
 

  

Abstract—The intention of this paper is to propose and discuss 

different approaches to identifying unmodelled dynamics found 

in tasks performed by industrial robots. Unmodelled dynamics, 

forces and torques found in contact tasks cause deviations of 

joint currents and/or torque measurements from their expected 

values. Correct classification of these deviations and their 

distinction from collision-induced disturbances is of outmost 

importance for a reliable collision detection algorithm. Prospects 

and concerns of different approaches which can help make this 

distinction are discussed in terms of their reliability, 

applicability, and versatility. All approaches rely on information 

which is possible to obtain from industrial robots with closed 

architecture using standard commands and without any 

alteration to their control structure. 

 
Index Terms—Unmodelled Dynamics; Physical Human-Robot 

Interaction; Collision Detection; Industrial Robots.  

 

I. INTRODUCTION 

The current situation and future market trends show the 

increase in demands for more complex, highly customizable 

and small batch production. Large companies with installed 

robots and automation are finding it difficult to adapt their 

production which was suited to low-mix and medium to large 

batch production, performing repetitive and tedious tasks in 

areas isolated from human workers because of safety 

regulations. On the other side, most of customization and 

small batch production is predominantly performed by human 

workers in SMEs who are in a constant struggle to keep up 

with increased demand for higher and more efficient output 

and reduced costs. The answer to many of the demands is to 

facilitate interaction of human workers and robots to 

synergize best of their advantages and achieve unrivalled 

dexterity, efficiency, and production costs. 

The topic of Physical Human-Robot Interaction (pHRI) has 

been the subject of numerous research, both in field of 

collision detection [1]-[15] and safety considerations [16]-[18]. One 

of the main topics within pHRI is the collision detection, as 

the innermost level of protection which ensures safety of the 

worker during human – robot collaboration [2],[6]. A lot of 

research has been done in this field, with very good results in 

sensitivity and reliability, regardless of whether an industrial 
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[10]-[12] or a collaborative robot is used [1]-[7]. Most of the related 

work has utilized model-based collision detection, which 

requires an accurate model of the robot, but there are also 

solutions which do not require dynamic model [4]-[5],[12]. While 

these collision detection algorithms can achieve good 

performance, most of them were tested in tasks which do not 

require physical contact of the robot with surroundings. The 

exception to this pattern can be found in strictly repetitive 

tasks [12], or in work with detection of intentional human 

contact through use of filtering [10]-[11],[15].  However, in the 

latter, the detected intentional contact was detected only on 

the dynamics of change in robots’ joint measurements, and 

used to bring the robot into compliant state, rather than to 

continue to identify collisions during a task. In other cases 

where such contact was allowed, it was predominantly 

through use of force/torque sensors mounted between the 

robot tool and the flange of the robot [10]-[11]. The force/torque 

sensor enables the algorithm to compensate for and to 

distinguish intentional contact and unmodelled dynamics of 

the tool and/or load from collisions. However, force/torque 

sensor mounted between the robot’s flange and its end-

effector is only able to detect forces/torques at the end of 

kinematic chain. Therefore, this solution can only be used as a 

supplement to an existing collision detection algorithm, since 

collisions may occur at any point between the robot base and 

its end effector, which would otherwise not be registered by 

the sensor. Furthermore, such solution is often not suited for 

the production environment, and therefore robots must rely on 

their intrinsic sensors.  

For industrial robots, which are predominant in production 

environments, internal sensors include joint position encoders 

and joint current measurements, based on which joint torques 

can be estimated. In both cases, detected deviations from the 

expected values of joint currents/torques originating from 

intentional contact or unmodelled dynamics can be difficult to 

distinguish from those originating from collisions, which was 

recognized in [14]-[15],[19]. This fact combined with necessity to 

react in shortest amount of time may lead to either high false 

alarm occurrence frequency or compromised worker safety. 

Having in mind that the worker safety must be ensured at all 

times, the effort must be directed into finding a way to reduce 

the frequency of false collision detections. 

The intention of this paper is to propose and discuss 

different approaches to reaction to unexpected deviations and 

their proper classification. The main idea is that the 

intentional deviations can be recorded and integrated into 

collision detection algorithm, while all deviations different 

from them should be classified as collisions. 
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Following a brief introduction to the topic in the First 

Section, measurement signal properties are discussed in the 

Second Section. The section presents major attributes related 

to the nature of the signal and observations based on 

measurement on an industrial robot performing contact and 

manipulations tasks. 

The Third Section proposes and discusses different 

approaches to choosing the appropriate signals and ways in 

which they can be utilised in order to make the distinction 

between the intentional actions of the robot and the real 

collisions. The section also discusses how signals can be used 

to mark the beginning and the end of the deviation as well as 

how kinematic parameters can be used to refine and improve 

the decision making. 

Conclusion and discussion of the paper is provided in the 

Fourth Section along with directions for future research. 

II. MEASUREMENT SIGNAL PROPERTIES 

Based on the International Robotics Federation, robot 

installations in 2018 were beyond 400.000 units per year, and 

most of the robots installed around the world are applied in 

different fields of industrial production [20]. Therefore, vast 

majority of the installed robots are 5-7 axis articulated or 4 

axis SCARA configuration industrial robots. Unlike 

collaborative robots which are just starting to make entry into 

manufacturing environments, industrial robots were not 

initially intended to work with humans in their workspace. To 

enable them to collaborate with humans, existing sensors must 

be utilized. The signal based on which collisions are detected 

is typically a measurement of joint current values. This signal 

may be available in form of signed or absolute values of joint 

currents, or as joint torque values estimated using 

measurements of the current. Consequently, regardless of the 

form in which the signal is provided, its properties remain the 

same, and the following analysis is valid for all of them.  

One of the most important properties of the signal is related 

to the time domain repeatability of the current measurement. 

In previous work related to collision detection [12],[19], it was 

explained that industrial robots typically do not have a 

possibility to run parallel processes, but instead emulate this 

behaviour by swiftly jumping from one routine to another. 

This fact causes slight deviation of time instants in which 

identical command will be executed within a repetitive cycle. 

This also includes the motion commands, which consequently 

leads to the situation in which measurements from 

consecutive cycles of the identical movement do not match in 

time domain, as illustrated on Fig. 1.  

The second observation related to the nature of the 

measurement signal of current/torque is the irregular 

occurrence of peaks, as shown on Fig. 2. The occasional 

appearance of peaks in measurement is related to the fact that 

currents/torques are dependant on speed and acceleration in 

each joint [13],[15]. Due to the fact that industrial robots possess 

only position measurements from encoders, speed and 

acceleration are calculated numerically as derivatives and 

double derivates of position measurements. Depending on the 

actual dynamics of the position change in relation to the 

sampling rate, these numerical derivations may result in 

values which do not correspond accurately to the actual 

dynamics of the robot [15]. Although these numerical values 

may differ from real values, they are absolutely adequate for 

the proper functioning of the robot due to robot’s inherent 

actuators and structural inertia which filter out the high 

frequencies of the control signal. However, from the 

standpoint of observation of signal deviations, these peaks 

may be mistaken for unexpected external forces. The peaks 

must not be filtered out because they may contain important 

indications of a collision or other real external force/torque 

which are of importance for the collision detection algorithms 

and worker safety. 

Repeatability of the measurement shape and values for 

identical movements is one of the most important aspects 

related to the identification of signal deviations. This signal 

property should be observed from the perspective of the robot 

itself i.e. its actuators, and from the nature of the desired 

contact task. At this point, a distinction must be made between 

deviations caused by unmodelled dynamic properties of the 

end effector attached throughout the duration of the task on 

one side and, on the other side, forces/torques exerted or 

endured by the end effector or dynamics originating from the 

objects the robot manipulates or interacts with. While the 

former are generally very easy to determine or automatically 

estimate even by the built-in functionalities featured in most 

industrial robots, the latter can be a big issue to quantify and 

describe in an adequate way.  

Previous work has shown that measurement shape and 

values which originate from the robot itself performing a non-

contact task are very repeatable and dependable. However, it 

was demonstrated that repeatability is not guaranteed for all 

kinds of contact tasks. For example, while pick and place 

generally generate predictable and repeatable measurement 

values for the identical movement, the same cannot be 

guaranteed for snap fit and spring latch assembly, as shown 

on Fig. 3 and 4. These two assembly tasks are highly 

dependent on the repeatability of the object of the assembly 

and its accurate positioning prior to the assembly process. 

Different stiffnesses of the springs in spring latch assembly, or 

slightly altered position of the snap fit object result in 

significant differences of the measurement signal, as shown 

on Fig. 3. While the general shape of the deviation from 

values without contact are similar in shape, the intensities may 

vary significantly. 

From the aforementioned observations, it is possible to 

understand that industrial robots with closed control 

architecture pose a unique set of challenges when it comes to 

detecting deviations from their expected joint current values. 

When these challenges are viewed from the perspective of 

collision detection, it should additionally be noted that all 

signal processing and decision making must be made in very 

short amount of time in order to make timely reactions of the 

robot and prevent injury or damage. 
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Fig. 1.  Measurements from 30 consecutive executions of the same movement 
[12] show time domain related differences in recorded signal caused by the 
differences in sampling instants. Signals have slightly different lengths, and 

they are shifted in time for up to 13 samples or just under 10% of the total 

length of the signal. 

 

 
 

Fig. 2.  Unpredictable occurrence of peaks due to differences in sampling 

instants [12]. The six shown periods of the signal represent six successive 
cycles of the same motion task. Peaks marked in yellow and red show biggest 

effects of the issues related to numerical position derivation. 

III. SUGGESTED APPROACHES 

The observations from previous section lead to a conclusion 

that some types of contact tasks are difficult to predict in their 

intensity and shape, and therefore difficult to distinguish from 

collision-induced deviations and numerical anomalies. 

Additional difficulty is that distinction must be made with 

first samples of deviation in order to minimize the 

consequences of potential collision.  

The presumption for all approaches presented in this paper 

is that robot performs more or less repetitive tasks in cycles, 

which is the case in vast majority of tasks for industrial or 

collaborative robots alike. Therefore, the idea is to record the 

deviation(s) occurring in one cycle of the robot task while 

operating in a controlled and supervised environment without 

collision occurrence. The recorded deviation can be used to 

extract and generalize certain features of the cycle that can be 

used as indicators of when and in which shape and intensity to 

expect deviation originating from an intentional and desired 

action of the robot in future cycles. With this approach, any 

deviation from the values of the recorded deviation should be 

considered as a collision. 

To be able to distinguish unmodelled dynamics and 

forces/torques caused by intentional contacts from those 

originating from a collision, it is important to know two 

things. First – the shape and intensity of deviation originating 

from the unmodelled action, and second – when to expect it 

and for how long. 

To aid in this matter, it is needed to consider which 

information from the robot, and in which capacity, can be 

used to complement the measurements of currents/torques. 

When various brands and generations of industrial robots, 

as well as the general logic behind control algorithms are 

considered, other signals readily available on industrial robots 

can be identified.  

One widely available signal that can be used to aid in this 

matter is the position measurement either in joint space or in 

external space, mostly described in Cartesian frame. For 

robots which can provide only joint position measurements, it 

is possible to use an automatic procedure to identify kinematic 

parameters [21] of the robot and provide external frame 

coordinates using direct kinematics calculations. Position 

and/or orientation of the flange in external frame, the 

operating plane, or any other of kinematics-related parameters 

can have a potential to be used as an indicator of when to 

expect the start and/or end of deviation. Even more 

importantly, kinematic parameters can be placed into context 

of estimating the changes in overall shape of the deviation. 

Another option is to use output signals used by the robots to 

interact and control external entities. These signals can be of 

good use if it is directly and unambiguously related to the 

action which causes deviation. One such example can be the 

output which controls the gripper, since as long as the gripper 

is closed, the load is connected to the robot, and its influence 

is present. From the moment the gripper is opened, the load is 

released, and the deviation is not expected. 

The aforementioned types of signals can be used effectively 

not only to help predict the start and end of the deviation, but 

also to assist in determining the changes of the shape of 

deviation caused by the change in robot’s posture. 

When it comes to the shape of deviations, the recorded 

deviation is only valid for the identical movement to the one 

during which it was recorded. Changing the robot movement, 

the weight distribution of the manipulated object or some 

other parameter from the cycle in which the deviation was 

recorded would result in changes to its shape, as illustrated on 

Fig. 3 and 4. While the overall shape is similar, some levels, 

peaks or other shape features may be different. To enable 

matching of the recorded deviation with the one under new 

conditions, it is needed to predict how it would change.  

One way of determining the possible variations to the shape 

of deviation caused by the possible differences between the 

cycles of the task execution is to use mostly analytical 

approach. Forces and/or torques affecting the robot while 

performing contact tasks can generally be divided into tasks 

where predominant deviations from the expected values 

originate from weight and inertia of the manipulated object 

and those whose origin can be related to the forces/torques the 

robot itself and/or robot’s end-effector exert on an external 

entity.  
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Fig. 3.  Deviations of the torque measurement during snap fit assembly task 
[19]. (upper) Differences in positioning of under 1mm caused that some 

deviations have additional peaks at sample time 615. (lower) Deviation signal 
from the snap fit assembly task compared to collision-induced deviations 

shows great similarity. 

 

 
 Fig. 4.  Deviations caused by unmodelled load during manipulation task[19]. 

(upper) The deviations of the torque measurement due to unmodelled load 
compared to collision-induced deviation. While the nature of deviations is 

different, the intensity can in some cases be comparable. The first two periods 

of the signal correspond to cycles with picking points closer to the robot’s 
base, while second two periods correspond cycles in which picking points 

were further away. (lower) Differences in distance of the picking points from 
the robot’s base has caused differences in part of the deviation. From time 

sample 142, the deviations start to match because that part of the trajectory 

was common to both cycles of the repetitive task. 

 

For the first group of forces/torques, the spatial 

configuration of the robot and dynamics of its transition to 

another configuration is the predominant factor which 

influences the shape and intensity of the deviation. When the 

robot is stationary, these deviations are constant, with 

exception to short transient periods, for example in liquids 

container manipulation, and reflect onto non-vertical axis. 

Tasks which belong to this group include typically 

manipulation actions such as pick and place, 

loading/unloading, machine tending, palletizing, and 

packaging.  

For the second group, the direction of the exerted 

force/torque is relative to the orientation of the flange of the 

robot. The shape and intensity of the deviation is projected 

onto individual robot joints depending on their orientation 

relative to the flange, while its dependence on the robot 

movement is negligible. Robot tasks which belong to this 

group include screwing, drilling, polishing, riveting, various 

types of assembly without adhesives or material depositing, 

probing, friction welding etc. 

There are tasks which are a combination of the previous 

two groups. Most of these comprehensive tasks can be divided 

into smaller sub-tasks, in order to subject them to the 

aforementioned division. For tasks where decoupling 

according to the division is not feasible, the deviation will be 

a resultant of the individual deviations from the two groups. 

With the aforementioned considerations and division in 

mind, it is possible to understand how the recorded shape of 

the deviation may evolve due to changes in robot movement 

and posture. For the analytical approach, it is necessary to use 

knowledge of robot kinematics to reconstruct the general 

direction and intensity of the external force/torque relative to 

any relevant section of the robot. Then, it would be needed to 

calculate how it would project on individual joints in another 

configuration, and how the dynamics of the robot manipulator 

would affect it. If estimation of the changes of the deviation 

shape and its projection is not feasible, it is possible to use 

measures of curve similarity, as presented in [22]-[25], or with 

some modifications, mostly related to real-time application. 

The positive side of the analytical approach is that it is a 

verifiable and understandable and transparent process, which 

is a desirable trait for all matters related to collision detection. 

Furthermore, the process does not need a vast training set, or a 

lot of time to set up. The downsides are its complexity, and 

the fact that it is difficult to completely automate or make user 

friendly for operators with non-expert knowledge. 

An important aspect related to the analytical approach is 

that it requires additional logic to determine when the 

deviation is expected to occur, and when to end. This 

information can in some cases be extracted by observing the 

kinematic parameters. As mentioned earlier, it is necessary to 

find a good correlation and a certain repetitive pattern in 

kinematic parameters such as constant height, position or 

orientation, geometrical surface/line to which the robot arrives 

just before the action which causes the deviation starts or just 

before it ends, This may prove to be an extremely challenging 

matter, considering the entire spectrum of tasks that a robot 

may be required to perform, and having in mind that setup 

phase should be as brief as possible. Of course, if the number 

of different positions to which a robot should arrive to 

perform the action that causes the deviation is finite and 

known in advance, this information could be incorporated into 

the algorithm.  

As mentioned earlier, observing the output signals of the 

robot or other devices that trigger the actions causing 

deviations is available, it should be taken into consideration 

whenever possible. 

Another approach to estimating the changes in shape of the 

recorded deviation would be to use Artificial Neural Networks 

(ANN). ANNs are able to process a large amount of input data 

and to find connections and correlations that work well, and 
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that would otherwise remain unused. Research [4],[25] has 

shown that ANNs can be quite successfully trained to 

extrapolate and predict joint currents/torques of the robot 

performing new tasks. This can be done with or without 

knowledge of kinematic parameters of the robot, and with 

various other information provided by the robot itself or some 

of the external entities related to the action that causes the 

deviation. Following the same logic, it is reasonable to 

assume they could predict not only the shape of deviation, but 

maybe also when to expect it, and for how long. To the best 

knowledge of the authors, the latter has not been a subject of 

research in any related field, and therefore it can only be 

assumed based on the general capabilities of ANNs. The 

problem to this approach, however, is common to many tasks 

involving ANNs, and that is training. Generally speaking, 

ANNs require a lot of input data, and a lot of time to process 

all information and make appropriate connections. For all the 

material needed for the training, supervised measurements 

must be made, which is at least impractical from the 

implementation and exploitation point of view. Moreover, 

having in mind the high variability of possible contact tasks 

and types of external contact forces, it may be difficult to be 

certain of whether a representative training set has been 

acquired. Although it was shown in [4],[25] that the desired 

signals originating from the robot itself and all permanently 

attached entities can be predicted with high certainty, 

generally speaking the task space is quite unique for each 

individual application, and the variations in external forces 

must be well studied for each application. Finally, the biggest 

issue with ANNs is that the user is never absolutely sure how 

certain values are predicted, and how reliable they are. For 

collision detection, this is a huge problem, since reliability 

must be ensured and provable. 

 It is evident that both the analytical and ANN approach 

have prospects and concerns, some of which are 

complementary. A hybrid approach might be the needed 

solution which would combine the transparency and 

verifiability of the analytical approach with the ANNs’ 

flexibility and ability to find hidden connections between 

inputs. Kinematics model of the robot combined with the 

current/torque measurements in joints can be used to 

reconstruct the profile of the deviation in Cartesian space. 

After the shape of deviation is determined, it can be described 

as a parametrized curve. Points of interests on this curve can 

be determined from several samples using Eigenvalues of the 

measurement set. Then, algorithm such as Active Shape 

Modelling can be used in conjunction with ANNs to 

determine the relation of the kinematic parameters with the 

shape of the deviation curve. Simultaneously, ANNs can find 

the best indicators of when the deviation may occur within the 

cycle. The algorithm could evaluate its estimation and indicate 

to the operator when the satisfactory level has been reached. 

Even after the adequate success rate of the estimations has 

been reached, the estimation could get better over time with 

increase of training and evaluation samples.  

Hypothetically, the hybrid model could offer a good 

solution to the problem of distinction between intentional 

contacts and collisions. Potentially, it could be improved by 

incorporating a model of a collision-induced deviation. 

However, collisions come in different shapes and intensities, 

and so do the contact task-induced deviations, and there is not 

a single solution for all tasks. Nevertheless, the proposed 

approach offers another way to overcome the issues of false 

alarms occurring in robot contact tasks with unmodelled 

dynamics and forces/torques. 

IV. DISCUSSION AND CONCLUSIONS 

Joint work of human workers and robots is a logical and 

desirable trend with increasingly more foothold in reality. 

Enabling industrial robots with closed control architecture to 

adapt to current and future needs for pHRI would enable 

faster adoption of robotization primarily in manufacturing 

SMEs and provide them the tools to be more competitive and 

productive. The main precondition to enabling robots for 

pHRI is to enable them to detect collisions with their 

surroundings and therefore prevent human injury. One of 

major obstacles in efficient and reliable collision detection is 

telling apart intentional, but unmodelled dynamics and 

forces/torques occurring in contact tasks from real collisions. 

As a contribution to this goal, this paper suggested and 

discussed approaches to making this distinction, regardless if 

it is applied combined with model or non-model-based 

collision detection algorithms. Although intended for 

industrial robots as implementation platforms, suggested 

approaches can be implemented also on collaborative robots, 

regardless of their configuration and number of axis.  

The analysis of the signal properties of currents/estimated 

torques, based on which the decision making is predominantly 

made, pointed out some of the main attributes and issues from 

the measurement point of view. The signals were observed 

and discussed from the perspective of their dynamics, 

repeatability, and similarity with collision–induced deviations. 

Measurement results from [19] were used to demonstrate signal 

properties from various contact and manipulation tasks. They 

demonstrated how unmodelled load, distance from the robot 

base and positioning repeatability of parts manipulated by the 

robot influence on the measured signal. 

To achieve better distinction between intentional contact 

tasks and collisions, additional signals were considered to 

complement the current/estimated torque signal.  

As a most widely available and useful signal, joint or 

external frame positions can be used to indicate when the 

section of the task which contains unmodelled dynamics 

and/or forces/torques will start and end. This functionality 

requires some previous knowledge which can be obtained 

through generalization of performing the desired task with 

human supervision. Both robot flange/end effector position 

and orientation as well as joint positions can be used to make 

the generalization. The generalizations can be made using 

different parameters and making the correlation between 

them. Parameters which show greatest level of correlation 

between the different cycles of task execution can be used as 

good indicators of when to expect the deviations.  
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Furthermore, it was suggested that with prior knowledge of 

the kinematic parameters of the robot, it is possible not only to 

indicate when the unmodelled part of the task will start and 

end, but also to approximate how the deviation from expected 

values will evolve depending on the robot joint movement. To 

this end, three different approaches to estimating the shape of 

the deviation were considered in general.  

The first approach was based on analytics, and its general 

properties were discussed without going into particularities, 

along with its advantages and disadvantages. It was pointed 

out that knowledge of robot’s kinematic parameters can also 

be used to determine the correlation of the robot flange 

orientation and orientation of the axis most affected by the 

deviation. The approach based on ANN was also generally 

discussed in terms of its applicability in collision detection 

and its prospects and concerns. Finally, it was suggested that a 

hybrid method might be the best solution for the application in 

the relevant field.  

It was noted that outputs used to activate/deactivate 

external tools or devices were suggested to be used in tasks 

where they are available and directly related to the desired 

tasks. These signals can be used to indicate start of a task 

section with unmodelled forces/torques and possibly influence 

the thresholds for collision detection. In many cases, such 

signals can be used to mark the ending of the task section with 

unmodelled dynamics and restore detection thresholds. 

The considerations and discussion presented in this paper 

were presented as a general guideline for addressing the 

aspect of pHRI which is often neglected, yet very important 

for good quality collision detection. Future work will involve 

further elaboration and design of deviation detection, 

estimation and distinction rules in accordance to results 

presented in this paper and previous research [12],[19],[21]. 
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