

Abstract—Current and forthcoming market requirements
bring huge challenges to today manufacturing. Answer to the
changing demands and high product variety is found in the
integration of the Internet of Things (IoT) and Cyber-Physical
Systems (CPS) into industrial plants. CPS as smart devices
capable of data processing and information exchange enable fast
adaptation of manufacturing resources to production of
diversified products. Nevertheless, fully implemented internet
communication at factory shop floor opens up a whole new area
for potential cyber-attacks. The consequences of attacks can have
a negative influence on the system or even endanger human lives.
Therefore, defence techniques must be developed to ensure a
high level of protection. Early detection of cyber-attacks is
crucial to minimize or completely avoid the negative effects of
the attack and keep the system safe and reliable. In this work, we
propose an attack detection method based on deep learning
approach. We explore the application of several deep learning
architectures based on Simple Recurrent Neural Networks
(Simple RNN) and Long Short-Term Memory (LSTM) based
RNN for generation of the detection mechanisms tailored to the
concrete process. Our method was experimentally verified using
real world data and it proved to be effective, as it detected all
considered attacks without false positives.

Index Terms—Cyber security; Cyber Physical Systems;
Internet of Things; Deep learning; Recurrent Neural Network.

I. INTRODUCTION

Traditional industrial systems are experiencing changes
driven by market requirements, especially in terms of
manufacturing systems adaptability to changing demands that
should be achieved along with the preservation of their
efficiency and productivity. Such changes are seeking smart
components (sensors, actuators…) in the form of physical
devices with integrated computation and communication
capabilities - Cyber-Physical Systems (CPS) [1, 2]. Within an
industrial plant, smart devices interact with a central control
system and with each other, share information over the
Internet (usually wireless), creating and exchanging large
amounts of data through Industrial Internet of Things (IIoT)
[3, 4]. Data generated through fully implemented
communication are stored in clouds or on the edge and used to
make business related conclusions and timely control
decisions. The integration of IoT and CPS into plant
represents the core of the concept called Industry 4.0 [5]. This
approach was created to meet performances, availability,

Dušan Nedeljković is with the Faculty of Mechanical Engineering,

University of Belgrade, Kraljice Marije 16, 11020 Belgrade, Serbia (e-mail:
dnedeljkovic@mas.bg.ac.rs).

Živana Jakovljević is with the Faculty of Mechanical Engineering,
University of Belgrade, Kraljice Marije 16, 11020 Belgrade, Serbia (e-mail:
zjakovljevic@mas.bg.ac.rs).

flexibility requirements, as well as a new level of product
individualization. However, openness and adopting the
internet as the main way of communication in traditionally
isolated industrial control systems introduce new risks and
make these systems exposed to various types of cyber-attacks.
Consequences of the attacks can degrade system performance,
cause serious damages and production losses, or even affect
human lives [6]. Therefore, the development of cyber-attack
detection techniques represents one of the main industrial
security issues today. To reduce or completely avoid the
negative effects of attacks, they must be timely detected
despite the fact they are trying to stay stealthy.

In general, cyber-attacks can be roughly divided into two
categories: Denial of Service (DoS) attacks and deception
attacks [7]. DoS attacks interfere with the data flows, making
them temporarily or permanently unavailable [8]. DoS attacks
are not necessarily system-dependent, i.e. do not require prior
knowledge about the system they attack. Deception attacks,
on the other hand, affect data integrity by injecting malicious
data with an aim to completely change system behaviour [9].
Unlike DoS, deception attacks need knowledge about system
resources, in order to attack the most sensitive system parts,
while remaining stealthy. Mathematically, DoS attacks can be
described with �̅� ∈ ∅, and deception attacks with �̅� = 𝑥 +

𝑥
ௗ, where �̅�, 𝑥 and 𝑥

ௗ represent received, measured and data
injected by attackers, respectively [10].

The appearance of new attacks also triggers the
development of new defence techniques. Today, there are a
number of techniques that can be split into two categories:
data-centric and design-centric [11]. Data-centric techniques
are based on the collected data, while design-centric are
oriented to system analytical models and its control
algorithms. For example, the detection of false injected data
[12] and compromised sensory data [13] were performed
using a design-centric method based on cumulative sum
(CUSUM). Also, a number of data-centric detection
techniques were developed, such as 1D convolutional neural
networks [14], and autoregression modelling and control
limits [15] that were deployed for anomaly detection in
Industrial Control Systems. ε-insensitive support vector
regression (ε-SVR) was utilized for this security issue in the
system with distributed control [16].

In this work, we propose a data-centric method for cyber-
attacks detection in continuous time controlled systems. The
method is based on deep learning model of normal system
behaviour, created using Recurrent Neural Networks (RNN).
The performance of the method is evaluated on a signal from
the real-world system with several cyber-attacks. In particular,
we have considered data obtained from a smart actuator as a
part of the system with distributed control. The idea of

Cyber-attack detection method based on RNN
Dušan Nedeljković, Živana Jakovljević, Member, IEEE

ROI 2.4.1

utilizing RNN for this purpose is based on their capability to
use sequences and memorize the information obtained in the
previous calculations. The memory from prior computation
allows RNN to better understand data dependencies and to
create a good prediction. Additionally, we compare the results
obtained using different RNN architectures and select the best
model according to the defined criteria.

The remainder of the paper is structured as follows. Section
2 briefly outlines used RNN architectures, whereas Section 3
refers to the developed method for signal attacks detection. In
Section 4 we represent the results of the proposed method
evaluation using data from the real-world application with
inserted attacks. Conclusions and future work guidelines are
provided in Section 5.

II. RECURRENT NEURAL NETWORK

Recurrent Neural Networks differ from standard feed-
forward neural networks by connection where the current
output vector y(t) depends not only on the present input x(t),
but also on the recurrent input representing previous hidden
state h(t-1). Thus, using history, network learns and
understands the sequential nature of the data. Fed with the
input and the previous hidden state vector, RNN cyclically
computes output for every element of a sequence. Two types
of RNNs are used in this paper: 1) Simple RNN, and 2) Long
Short-Term Memory (LSTM).

A. Simple RNN

Simple RNN also called Elman network [17], represents a
fully-connected network with a feedback. The loop keeps the
hidden state vector at a previous time step h(t-1) and feeds it
with the new input vector x(t), as shown in Fig. 1. Therefore,
Simple RNN has the most general topology and most similar
to the regular neural networks architectures.

Fig. 1. Simple RNN: a) network architecture; b) cell(t) architecture

The initial value (usually set to 0) of the hidden state vector

is denoted by h(0). Hidden state vector h(t) at a time step t is
calculated as follows:

 𝐡(𝑡) = 𝜎(𝐖𝐱𝐡𝐱(𝑡) +𝐖𝐡𝐡𝐡(𝑡 − 1) + 𝐛𝐡), (1)

where bh is a bias vector, σ represents the activation function,

Wxh and Whh denote the input and hidden weight matrices,
respectively. RNN output y(t) is defined by the following
equation:

 𝐲(𝑡) = 𝜎(𝐖𝐡𝐨𝐡(𝑡) + 𝐛𝐨), (2)

where σ is output activation function, Who represents output

weight matrix, and bo is a bias vector.

B. LSTM

LSTM is developed to overcome the vanishing gradient
problem that in a number of cases makes regular RNN hard to
train [18]. Recurrently connected modules called memory
blocks present the basis of LSTM architecture. Each memory
block consists of one or more memory cells connected in a
certain way with a set of multiplicative units (gates), as shown
in Fig. 2.

Fig. 2. LSTM: a) network architecture; b) cell (t) architecture

h(0) and c(0) are usually set to 0 and represent the initial

hidden state and cell state vectors, respectively. Input (i),
Output (o) and Forget (f) gates regulate when new information
enters, select useful information as output and forget (remove)
unnecessary information from the current cell state,
respectively. All gates have a common task to prevent
memory from perturbation by irrelevant inputs and outputs
and thus ensure long term memory storage. LSTM block also
contains candidate hidden state (g), which is based on current
input and the previous hidden state. Gates and hidden state
vectors are computed in the following way:

𝐢(𝑡) = 𝜎(𝐖𝐱𝐢𝐱(𝑡) +𝐖𝐡𝐢𝐡(𝑡 − 1) + 𝐛𝐢),
𝐟(𝑡) = 𝜎(𝐖𝐱𝐟𝐱(𝑡) +𝐖𝐡𝐟𝐡(𝑡 − 1) + 𝐛𝐟),
𝐨(𝑡) = 𝜎(𝐖𝐱𝐨𝐱(𝑡) +𝐖𝐡𝐨𝐡(𝑡 − 1) + 𝐛𝐨),

(3)

ROI 2.4.2

𝐠(𝑡) = 𝜎(𝐖𝐱𝐠𝐱(𝑡) +𝐖𝐡𝐠𝐡(𝑡 − 1) + 𝐛𝐠).

Weight matrices Wx and Wh are divided into 4 parts, where

each part belongs to corresponding gate: i, f, o and g. Other
variables labelling is in accordance with Section II-A. The cell
state is determined by its previous value c(t-1), candidate
hidden state, input and forget gates.

 𝐜(𝑡) = 𝐟(𝑡) ⊙ 𝐜(𝑡 − 1) + 𝐢(𝑡) ⊙ 𝐠(𝑡), (4)

where ⊙ represents element-wise multiplication of the
vectors. Hidden state vector represents the output of LSTM
cell:

 𝐡(𝑡) = 𝐨(𝑡) ⊙ 𝜎൫𝐜(𝑡)൯. (5)

LSTM output y(t) is defined in the following way:

 𝐲(𝑡) = 𝜎൫𝐖𝐡𝐲𝐡(𝑡) + 𝐛𝐲൯, (6)

where Why represents output weight matrix, and by is a bias
vector.

III. SENSOR SIGNAL ATTACK DETECTION METHOD

The method that we propose in this paper consists of two
phases: offline RNN training and online attack detection. The
training process is based on sensory data recorded under
normal conditions (without anomalies/attacks). The model
generated during training describes proper sensor operating
and represents the basis for signal prediction in attack
detection part. The second step considers the difference
between signal values estimated by model and measured
sensor signal values (Fig. 3).

In our method, the current value of the sensor signal x(t) is
predicted based on the sequence of previous z values x(t-z),...,
x(t-1). Thus, through the RNN training process ordered pairs
are created:

(𝐱(𝑡), 𝑦(𝑡)) ∈ {([𝑥(1), … , 𝑥(𝑧)], 𝑥(𝑧 + 1)),

൫[𝑥(2), … , 𝑥(𝑧 + 1)], 𝑥(𝑧 + 2)൯, …,
([𝑥(𝑛 − 𝑧), … , 𝑥(𝑛 − 1)], 𝑥(𝑛))},

(7)

where x(t), t∈[z+1, n] represents vector of input variables, and
y(t) denotes corresponding response. During training, a few
parameters should be tuned to get the best possible RNN
model. The sequence length z specifies the number of samples
which determine the next predicted value. Batch size (bs)
defines the number of samples to work with before updating
the weights. The network architecture is determined by the
number of layers (nl) and units per layer (ul). A unique RNN
model is obtained by varying one or more parameter values.
The first criterion for selecting the best model is the minimum
value of p, defined as follows:

 𝑝 =
ଵ

ି௭
∑ |𝑥(𝑡) − 𝑥ො(𝑡)|
௧ୀ௭ାଵ . (8)

Parameter p represents the mean absolute difference
between real (𝑥(𝑡)) and predicted (𝑥ො(𝑡) = 𝑦(𝑡)) values of
sensor readings over the test dataset. To make the model as
simple as possible and to reduce training and testing time, the
number of model parameters should not be too large.
Furthermore, to keep the latency that is introduced during
online application of detection mechanisms at acceptable
level, the number of RNN model parameters is especially
significant and should be as low as possible. Thus, a small
number of layers in the network and a small number of units
per layer represent the second criterion for model selection.
However, it should be emphasized that insufficient number of
layers and units may lead to an inaccurate model and
erroneous attack detection thereof.

Fig. 3. Algorithm for sensor signal attacks detection

The selected RNN model, according to the defined criteria,

represents the output from the offline phase, i.e. the input to
the online phase. Online attack detection is based on the
absolute difference between measured and predicted values. If
error exceeds the detection threshold Δmax consecutively for k
samples, the attack is present. The threshold value Δmax is
defined as a sum of mean value μ and standard deviation σ of
discrepancy between measured and estimated values over the
training data:

 ∆௫= 𝜇 + 𝜎, (9)

ROI 2.4.3

where 𝜇 and 𝜎 are:

𝜇 =
ଵ

ି௭
∑ (𝑥(𝑡) − 𝑥ො(𝑡)
௧ୀ௭ାଵ),

𝜎 = ට
ଵ

ି௭
∑ (𝑥(𝑡) − 𝜇)ଶ
௧ୀ௭ାଵ .

(10)

IV. EXPERIMENTAL RESULTS

The proposed method for attacks detection is
experimentally evaluated on electro-pneumatic positioning
system [16] with control distributed on smart sensor and smart
actuator. Smart actuator consists of linear rodless pneumatic
cylinder supplied by air through electro-pneumatic air
pressure regulator (output pressure in the range 2-6 bar) on
one, and mechanically controlled air pressure regulator
(constant output pressure of 4 bar) on the other side. As a part
of the smart actuator, local controller – wireless node controls
output pressure on the electro-pneumatic regulator.

On the other hand, the smart sensor represents linear
encoder (placed along the cylinder) that is equipped with its
own local controller – wireless node (LC2). LC2 obtains
pulses from the encoder and determines the position of the
piston. Corresponding to the desired position, LC2 generates a
control signal (in the range 0-1) and transmits it to LC1 using
wireless communication. Furthermore, LC1 converts the
received signal value to the analog voltage in the range 0-10 V
and sends it to electro-pneumatic regulator. Electro-pneumatic
regulator gives at its output the pressure proportional to the
input voltage. Air pressure difference between the two sides
of the piston causes piston movement.

Sensor signals were recorded during normal system
functioning, without attacks. In particular, the voltage
between LC1 and electro-pneumatic air pressure regulator was
acquired using characteristic piston trajectory that contained
positions of 50, 400, 250, 400, and 100 mm. The defined
trajectory was cyclically repeated 100 times. The data
acquisition was performed with a sampling rate of 100 Hz,
which led to a total of 400,000 records.

To find the optimal model of sensory data we used different
architectures based on two selected RNN types. We have
opted to use two RNN layers since a model with more than 2
RNN layers contains a large number of model parameters,
whereas, a single layer cannot meet the required model
performance. The architecture that has shown the best results
(Fig. 4) for all models is: RNN layer (units) - Dropout (rate) -
RNN layer (units) - Dropout (rate) - Dense (1).

Fig. 4. The chosen network architecture

Dropout layer helps prevent overfitting by temporarily
removing minimal units from the network with a rate from 0
to 1 (0 to 100% of all units). A Dense layer is a fully
connected layer, where each input node is connected to each
output node. Five RNN architecture related parameters were
varied during the process of finding the optimal model. The
considered values of RNN architecture parameters are given
in Table I. In addition, 4 different batch sizes that affected the
values of particular RNN parameters were explored.

This variation of parameters resulted in a total of 432
different models (216 models for both RNN types: Simple
RNN and LSTM). During models training, the whole dataset
is divided into training, validation and test part, with a ratio of
80/10/10 %, respectively. The validation and training losses
were almost unchanged after 5 epochs, so this was selected as
the optimal number of epochs during models training.
Through the process of finding the most appropriate model,
we used Adam optimizer with learning rate of 0.001 and
rectified linear unit (ReLU) activation function. The cost
function that we utilized was mean squared error (MSE).

TABLE I
VARIED RNN PARAMETERS

Parameter Value
sequence length (z) 2, 5, 10
dropout rate (dp) 0.05, 0.1
number of units in layer1 (ul1) 8, 16, 32
number of units in layer2 (ul2) 8, 16, 32
batch size (bs) 8, 16, 32, 64

The models were trained in Python using a Visual Code

Studio with Keras and TensorFlow at the background. To test
our proposed signal attack detection method and to choose an
appropriate model, a number of attacks have been created. In
this paper, we present three attacks of different types and
duration. Attack 1 (A1) utilizes sinus function to generate x
value, attack 2 (A2) increases x value linearly, whereas in
attack 3 (A3) value of x is immediately set to 0. The following
equations respectively define these three attacks:

A1: 𝑥(𝑡) = 0.5 + sin(0.005 ∙ 𝑡) , 𝑡 =
1, 2, … , 1300

A2: 𝑥(𝑡) = 𝑥(𝑡) + 0.00007 ∙ 𝑡 + 0.0005 ∙

rand(), 𝑡 = 1, 2, … ,400

A3: 𝑥(𝑡) = 0, 𝑡 = 1, 2, … , 500.

(11)

According to the first criterion (minimum value of p), the

best five models of both RNN types were chosen. The
performances of the selected models are given in Table II
where the best-performing models for both of the considered
RNN types are highlighted; Fig. 5 presents histogram of
absolute errors between measured and predicted values for
these models.

ROI 2.4.4

Fig. 5. Histograms of absolute errors between measured and predicted values for selected models; for the clarity of presentation, histograms do not contain 8084
(2.02%) samples whose errors are in the range [0.05, 0.98795] for Simple RNN and 7482 (1.88%) samples whose errors are in the range [0.05, 0.97650] for
LSTM model.

TABLE II

PERFORMANCES OF THE SELECTED RNN MODELS

RNN type-z-bs-dp-ul1-ul2 p
no. of
param.

attacks
detected

false
positives

false
negatives

SimpleRNN-5-16-0.05-32-16 0.00650 1889 2/3 1 1

SimpleRNN-5-64-0.05-16-16 0.00697 833 3/3 >10 0

SimpleRNN-10-32-0.05-32-16 0.00720 1889 3/3 >10 0

SimpleRNN-10-16-0.1-32-16 0.00813 1889 3/3 >10 0

SimpleRNN-5-64-0.05-32-16 0.00857 1889 3/3 >10 0

LSTM-5-8-0.1-32-16 0.00391 7505 1/3 0 2

LSTM-10-64-0.05-32-16 0.00457 7505 2/3 0 1

LSTM-5-8-0.1-32-32 0.00486 12705 3/3 6 0

LSTM-5-64-0.1-16-16 0.00487 3281 2/3 0 1

LSTM-2-8-0.05-32-8 0.00500 5673 3/3 0 0

From Table II it can be observed that LSTM-2-8-0.05-32-8

model can detect all three attacks without false-positive
results. However, no model with Simple RNN architecture
meets such requirement. Some of the models are not suitable
for attack detection, although they provide an excellent
prediction. The reason is that these models do not make
difference between the attacks and signal under normal
operating conditions. Simple RNN-5-16-0.05-32-16 is the
model that is the closest to detecting all attacks without false
positives when Simple RNN architectures are considered.
Measured signal, predicted values, and detected attacks for
two selected models are represented in Fig. 6. The input data
and their prediction are shown in blue and green lines,
respectively. Moments when the attack was detected, are
marked with red *. The detection method based on both
models successfully detected attacks 1 and 3.

However, the method based on the Simple RNN model was
not able to detect attack 2. Besides, this method also has one

false-positive result that is not shown in Fig. 6.
It can be observed from Fig. 6 that the LSTM-based

method detected attack 3 more effectively than Simple RNN
method, i.e. it required the smaller number of samples from
the beginning of the attack to its detection resulting in lower
attack detection latency. In the case of attack 1 detection, both
methods proved to be equally effective. Therefore, model
LSTM-2-8-0.05-32-8 is considered as the best.

V. CONCLUSION

We have proposed a method for signal attack detection
based on a prediction of signal value using deep learning
algorithms. More precisely, we used two popular recurrent
neural network architectures: Simple RNN and LSTM.

Deep learning models have been trained on a dataset
obtained from an electro-pneumatic positioning system under
normal conditions (without attacks). We have generated over
400 models by varying several parameters and according to

ROI 2.4.5

Fig. 6. Detected attacks

the defined criteria, we have selected the best models for each
RNN architecture. For the method evaluation, we have created
three different attacks. The method proved effective in cases
of LSTM architecture as it detected all attacks without false
positives.

Further research will focus on the implementation of the
method in real-world on low level controllers of CPS,
primarily on the electro-pneumatic positioning system.
Additionally, the method will be tested on publicly available
datasets with a number of different attacks.

ACKNOWLEDGMENT

This research was supported by the Science Fund of the
Republic of Serbia, grant No. 6523109, AI - MISSION4.0,
2020-2022.

REFERENCES
[1] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G.

Reinhart, O. Sauer, G. Schuh, W. Sihn, K. Ueda, “Cyber-physical
systems in manufacturing,” CIRP Annals, vol. 65, no. 2, pp. 621-641,
2016.

[2] Z. Jakovljevic, V. Majstorovic, S. Stojadinovic, S. Zivkovic, N.
Gligorijevic, M. Pajic, “Cyber-physical manufacturing systems
(CPMS),” Proc. 5th Int. Conf. Adv. Manuf. Eng. Technol. (NEWTECH
2017), Belgrade, Serbia, pp. 199-214, June 2017.

[3] L. Atzori, A. Iera, G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787-2805, Oct. 2010.

[4] Z. Jakovljevic, V. Lesi, S. Mitrovic, M. Pajic, “Distributing Sequential
Control for Manufacturing Automation Systems,” IEEE Transactions
on Control Systems Technology, vol. 28, no. 4, pp. 1586-1594, 2020.

[5] H. Kagermann, W. Wahlster, J. Helbig, Recommendations for
implementing the strategic initiative INDUSTRIE 4.0, 2013. [Online].
Available: http://www.acatech.de

[6] Z. Jakovljevic, V. Lesi, M. Pajic, “Attacks on Distributed Sequential
Control in Manufacturing Automation,” IEEE Transactions on
Industrial Informatics, 2020, doi: 10.1109/TII.2020.2987629

[7] A. Teixeira, D. Pérez, H. Sandberg, K. H. Johansson, “Attack Models
and Scenarios for Networked Control Systems,” Proceedings of the 1st
International Conference on High Confidence Networked Systems,
Beijing, China, pp. 55-64, Apr. 2012.

[8] S. Amin, A. A. Cárdenas, S. S. Sastry, “Safe and secure networked
control systems under Denial-of-Service attacks,” Proceedings of the
12th International Conference on Hybrid Systems: Computation and
Control, San Francisco, USA, pp. 31-45, Apr. 2009.

[9] Q. Zhang, K. Liu, Y. Xia, A. Ma, “Optimal Stealthy Deception Attack
Against Cyber-Physical Systems,” IEEE Transactions on Cybernetics,
May 2019.

[10] D. Ding, Q.-L. Han, Y. Xiang, X. Ge, X.-M. Zhang, “A survey on
security control and attack detection for industrial cyber-physical
systems,” Neurocomputing, vol. 275, pp. 1674-1683, 2018.

[11] H. S. Sánchez, D. Rotondo, T. Escobet, V. Puig, J. Quevedo,
“Bibliographical review on cyber attacks from a control oriented
perspective,” Annual Reviews in Control, vol. 48, pp. 103-128, Sep.
2019.

[12] Y. Huang, J. Tang, Y. Cheng, H. Li, K. A. Campbell, Z. Han, “Real-
Time Detection of False Data Injection in Smart Grid Networks: An
Adaptive CUSUM Method and Analysis,” IEEE Systems Journal, vol.
10, no. 2, pp. 532-543, June 2016.

[13] C. Murguia, J. Ruths, “CUSUM and chi-squared attack detection of
compromised sensors,” 2016 IEEE Conference on Control Applications
(CCA), Buenos Aires, Argentina, pp. 474-480, Sept. 2016.

[14] M. Kravchik, A. Shabtai, “Detecting Cyber Attacks in Industrial Control
Systems Using Convolutional Neural Networks,” Proceedings of CPS-
SPC 18 Conference, Toronto, Canada, pp. 72-83, Oct. 2018.

[15] D. Hadžiosmanović, R. Sommer, E. Zambon, P. H. Hartel, “Through the
eye of the PLC: semantic security monitoring for industrial processes,”
Proceedings of 30th Annual Computer Security Applications
Conference, New Orleans, USA, pp. 126–135, Dec. 2014.

[16] D. M. Nedeljkovic, Z. B. Jakovljevic, Z. Dj. Miljkovic, M. Pajic,
“Detection of cyber-attacks in electro-pneumatic positioning system
with distributed control,” 27th Telecommunications Forum (TELFOR),
Belgrade, Serbia, art. no. 8971062, Nov. 2019.

[17] J. Elman, “Finding Structure in Time,” Cognitive Science, vol. 14, no. 2,
pp. 179-211, Mar. 1990.

[18] S. Hochreiter, J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

ROI 2.4.6

