition on images. 

In this paper, we propose a survey for the SVD as an efficient 

transform method, which can be used in compression of various 

types of images, and thus images created for the needs of smart 

agricultural production.  

 
Index Terms—SVD; Image compression; Object recognition. 

 

I. INTRODUCTION 

THE domain of precision agriculture is reflected in the use 

of modern information and communication solutions in order 

to improve productivity by making decisions based on a set of 

data dating from the past [1]. Recording crops on agricultural 

land both from the air and from the ground is one of the most 

commonly used methods for data collection. In this way, 

depending on the hardware equipment and skills of the 

operator, photos and videos of different quality can be 

obtained. As information extraction depends on the quality of 

the image, recorded images often have to be processed. In 

addition, high-resolution images require a large amount of 

storage space, and it is often necessary to compress the image 

using various digital image processing methods. 

Since the digital image data can be represented in the 

matrix form, the digital image processing methods can utilize 

a number of mathematical techniques. The essential subject 
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areas are computational linear algebra, integral transforms, 

statistics and other techniques of numerical analysis. Various 

digital image processing algorithms can be written in term of 

matrix equation, hence, computational method in linear 

algebra come to be an important aspect of the subject [2]. 

Digital image processing encompasses a wide and varied field 

of application, such as area of image operation and 

compression, computer vision, and image analysis (called 

image understanding). There is the consideration of three 

types of computerized processing: low level processing where 

both its inputs and outputs are images; mid­level processing 

where inputs are images, but outputs are attributes extracted 

from those images, and higher-level processing that involves 

“making sense” of an ensemble of recognized objects as in 

image analysis, and performing the cognitive function 

associated with human vision [2].  

One of the methods that can be used in digital image 

processing is Singular Value Decomposition (SVD), and this 

method represents a highlight of linear algebra [3]. More 

precisely in linear algebra, the SVD of a matrix is a 

factorization of that matrix into three matrices. It has some 

interesting algebraic properties and conveys important 

geometrical and theoretical insights about linear 

transformations. It also has some important applications in 

data science. The technique of SVD has a long and somewhat 

surprising history. It started out in the social sciences with 

intelligence testing. SVD is known under many different 

names. In the early days it was called “factor analysis.” Other 

terms include principal component (PC) decomposition and 

empirical orthogonal function (EOF) analysis. All these are 

mathematically equivalent, although the way they are treated 

in the literature is often quite different [4]. Today, singular 

value decomposition has spread through many branches of 

science, in particular psychology and sociology, climate and 

atmospheric science, image processing and astronomy. It is 

also extremely useful in machine learning and in both 

descriptive and predictive statistics. From the aspect of digital 

image processing, image features can be divided in four main 

groups. Those four groups are visual features, statistical pixel 

features, transform coefficient features, and algebraic features. 

Based on those four groups, SVD technique can be observed 

as an algebraic feature. 

The paper is organized as fallows. Second section 

represents literature review. Third section represents theory of 

SVD. Fourth section represents application of SVD in image 

processing, and the fifth section represents main conclusions.  
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II. LITERATURE REVIEW 

Research in the field of application of SVD method in 

image processing began in the 70's of the 20th century [5,6]. 

In one of the researches authors reviewed potential application 

of SVD in various aspects of digital image processing. They 

conclude that the easiest way to understand the use of SVD is 

to realize that a sampled image is nothing more than an array 

of scalar values and therefore an equivalent to a matrix. The 

theory of SVD is that of representing matrices (and therefore 

images) as sums of orthogonal matrices of rank one (outer 

products) [7]. The decomposition of SVD of an image into a 

space with diagonal representation then allows 

implementation of simple enhancement procedures using 

scalar linear or nonlinear filtering. Such filters suggest the 

existence of a family of images diagonal in the space of 

eigenimages of the original picture. 

Authors in [8] had applied theory of linear algebra to digital 

image processing. The aim of the research was the application 

of SVD within two areas of digital image processing: image 

compression and face recognition. These two specific areas of 

digital image processing were firstly investigated and then the 

application of SVD in these image processing areas is tested. 

Various experiments with different singular value were 

performed, and the compression result was evaluated by 

compression ratio and quality measurement. To perform face 

recognition with SVD, authors treated the set of known faces 

as vectors in a subspace, called “face space”, spanned by a 

small group of “base­faces”. The projection of a new image 

onto the base­face was then compared with the set of known 

faces to identify the face. Authors used MATLAB as 

computing environment and programming language for the 

purpose of implementation and execution of all tests and 

experiments. Based on the theory and result of experiments, 

authors found that SVD is a stable and effective method to 

split the system into a set of linearly independent components, 

where each of them is carrying own data (information) to 

contribute to the system, Thus, both rank of the problem and 

subspace orientation can be determined. Overall, the SVD 

approach is robust, simple, easy and fast to implement. It 

works well in a constrained environment. It provides a 

practical solution to image compression and recognition 

problem. Image compression was the topic of interest in one 

more research. Beside image compression, authors in this 

research illustrate the use of SVD on matrix completion [9]. 

The former was to convert the original full-rank pixel matrix 

to a well-approximated low-rank matrix and thus dramatically 

save the space. After that, authors recover a pixel matrix with 

a large number of missing entries by using nuclear norm 

minimization, in which some singular value thresholding 

algorithm is used. For both applications, authors conduct 

numerical experiments to show the performance and point out 

some possible improvements in the future. Authors conclude 

that SVD used in image compression process effectively 

reduces the size of bitmap images. Reducing the image size 

leads to significant savings in memory space. As a result, the 

difference between the image restored from the approximated 

SVD and the original one is negligible and undistinguishable 

by human eyes. The second application was created in order 

to recover digital images in the absence of data due to various 

reasons. The recovery of the full data set from the observed 

ones largely resembles other related challenges. In order to 

reduce the use of computing power, authors used algorithm 

that first identifies the active subspaces and subsequently 

applies SVD to a matrix that is much smaller in size for each 

iteration. The authors managed to reconstruct the image with 

as many as 75% of missing data points.  

Authors in [10] show a novel technique for wavelet-based 

corner detection using singular value decomposition. In 

presented approach, SVD facilitates the selection of global 

natural scale in discrete wavelet transform. Authors define 

natural scale as the level associated with most prominent 

(dominant) eigenvalue. Created eigenvector corresponding to 

dominant eigenvalue is considered as the natural scale. The 

corners are detected at the locations corresponding to modulus 

maxima. This technique has the advantage of analyzing the 

wavelet decomposition at natural scale. Algorithm is given for 

the selection of natural wavelet scale under discrete wavelet 

domain. 

Authors in [11] describe one of the approaches, which 

integrate both singular value decomposition of each image to 

increase the compactness density distribution and hybrid color 

space suitable to this case constituted by the three relevant 

chromatics levels deduced by histogram analysis. More 

precisely, their proposition describes the efficiency of SVD 

and color information to subtract background pixels 

corresponding to shadows pixels. Singular value 

decomposition is used in order to increase the compactness 

power of each distribution. In the same time SVD 

approximate a new image, which is manipulated, and 

determine a suitable color space constituted by significant 

levels among set of levels commonly used in color image 

analysis. Furthermore, this technique proves that the gray 

levels and the RGB space are not efficient for all applications. 

However, the deduced color space (Hrb) shows convincing 

results and confirm the efficiency of this method. 

III. THEORY OF SINGULAR VALUE DECOMPOSITION 

In this section, a mathematical description of the SVD 

method is given which is needed in order to understand what 

this method represents, its implementation and its application 

to image compression problems.  

The decomposition of the matrix into singular values is a 

factorization that occurs as a step in many algorithms of 

applied linear algebra. It is equally important in a conceptual 

sense because it describes the properties of a factorized 

matrix. Singular values of a matrix represent a generalization 

of the concept of eigenvalues of square matrices and exist for 

an arbitrary square or rectangular matrix. This type of 

factorization overcomes the problems encountered in the 

process of diagonalization of square matrices, and on that 

occasion retains the most important properties of orthogonal 

diagonalization of symmetric matrices [12]  
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The starting point of the SVD procedure is that an arbitrary 

rectangular matrix mxnMA represents a linear mapping of 

an n-dimensional vector space into an m-dimensional space 
mn RRA : , or 

mn CCA : in a complex case. The 

diagonalization of square matrices is related to the choice of 

one base of vector space that facilitates calculations. 

Rectangular matrices act over different spaces. It is a natural 

question whether two orthonormal bases of these two vector 

spaces can be found, which will describe its properties as 

transformations through the simplest form of matrix A.  

A matrix of size m × n is a grid of real numbers consisting 

of m rows and n columns. When we have an (m × n)‑matrix A 

and a (n × k)‑matrix B, we can compute the product AB which 

is an (m × k)‑matrix. The mapping corresponding to AB is 

exactly the composition of the mappings corresponding to A 

and B respectively. Singular Value Decomposition (SVD) 

states that every (m × n)‑matrix A can be written as a product. 

a graphical representation of the creation of the matrix a is 

shown in Fig. 1. 

 

 
 

Fig. 1.  Construction of matrix A 

 

In this product mxmMU   and nxnMV   are orthogonal 

matrices and the matrix mxnM consists of descending 

non-negative values on its diagonal and zeros elsewhere, so it 

is valid 
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The diagonal elements σi of the matrix Σ are called the 

singular values of the matrix A. The matrix Σ can be shown in 

following: 
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The columns of the matrix U are called the left singular 

vectors, and the columns of the matrix V are the right singular 

vectors. It is a consequence of equality, as in  
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Equation 1 can be viewed as a transformation of a unit 

sphere of n-dimensional space. If viewed in this way, this 

equality can be analyzed through a series of steps. The use of 

the orthogonal matrix VT is based primarily on the rotation of 

the unit sphere of n-dimensional space by rotating the natural 

base into the base of the principal axes vi. The diagonal matrix 

Σ stretches or contracts the sphere along the major axes into 

the ellipsoid. At the same time, a rectangular diagonal matrix 

Σ incorporates a sphere from n − dimensional space into an 

ellipsoid in m − dimensional vector space. The orthogonal 

matrix U rotates the ellipsoid to new major axes uj in to m − 

dimensional space. The dimension of the space through which 

the ellipsoid extends is equal to the number of nonzero 

diagonal values of the matrix Σ [12].  

There is a neat way to remove U and see V by itself. 

Multiply AT times A. In this case practically SV 

decomposition matrix is closely related to the Gram matrix 

ATA, and the equation was obtained as in  
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UTU disappears because it equals I. Multiplying those 

diagonal 
T and  gives 

2

i values. That leaves an ordinal 

diagonalization of the crucial symmetric matrix ATA, whose 

eigenvalues are 
2

i values. The diagonal matrix ΣTΣ is 

orthogonally similar to the Gram matrix ATA [12]. Therefore, 

the eigenvalues 
2

i of the matrix ΣTΣ are at the same time the 

eigenvalues of the matrix ATA [13].  There are many 

properties and attributes of SVD. Some of the most important 

SVD properties and attributes in terms of application in the 

field of image processing are numbered bellow.  

- singular values of σ1, σ2, …, σn  are uniquely defined, but 

the matrices U and V are not, 

- since ATA = VΣTΣVT , so V diagonalizes ATA , it follows 

that the vj s are the eigenvector of ATA, 

- since AAT =UΣΣTUT, so it follows that U 

diagonalizes AAT and that the ui ’s are the 

eigenvectors of AAT 

- if A has rank of r then vj, vj,…, vr form an 

orthonormal basis for range space of AT, 

R(AT), and uj, uj, …, ur form an orthonormal basis for range 

space A, R(A). 

- the rank of matrix A is equal to the number of its nonzero 

singular values, 

- the eigenvalues of the ATA matrix are also the squared 

singular values of the matrix A. 
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IV. APPLICATION OF SVD IN AGRICULTURAL IMAGE 

COMPRESSION 

SVD can be applied to multiple problems in the domain of 

digital image processing. Observed from the angle of 

processing of images that represent agricultural areas, the 

challenge of image compression stands out. The need for 

image compression stems from the fact that most images that 

are obtained both from the air and from the ground have high-

resolution, so they take up a large amount of memory. This is 

especially noticeable if a large number of images need to be 

stored for a long period in order to create a database of 

images. As part of the conducted research, the application of 

SVD practically represents the pre-processing of images 

obtained by recording agricultural plantations from the air. 

Initially, the images are collected for the development of a 

system for the recognition of the occurrence of diseases and 

pests and predicting the time of application of agrotechnical 

and chemical measures. As this task requires a significant 

number of high-resolution images, there is a need to compress 

them before storing them for further use. In addition to 

reducing memory usage, the use of compressed images further 

simplifies the process of their processing and use. The idea 

was that each of the selected images intended for use in the 

performed experiment should be represented in the form of a 

matrix, which can be done with a mathematical approach. 

Practically observed from the angle of mathematics and 

possible representation of the digital image, each digital 

image can be represented as matrix of pixel values.  

If black and white images are observed, each little image 

element or “pixel” has a gray scale number between black and 

white. In the case of color pictures it has three numbers. 

Based on that, image compression deals with the problem of 

reducing the amount of data required to represent a digital 

image. When an image is SVD transformed, it is not 

compressed, but the data take a form in which the first 

singular value has a great amount of the image information. 

This property allows that only a few singular values need to 

be used in order to represent the image with little differences 

from the original.  

Image compression using SVD was implemented within the 

MATLAB software package based on the following 

procedure. Decomposition of matrix A to the UΣVT product 

represents an approximation of the matrix A using much 

smaller values compared to the original matrix.  
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As singular values are always greater than zero, adding 

dependent members, where singular values are equal to zero, 

has no effect on the image. In the end, we get the equation 

with the members: 
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Furthermore, the obtained matrix can be further 

approximated by omitting the singular members of matrix A. 

As the singular values are sorted in descending order, the last 

members have the least influence on the final image. This is 

how the size of the memory space needed to store the newly 

created image is reduced. The closest matrix of rank k is 

obtained by truncating those sums after the first k terms: 
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If we observe the compression ratio, it can be calculated as 

in: 
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Where R is the compression percentage, k is the chosen 

rank for truncation; m and n are the number of rows and 

columns in the image respectively. The calculation of the 

compression coefficient as well as the size of the compressed 

image is shown based on one selected representative image. 

This image was taken over the field with the use of a drone. 

Compression results obtained after the execution are 

displayed in the appendix on the Fig 3. The resolution of the 

original image is 3840 x 2160, the number of pixels of the 

uncompressed image is 8294400, where 3840 represents the 

vertical and number 2160 the horizontal number of pixels of 

the original image. If k = 20 which can be viewed as the 

number of iterations equation 7 will look like: 

 
TTT vuvuvuA 202020222111 ...               (9) 

 

Based on the previous equation each of ui contains 648 

components, each of vi contains 480 components, and how 

each σi is the scalar that represents 1 component. If we denote 

the compressed image with NK, the number of pixels of the 

compressed image can be obtained as in: 

 

120020)121603840(*20 kN            (10) 

 

The compression ratio of image can be calculated as 

follows: 

 

%45.1100*
3840*2160

20*38402020*2160



R    (11) 

 

Finally, after 20 iterations we got approximately the same 

image, which is 1.45% of the compressed image, while after 

150 iterations we got a good compressed image, which is 

10.85%. Compared to a compressed image with 20 iterations, 

an image with 150 iterations looks visually much better with 

noticeable sharpness and detail while still taking up little 

storage space. In the Fig. 2 error distribution between the 

compressed and the original image, which is taken as an 

example, is shown.  
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Fig. 2.  Error distribution in compression process of selected image 

 

As it can be seen from Fig. 2, as the number of singular 

values increases, the error decreases. When working with 

black and white images, experimental results have shown that 

less iteration is required in order to obtain adequate quality of 

compressed image.  

If we look at the images given in Fig. 3, it is noticeable that 

with an initially small number of iterations, the quality of the 

compressed image decreases. When more than 75 singular 

values are used, the quality of the compressed image is almost 

identical to the original image, while the size of the 

compressed image is reduced by half compared to the 

original. As these are images whose purpose is to be used in 

the decision-making process, it is necessary for the image 

quality to be appropriate, which corresponds to a larger 

number of singular values.  

The original image takes up 5.43MB of space, while the 

space required to store compressed images ranges from 

888KB for an image obtained using 20 singular values to 

1.35MB for an image obtained using 150 singular values. 

V. CONCLUSION 

Innovations in the field of digital image creation have 

created the possibility of creating high-resolution images. 

These images represent a significant source of information. 

However, high-resolution images take up significant memory 

space. If it is a large number of digital images, as is the case 

with images created for the needs of agriculture, where large 

areas are photographed by dividing the pre-defined quarters, it 

is necessary to process and compress the images obtained in 

this way. Due to the importance of information, compression 

must not reduce the quality of the image itself.  

In this paper, we presented the fact that mathematical 

methods like SVD can be applied to image compression by 

looking at each of its pixels. With the use of this method we 

were able to compress both black and white and color images, 

obtained by aerial photography. In this way, the pre-

processing of the images needed within the larger system for 

monitoring agricultural land was performed, which enabled 

easier storage and use of these images. 

In addition to the use of both black and white, and color 

images in compression, the detection domain of the same or 

similar objects can also be used. This application can be 

important in the field of monitoring the situation on 

agricultural land. The use of SVD in object detection allows 

the comparison of the photographed object with pre-selected 

objects within the database. It is practically necessary to 

create a database of objects based on which the comparison 

will be made. Applied to the domain of agriculture, SVD can 

be used in estimating the number of weed communities on 

agricultural land, detection and marking of areas in fruit crops, 

detection and marking of uncultivated land, forests, 

underwater areas, etc. The starting point for detecting objects 

using SVD are certainly quality digital images. The 

implementation of the application of SVD in order to compare 

objects on compressed images in the database and new objects 

on newly obtained images is an idea for future research. This 

method can provide detection of pathogens and pests on sown 

crops. 

APPENDIX 

  

  

  

  
 

Fig. 3. Example of image compression with singular values used {(original 

image, 20), (25,50), (75,100), (125, 150)} respectively 
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