
 

Abstract—Current and forthcoming market requirements 
bring huge challenges to today manufacturing. Answer to the 
changing demands and high product variety is found in the 
integration of the Internet of Things (IoT) and Cyber-Physical 
Systems (CPS) into industrial plants. CPS as smart devices 
capable of data processing and information exchange enable fast 
adaptation of manufacturing resources to production of 
diversified products. Nevertheless, fully implemented internet 
communication at factory shop floor opens up a whole new area 
for potential cyber-attacks. The consequences of attacks can have 
a negative influence on the system or even endanger human lives. 
Therefore, defence techniques must be developed to ensure a 
high level of protection. Early detection of cyber-attacks is 
crucial to minimize or completely avoid the negative effects of 
the attack and keep the system safe and reliable. In this work, we 
propose an attack detection method based on deep learning 
approach. We explore the application of several deep learning 
architectures based on Simple Recurrent Neural Networks 
(Simple RNN) and Long Short-Term Memory (LSTM) based 
RNN for generation of the detection mechanisms tailored to the 
concrete process. Our method was experimentally verified using 
real world data and it proved to be effective, as it detected all 
considered attacks without false positives. 
 

Index Terms—Cyber security; Cyber Physical Systems; 
Internet of Things; Deep learning; Recurrent Neural Network. 

 

I. INTRODUCTION 

Traditional industrial systems are experiencing changes 
driven by market requirements, especially in terms of 
manufacturing systems adaptability to changing demands that 
should be achieved along with the preservation of their 
efficiency and productivity. Such changes are seeking smart 
components (sensors, actuators…) in the form of physical 
devices with integrated computation and communication 
capabilities - Cyber-Physical Systems (CPS) [1, 2]. Within an 
industrial plant, smart devices interact with a central control 
system and with each other, share information over the 
Internet (usually wireless), creating and exchanging large 
amounts of data through Industrial Internet of Things (IIoT) 
[3, 4]. Data generated through fully implemented 
communication are stored in clouds or on the edge and used to 
make business related conclusions and timely control 
decisions. The integration of IoT and CPS into plant 
represents the core of the concept called Industry 4.0 [5]. This 
approach was created to meet performances, availability, 
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flexibility requirements, as well as a new level of product 
individualization. However, openness and adopting the 
internet as the main way of communication in traditionally 
isolated industrial control systems introduce new risks and 
make these systems exposed to various types of cyber-attacks. 
Consequences of the attacks can degrade system performance, 
cause serious damages and production losses, or even affect 
human lives [6]. Therefore, the development of cyber-attack 
detection techniques represents one of the main industrial 
security issues today. To reduce or completely avoid the 
negative effects of attacks, they must be timely detected 
despite the fact they are trying to stay stealthy. 

In general, cyber-attacks can be roughly divided into two 
categories: Denial of Service (DoS) attacks and deception 
attacks [7]. DoS attacks interfere with the data flows, making 
them temporarily or permanently unavailable [8]. DoS attacks 
are not necessarily system-dependent, i.e. do not require prior 
knowledge about the system they attack. Deception attacks, 
on the other hand, affect data integrity by injecting malicious 
data with an aim to completely change system behaviour [9]. 
Unlike DoS, deception attacks need knowledge about system 
resources, in order to attack the most sensitive system parts, 
while remaining stealthy. Mathematically, DoS attacks can be 
described with �̅� ∈ ∅, and deception attacks with �̅� = 𝑥 +

𝑥
ௗ, where �̅�, 𝑥 and 𝑥

ௗ represent received, measured and data 
injected by attackers, respectively [10]. 

The appearance of new attacks also triggers the 
development of new defence techniques. Today, there are a 
number of techniques that can be split into two categories: 
data-centric and design-centric [11]. Data-centric techniques 
are based on the collected data, while design-centric are 
oriented to system analytical models and its control 
algorithms. For example, the detection of false injected data 
[12] and compromised sensory data [13] were performed 
using a design-centric method based on cumulative sum 
(CUSUM). Also, a number of data-centric detection 
techniques were developed, such as 1D convolutional neural 
networks [14], and autoregression modelling and control 
limits [15] that were deployed for anomaly detection in 
Industrial Control Systems. ε-insensitive support vector 
regression (ε-SVR) was utilized for this security issue in the 
system with distributed control [16]. 

In this work, we propose a data-centric method for cyber-
attacks detection in continuous time controlled systems. The 
method is based on deep learning model of normal system 
behaviour, created using Recurrent Neural Networks (RNN). 
The performance of the method is evaluated on a signal from 
the real-world system with several cyber-attacks. In particular, 
we have considered data obtained from a smart actuator as a 
part of the system with distributed control. The idea of 
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utilizing RNN for this purpose is based on their capability to 
use sequences and memorize the information obtained in the 
previous calculations. The memory from prior computation 
allows RNN to better understand data dependencies and to 
create a good prediction. Additionally, we compare the results 
obtained using different RNN architectures and select the best 
model according to the defined criteria. 

The remainder of the paper is structured as follows. Section 
2 briefly outlines used RNN architectures, whereas Section 3 
refers to the developed method for signal attacks detection. In 
Section 4 we represent the results of the proposed method 
evaluation using data from the real-world application with 
inserted attacks. Conclusions and future work guidelines are 
provided in Section 5. 

II. RECURRENT NEURAL NETWORK 

Recurrent Neural Networks differ from standard feed-
forward neural networks by connection where the current 
output vector y(t) depends not only on the present input x(t), 
but also on the recurrent input representing previous hidden 
state h(t-1). Thus, using history, network learns and 
understands the sequential nature of the data. Fed with the 
input and the previous hidden state vector, RNN cyclically 
computes output for every element of a sequence. Two types 
of RNNs are used in this paper: 1) Simple RNN, and 2) Long 
Short-Term Memory (LSTM). 

A. Simple RNN 

Simple RNN also called Elman network [17], represents a 
fully-connected network with a feedback. The loop keeps the 
hidden state vector at a previous time step h(t-1) and feeds it 
with the new input vector x(t), as shown in Fig. 1. Therefore, 
Simple RNN has the most general topology and most similar 
to the regular neural networks architectures. 

 

 
 
Fig. 1. Simple RNN: a) network architecture; b) cell(t) architecture 

 
The initial value (usually set to 0) of the hidden state vector 

is denoted by h(0). Hidden state vector h(t) at a time step t is 
calculated as follows: 

 
 𝐡(𝑡) = 𝜎(𝐖𝐱𝐡𝐱(𝑡) +𝐖𝐡𝐡𝐡(𝑡 − 1) + 𝐛𝐡), (1) 

where bh is a bias vector, σ represents the activation function, 

Wxh and Whh denote the input and hidden weight matrices, 
respectively. RNN output y(t) is defined by the following 
equation: 
 

 𝐲(𝑡) = 𝜎(𝐖𝐡𝐨𝐡(𝑡) + 𝐛𝐨), (2) 
 

where σ is output activation function, Who represents output 

weight matrix, and bo is a bias vector. 

B. LSTM 

LSTM is developed to overcome the vanishing gradient 
problem that in a number of cases makes regular RNN hard to 
train [18]. Recurrently connected modules called memory 
blocks present the basis of LSTM architecture. Each memory 
block consists of one or more memory cells connected in a 
certain way with a set of multiplicative units (gates), as shown 
in Fig. 2. 
 

 
 
Fig. 2. LSTM: a) network architecture; b) cell (t) architecture 

 
h(0) and c(0) are usually set to 0 and represent the initial 

hidden state and cell state vectors, respectively. Input (i), 
Output (o) and Forget (f) gates regulate when new information 
enters, select useful information as output and forget (remove) 
unnecessary information from the current cell state, 
respectively. All gates have a common task to prevent 
memory from perturbation by irrelevant inputs and outputs 
and thus ensure long term memory storage. LSTM block also 
contains candidate hidden state (g), which is based on current 
input and the previous hidden state. Gates and hidden state 
vectors are computed in the following way: 

 

 
𝐢(𝑡) = 𝜎(𝐖𝐱𝐢𝐱(𝑡) +𝐖𝐡𝐢𝐡(𝑡 − 1) + 𝐛𝐢), 
𝐟(𝑡) = 𝜎(𝐖𝐱𝐟𝐱(𝑡) +𝐖𝐡𝐟𝐡(𝑡 − 1) + 𝐛𝐟), 
𝐨(𝑡) = 𝜎(𝐖𝐱𝐨𝐱(𝑡) +𝐖𝐡𝐨𝐡(𝑡 − 1) + 𝐛𝐨), 

(3) 
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𝐠(𝑡) = 𝜎(𝐖𝐱𝐠𝐱(𝑡) +𝐖𝐡𝐠𝐡(𝑡 − 1) + 𝐛𝐠). 
 
Weight matrices Wx and Wh are divided into 4 parts, where 

each part belongs to corresponding gate: i, f, o and g. Other 
variables labelling is in accordance with Section II-A. The cell 
state is determined by its previous value c(t-1), candidate 
hidden state, input and forget gates. 

 
 𝐜(𝑡) = 𝐟(𝑡) ⊙ 𝐜(𝑡 − 1) + 𝐢(𝑡) ⊙ 𝐠(𝑡), (4) 

 
where ⊙ represents element-wise multiplication of the 
vectors. Hidden state vector represents the output of LSTM 
cell: 
 

 𝐡(𝑡) = 𝐨(𝑡) ⊙ 𝜎൫𝐜(𝑡)൯. (5) 
 
LSTM output y(t) is defined in the following way: 
 

 𝐲(𝑡) = 𝜎൫𝐖𝐡𝐲𝐡(𝑡) + 𝐛𝐲൯, (6) 
 
where Why represents output weight matrix, and by is a bias 
vector. 

III. SENSOR SIGNAL ATTACK DETECTION METHOD 

The method that we propose in this paper consists of two 
phases: offline RNN training and online attack detection. The 
training process is based on sensory data recorded under 
normal conditions (without anomalies/attacks). The model 
generated during training describes proper sensor operating 
and represents the basis for signal prediction in attack 
detection part. The second step considers the difference 
between signal values estimated by model and measured 
sensor signal values (Fig. 3). 

In our method, the current value of the sensor signal x(t) is 
predicted based on the sequence of previous z values x(t-z),..., 
x(t-1). Thus, through the RNN training process ordered pairs 
are created: 

 

 
(𝐱(𝑡), 𝑦(𝑡)) ∈ {([𝑥(1), … , 𝑥(𝑧)], 𝑥(𝑧 + 1)), 

൫[𝑥(2), … , 𝑥(𝑧 + 1)], 𝑥(𝑧 + 2)൯, …, 
([𝑥(𝑛 − 𝑧), … , 𝑥(𝑛 − 1)], 𝑥(𝑛))}, 

(7) 

 
where x(t), t∈[z+1, n] represents vector of input variables, and 
y(t) denotes corresponding response. During training, a few 
parameters should be tuned to get the best possible RNN 
model. The sequence length z specifies the number of samples 
which determine the next predicted value. Batch size (bs) 
defines the number of samples to work with before updating 
the weights. The network architecture is determined by the 
number of layers (nl) and units per layer (ul). A unique RNN 
model is obtained by varying one or more parameter values. 
The first criterion for selecting the best model is the minimum 
value of p, defined as follows: 
 

 𝑝 =
ଵ

ି௭
∑ |𝑥(𝑡) − 𝑥ො(𝑡)|
௧ୀ௭ାଵ . (8) 

 

Parameter p represents the mean absolute difference 
between real (𝑥(𝑡)) and predicted (𝑥ො(𝑡) = 𝑦(𝑡)) values of 
sensor readings over the test dataset. To make the model as 
simple as possible and to reduce training and testing time, the 
number of model parameters should not be too large. 
Furthermore, to keep the latency that is introduced during 
online application of detection mechanisms at acceptable 
level, the number of RNN model parameters is especially 
significant and should be as low as possible. Thus, a small 
number of layers in the network and a small number of units 
per layer represent the second criterion for model selection. 
However, it should be emphasized that insufficient number of 
layers and units may lead to an inaccurate model and 
erroneous attack detection thereof. 

 

 
 

Fig. 3. Algorithm for sensor signal attacks detection 
 
The selected RNN model, according to the defined criteria, 

represents the output from the offline phase, i.e. the input to 
the online phase. Online attack detection is based on the 
absolute difference between measured and predicted values. If 
error exceeds the detection threshold Δmax consecutively for k 
samples, the attack is present. The threshold value Δmax is 
defined as a sum of mean value μ and standard deviation σ of 
discrepancy between measured and estimated values over the 
training data: 

 
 ∆௫= 𝜇 + 𝜎, (9) 
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where 𝜇 and 𝜎 are: 
 

 

𝜇 =
ଵ

ି௭
∑ (𝑥(𝑡) − 𝑥ො(𝑡)
௧ୀ௭ାଵ ), 

 

𝜎 = ට
ଵ

ି௭
∑ (𝑥(𝑡) − 𝜇)ଶ
௧ୀ௭ାଵ . 

(10) 

IV. EXPERIMENTAL RESULTS 

The proposed method for attacks detection is 
experimentally evaluated on electro-pneumatic positioning 
system [16] with control distributed on smart sensor and smart 
actuator. Smart actuator consists of linear rodless pneumatic 
cylinder supplied by air through electro-pneumatic air 
pressure regulator (output pressure in the range 2-6 bar) on 
one, and mechanically controlled air pressure regulator 
(constant output pressure of 4 bar) on the other side. As a part 
of the smart actuator, local controller – wireless node controls 
output pressure on the electro-pneumatic regulator. 

On the other hand, the smart sensor represents linear 
encoder (placed along the cylinder) that is equipped with its 
own local controller – wireless node (LC2). LC2 obtains 
pulses from the encoder and determines the position of the 
piston. Corresponding to the desired position, LC2 generates a 
control signal (in the range 0-1) and transmits it to LC1 using 
wireless communication. Furthermore, LC1 converts the 
received signal value to the analog voltage in the range 0-10 V 
and sends it to electro-pneumatic regulator. Electro-pneumatic 
regulator gives at its output the pressure proportional to the 
input voltage. Air pressure difference between the two sides 
of the piston causes piston movement. 

Sensor signals were recorded during normal system 
functioning, without attacks. In particular, the voltage 
between LC1 and electro-pneumatic air pressure regulator was 
acquired using characteristic piston trajectory that contained 
positions of 50, 400, 250, 400, and 100 mm. The defined 
trajectory was cyclically repeated 100 times. The data 
acquisition was performed with a sampling rate of 100 Hz, 
which led to a total of 400,000 records. 

To find the optimal model of sensory data we used different 
architectures based on two selected RNN types. We have 
opted to use two RNN layers since a model with more than 2 
RNN layers contains a large number of model parameters, 
whereas, a single layer cannot meet the required model 
performance. The architecture that has shown the best results 
(Fig. 4) for all models is: RNN layer (units) - Dropout (rate) - 
RNN layer (units) - Dropout (rate) - Dense (1). 
 

 
 
Fig. 4. The chosen network architecture 

Dropout layer helps prevent overfitting by temporarily 
removing minimal units from the network with a rate from 0 
to 1 (0 to 100% of all units). A Dense layer is a fully 
connected layer, where each input node is connected to each 
output node. Five RNN architecture related parameters were 
varied during the process of finding the optimal model. The 
considered values of RNN architecture parameters are given 
in Table I. In addition, 4 different batch sizes that affected the 
values of particular RNN parameters were explored. 

This variation of parameters resulted in a total of 432 
different models (216 models for both RNN types: Simple 
RNN and LSTM). During models training, the whole dataset 
is divided into training, validation and test part, with a ratio of 
80/10/10 %, respectively. The validation and training losses 
were almost unchanged after 5 epochs, so this was selected as 
the optimal number of epochs during models training. 
Through the process of finding the most appropriate model, 
we used Adam optimizer with learning rate of 0.001 and 
rectified linear unit (ReLU) activation function. The cost 
function that we utilized was mean squared error (MSE). 
 

TABLE I 
VARIED RNN PARAMETERS  

 
Parameter Value 
sequence length (z) 2, 5, 10 
dropout rate (dp) 0.05, 0.1 
number of units in layer1 (ul1) 8, 16, 32 
number of units in layer2 (ul2) 8, 16, 32 
batch size (bs) 8, 16, 32, 64 

 
The models were trained in Python using a Visual Code 

Studio with Keras and TensorFlow at the background. To test 
our proposed signal attack detection method and to choose an 
appropriate model, a number of attacks have been created. In 
this paper, we present three attacks of different types and 
duration. Attack 1 (A1) utilizes sinus function to generate x 
value, attack 2 (A2) increases x value linearly, whereas in 
attack 3 (A3) value of x is immediately set to 0. The following 
equations respectively define these three attacks: 

 

 

A1: 𝑥(𝑡) = 0.5 + sin(0.005 ∙ 𝑡) , 𝑡 =
1, 2, … , 1300 

 
A2: 𝑥(𝑡) = 𝑥(𝑡) + 0.00007 ∙ 𝑡 + 0.0005 ∙

rand(), 𝑡 = 1, 2, … ,400 
 

A3: 𝑥(𝑡) = 0, 𝑡 = 1, 2, … , 500. 

(11) 

 
According to the first criterion (minimum value of p), the 

best five models of both RNN types were chosen. The 
performances of the selected models are given in Table II 
where the best-performing models for both of the considered 
RNN types are highlighted; Fig. 5 presents histogram of 
absolute errors between measured and predicted values for 
these models. 
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Fig. 5. Histograms of absolute errors between measured and predicted values for selected models; for the clarity of presentation, histograms do not contain 8084 
(2.02%) samples whose errors are in the range [0.05, 0.98795] for Simple RNN and 7482 (1.88%) samples whose errors are in the range [0.05, 0.97650] for 
LSTM model. 

 
TABLE II 

PERFORMANCES OF THE SELECTED RNN MODELS 
 

RNN type-z-bs-dp-ul1-ul2 p 
no. of 
param. 

attacks 
detected 

false 
positives 

false 
negatives 

SimpleRNN-5-16-0.05-32-16 0.00650 1889 2/3 1 1 

SimpleRNN-5-64-0.05-16-16 0.00697 833 3/3 >10 0 

SimpleRNN-10-32-0.05-32-16 0.00720 1889 3/3 >10 0 

SimpleRNN-10-16-0.1-32-16 0.00813 1889 3/3 >10 0 

SimpleRNN-5-64-0.05-32-16 0.00857 1889 3/3 >10 0 

LSTM-5-8-0.1-32-16 0.00391 7505 1/3 0 2 

LSTM-10-64-0.05-32-16 0.00457 7505 2/3 0 1 

LSTM-5-8-0.1-32-32 0.00486 12705 3/3 6 0 

LSTM-5-64-0.1-16-16 0.00487 3281 2/3 0 1 

LSTM-2-8-0.05-32-8 0.00500 5673 3/3 0 0 

 
From Table II it can be observed that LSTM-2-8-0.05-32-8 

model can detect all three attacks without false-positive 
results. However, no model with Simple RNN architecture 
meets such requirement. Some of the models are not suitable 
for attack detection, although they provide an excellent 
prediction. The reason is that these models do not make 
difference between the attacks and signal under normal 
operating conditions. Simple RNN-5-16-0.05-32-16 is the 
model that is the closest to detecting all attacks without false 
positives when Simple RNN architectures are considered. 
Measured signal, predicted values, and detected attacks for 
two selected models are represented in Fig. 6. The input data 
and their prediction are shown in blue and green lines, 
respectively. Moments when the attack was detected, are 
marked with red *. The detection method based on both 
models successfully detected attacks 1 and 3. 

However, the method based on the Simple RNN model was 
not able to detect attack 2. Besides, this method also has one 

false-positive result that is not shown in Fig. 6. 
It can be observed from Fig. 6 that the LSTM-based 

method detected attack 3 more effectively than Simple RNN 
method, i.e. it required the smaller number of samples from 
the beginning of the attack to its detection resulting in lower 
attack detection latency. In the case of attack 1 detection, both 
methods proved to be equally effective. Therefore, model 
LSTM-2-8-0.05-32-8 is considered as the best. 

V. CONCLUSION 

We have proposed a method for signal attack detection 
based on a prediction of signal value using deep learning 
algorithms. More precisely, we used two popular recurrent 
neural network architectures: Simple RNN and LSTM. 

Deep learning models have been trained on a dataset 
obtained from an electro-pneumatic positioning system under 
normal conditions (without attacks). We have generated over 
400 models by varying several parameters and according to  
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Fig. 6. Detected attacks 

 
the defined criteria, we have selected the best models for each 
RNN architecture. For the method evaluation, we have created 
three different attacks. The method proved effective in cases 
of LSTM architecture as it detected all attacks without false 
positives. 

Further research will focus on the implementation of the 
method in real-world on low level controllers of CPS, 
primarily on the electro-pneumatic positioning system. 
Additionally, the method will be tested on publicly available 
datasets with a number of different attacks. 
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