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Abstract—A rule-based controller to assist stroke survivors' 

gait through multichannel functional electrical stimulation was 

developed. The controller was designed for the system 

comprising a wearable four-channel stimulator and insoles 

instrumented with pressure sensors and inertial measurement 

units. The gait segmentation algorithm processes Real-time 

signals from the sensorized insoles. The heuristically 

established rules split each gait cycle into five phases. These If-

Then rules trigger stimulation channels to activate paralyzed 

thigh and shank muscles in an order that leads to the natural 

like stance and swing. The stimulator sends electrical pulses via 

surface electrodes positioned on a hemiplegic patient's paretic 

leg to activate the quadriceps, the hamstrings, the anterior 

tibialis, and the gastrocnemius muscles. A graphic user 

interface was developed to set the stimulation parameters and 

calibrate the system. The segmentation algorithm was 

validated on the recordings of 10 stroke patients, and the 

assistive gait training system was tested on one older adult to 

prove the concept. 

 
Index Terms—Rule-Based Control; Multichannel Functional 

Electrical Stimulation; Post-Stroke Gait Restoration. 

 

I. INTRODUCTION 

80 percent of stroke survivors develop motor disability 

and experience problems to walk. Restoring functions after 

stroke is a complex process mediated by neuroplasticity 

induced by spontaneous recovery and therapeutic 

interventions [1]. Early motor training seems essential for 

successful recovery: motor learning mechanisms may be 

operative during spontaneous stroke recovery, and by 

interacting with a rehabilitative exercise, they can be 

reinforced [2]. Functional Electrical Stimulation (FES) has 

been used in the rehabilitation of chronic hemiplegia since 

the 1960s when the first applications for drop-foot 

correction were patented [3]. During the following years, 

many improvements were suggested in terms of 

synchronizing the stimulation with the gait events and the 

number of stimulated muscles. The first clinically applied 

FES systems for restoration of locomotion used an open-

loop control method, in which stored sequences of muscle 
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activation were associated with the phases of a normal gait 

cycle [4]. The main drawback of this control was the lack of 

adaptation of the stimulation to the inevitable walking 

pattern fluctuations. The microcontroller technology and the 

enhancement of the gait events detection sensors led to the 

development of more effective control strategies. The rule-

based control (RBC) aims to replace the manual FES-

switching function through the automatic detection of the 

gait phases [5]. This control method is based on If-Then 

expressions: If part of the rule corresponds to the real-time 

recognition of a coded sensor pattern and represents the 

system's state, then part of the rule triggers the functional 

movement correspondent to the state identified. The real-

time recognition of the gait events is usually performed by 

Gait Phase Detection (GPD) systems that rely on the signals 

from artificial sensors. Nowadays, wearable sensors can 

effectively be used for gait segmentation. Foot pressure 

insoles or footswitches represent the gold standard in gait 

segmentation since each gait phase can be associated with a 

specific sensor output [6]. Alternatively, inertial 

measurement units (IMU) that comprise accelerometers, 

gyroscopes, and magnetometers are widely used to feed gait 

phase discrimination algorithms. The signals from 

footswitches and pressure/force sensors allow identification 

of the gait events accurately (e.g., heel contact, push-off). 

Still, they cannot discriminate against the swing phase's sub-

phases. This limitation can be eliminated by adding inertial 

sensors to provide information about the kinematics of the 

movement [7]. Kojović et al. [8] presented an automatic 

control for an FES system based on If-Then rules designed 

by mapping sensors, and muscle activated patterns. The 

sensor system included accelerometers and force-sensing 

resistors. 

We present here a new rule-based controller for a 

multichannel electronic stimulator to assist gait in stroke 

survivors. 

II. MATERIALS AND METHODS 

The experimental setup includes the multichannel 

MOTIMOVE modular functional electrical stimulation 

system which allows distributed and asynchronous 

stimulation (compensated biphasic pulses, 1-100 pulses, 50-

1000 μs, up to 170 mA) [9], a set of surface electrodes for 

four muscle groups and the Gait Teacher, a sensorized 

insole for the acquisition of ground reaction forces and foot 

kinematics [10]  (Fig. 1). The MOTIMOVE controls current 

pulses on four stimulation channels and receives six analog 

inputs from the Gait Teacher (sampling rate 100 Hz). Four 

input signals come from the insole worn on the paretic side: 

three ground reaction forces estimated from five pressure 
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sensors and the foot's angular rate in the sagittal plane (from 

the gyroscope) (Fig. 2). Two input signals come from the 

non-paretic side and are used for the assessment of the gait 

pattern. 

 
Fig. 1. Setup used for the design and proof of concept of the rule-

based controller for FES assisted gait. MOTIMOVE is an up to 

eight-channel smart electronic stimulator. The Gait Teacher is a set 

of two instrumented insoles with pressure transducers and inertial 

measurement units for reproducible, real-time, no hysteresis 

acquisition of ground force reaction and foot kinematics. The 

system uses surface electrodes. 

 

A. Gait Phase Detection Algorithm 

Starting from the signals coming from the Gait Teacher, 

we implemented a Gait Phase Detection (GPD) algorithm 

for the real-time detection of gait sub-phases during 

walking. This algorithm detects five transition events (T1, 

T2, T3, T4, T5), which define five gait sub-phases 

corresponding closely to Terminal Swing (TS), Heel 

Contact (HC), Mid Stance (MS), Push-Off (PO) and Initial 

Swing (IS), respectively (Fig. 2).  

 
Fig. 2: Gait Teacher recordings from one gait cycle: the upper 

panel shows the normalized pressure forces on heels, metatarsals, 

and toe. Outputs from two sensors on the metatarsals (yellow) and 

two sensors on the heel (blue) are connected in parallel. The 

bottom panel shows the normalized angular velocity of the foot in 

the sagittal plane. Transition events T1, T2, T3, T4, and T5 are 

described in the text (TS-Terminal Swing, HC-Heel Contact, MS-

Mid Stance, PO-Push-Off, IS-Initial Swing). 
 

Each transition event is detected by the fulfillment of 

determined conditions, as reported in Table 1. The algorithm 

uses the signals coming from the insole (worn on the paretic 

side) and threshold values that are patient-dependent and are 

set during the calibration procedure. 

 
TABLE 1. CONDITIONS FOR DETECTING THE TRANSITION EVENTS T1, 

T2, T3, T4, T5. Ω IS THE ANGULAR RATE IN THE SAGITTAL PLANE, 

PHEEL, PMET, AND PTOE ARE THE PRESSURES ON HEELS, 

METATARSALS, AND TOE. PHEEL_THRS, PMET_THRS, AND Ω_THRS 

ARE THRESHOLD VALUES. 

 

T1 ω = max & PMet < PMet_Thrs & PHeel < PHeel_Thrs 

T2 Zero-crossing of ω from positive to negative values 

T3 
ω < ω_Thrs & (PHeel + PMet) > (PHeel_Thrs+ 

PMet_Thrs) 

T4 Intersection of PHeel with PMet 

T5 
(PMet = max || PToe = max || ω = min) &  

PHeel < PHeel_Thrs 

 

B. Rule-Based Control 

We implemented the GPD algorithm as a state machine, 

in which each gait phase defines a state, and conditions from 

Table 1 define transitions between the states. The 

stimulation starts when the event T4 is detected for the first 

time. Transitions are allowed only between consecutive 

states. This constraint leads to the fact that, if the algorithm 

misses a transition event, the stimulation remains in the 

current state until the same transition occurs in the following 

step. To avoid this mechanism, we set a time constraint on 

each phase duration: if a phase's duration is higher than a set 

time, the system enters an idle state with no stimulation, 

waiting for the beginning of the following step (e.g., event 

T4). This time constraint depends on the subject's walking 

speed, and the therapist chooses it among pre-selected 

values during the calibration of the system. The rule-based 

control of the FES-assistive gait training system is based on 

If-Then expressions, where the If statement verifies the 

current gait sub-phase. In contrast, the Then statement 

activates the corresponding muscular group. Thus, once the 

If the condition of the rule-based control is satisfied (i.e., the 

GPD algorithm determined the current phase of the system 

and the phase duration is not higher than the pre-set time 

constraint), the stimulator can generate and send the electric 

pulses to the corresponding channels. Each channel is 

connected to a surface electrode positioned on the bulk of 

the correspondent muscle. The muscular groups involved in 

the stimulation are the quadriceps (vastus lateralis and rectus 

femoris) as knee extensor, the hamstring as knee flexor, the 

tibialis anterior as dorsal flexor, and the gastrocnemius as a 

plantar flexor. The stimulation pattern is shown in Fig. 3. 

 

Fig. 3. Basic stimulation pattern for one gait cycle. 
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C. Graphic User Interface 

We developed a Graphic User Interface (GUI) to allow 

the therapist to easily interact with the assistive gait system 

(Fig. 4). The GUI can directly communicate with the 

stimulator, sending and receiving data, and allows setting 

the system without any external assistance. It allows us to 

calibrate the insole, remove the offsets from the sensors, and 

set the amplitude of the stimulation for each muscle 

depending on the patient's motor and pain threshold. The 

user can enable the desired channels and select the basic 

stimulation parameters, such as the frequency and the pulse 

width of the stimulation. Also, from this interface, the 

pressure and angular velocity signals' thresholds can be 

manually set for each patient. Finally, the basic stimulation 

pattern can be modified according to patient needs. At the 

end of the calibration session, all the parameters can be 

saved and stored for the following sessions. The first 

calibration session lasts about 25 minutes, while the 

subsequent sessions' setting time is about 5 minutes. 

Fig. 4. Insole Calibration Tab of the GUI. 

 

D. Gait Phase Detection Algorithm Validation 

The Gait Phase Detection algorithm was validated using 

the recordings in ten chronic stroke patients to assess their 

efficiency and robustness. We implemented a second 

algorithm to perform a precise offline gait segmentation. 

The outputs of the online and offline algorithms were 

compared, and the time differences of the same events 

defined the time errors (Fig. 5). The time error in estimating 

each phase was computed both for the paretic and non-

paretic limb for all the subjects. The analysis was carried out 

in both intra-subject (across 50 steps) and inter-subject 

(averaged across subjects). Due to the small sample size, we 

used a non-parametric statistical test to assess differences 

between online and offline detection; particularly, the 

Wilcoxon signed-rank test was employed.  

 

E. Proof of Concept of the FES-Assistive System 

Finally, we tested the FES-assistive gait training system 

on a 70-year-old man without any known motor disability. 

The gait pattern of older adults is similar to the gait of stroke 

patients, except that there is no drop-foot, and the symmetry 

between the legs is high. This test aimed to prove that the 

stimulation does not prevent normal gait and does not lead 

to instability. Three different modalities were tested: no 

stimulation, one single stimulation channel (tibialis anterior 

only) replicating the typical foot-drop stimulation, and 4-

channel stimulation (quadriceps, hamstrings, tibialis 

anterior, and gastrocnemius). We compared gait 

characteristics as cadence and gait phases’ duration between 

the different stimulation modalities. Moreover, we 

performed the analysis of signals oscillations: they were 

quantified by applying a moving-average low pass filter (20 

samples) on the signals for the three tested modalities and 

computing the difference between the filtered signal and the 

original ones. Again, we chose a non-parametric statistical 

test: in this case, we used the Mann-Whitney U test. 

 

 
Fig. 5. Example of gait segmentation performed by the offline and 

the online algorithms on three gait cycles of a stroke patient. On 

the right, the detected events are zoomed. 

III. RESULTS 

A. Gait Phase Detection Algorithm Validation 

Signals coming from the healthy gait pattern are smoother 

and more regular than signals acquired from stroke patients. 

The GPD algorithm was tested on data collected in ten 

chronic stroke patients. The algorithm detected 100% of the 

transition events on an average of 50 steps per patient. A 

higher walking disability characterized three out of ten 

patients in terms of gait speed and asymmetries between the 

limbs. The time error distribution computed across each 

patient for both the limbs showed a low variability in 

detecting all the phases, except for the most impaired 

subjects. 

 
Fig. 6. Meantime error distribution across ten stroke patients in 

each transition event. The horizontal bar of the box plot represents 

the median of the population. The bold line extends from the first 

to the third quartile. The fine line goes from the minimum to the 

maximum value, excluding the outliers.  

 

For them, the paretic limb was characterized by a large 

error variability, especially in detecting the beginning of the 

Terminal Swing (T1) and the beginning of the Initial Swing 

(T5). The time error was averaged across the steps of each 

patient to assess the variability among patients. Similarly, 

this analysis showed a very low variability of the time error 

for all the phases except for the T5 transition. Moreover, the 

time error distribution showed the existence of an intrinsic 

error due to the real-time nature of the algorithm: transitions 

T1, T3 and T5 had a median delay of 40ms, since the 

conditions for the detection of these events are based on the 
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derivative of the signals computed over five consecutive 

points (Fig. 6). 

 

B. FES-Assistive System Proof of Concept 

The current amplitude values were set at: 68 mA, 59 mA, 

78 mA, and 68 mA for the quadriceps, hamstrings, tibialis 

anterior and gastrocnemius channels, respectively. The 

stimulation frequency was set to 40 pulses per second, and 

the pulse duration was 350μs. First, the cadence did not 

change significantly between the three stimulation 

modalities, although a small increase occurred in 4-channel 

stimulation (No stimulation, 81.1 steps/m; Tibialis Anterior 

stimulation, 80.1 steps/m; 4-channel stimulation, 84.1 

steps/m). We evaluated the angular velocity and heel 

pressure force signals: in the no stimulation modality, they 

were characterized by more significant oscillations than in 

the stimulation modalities. For the angular velocity pattern, 

we found a statistically significant difference between the 

modalities with and without stimulation. In contrast, for the 

heel pressure force, we found a significant difference 

between all the modalities (Fig. 7). Finally, the phases’ 

duration analysis showed a non-significant difference 

between the modalities, except for the Terminal Swing and 

Heel Contact phase duration. The reduction of oscillations 

probably reduced the Terminal Swing phase duration and 

increased the duration of the Heel Contact phase. 

 
Fig. 7. Oscillation index computed on the angular velocity and the 

heel pressure force signals across ten gait cycles for the healthy 

subject. The bar value is the median of the index, and the vertical 

black line represents the first and third quartile of the distribution. 

For the statistical analysis, the Mann-Whitney U test was used.             

IV. CONCLUSION 

In the framework of FES-assistive systems for stroke 

patients’ rehabilitation, we present a new controller for a 

multichannel electronic stimulator to assist gait in stroke 

survivors. The novelty of the proposed control system relies 

on combining the accurate and reliable gait information 

provided by the Gait Teacher insole with the modularity of 

the MOTIMOVE stimulator, which creates an exceptional 

wearable and easy-to-use solution to assist persons with 

hemiparesis to recover motor functions after stroke.  

The Gait Teacher's signals are online processed by a GPD 

algorithm to split gait into five phases corresponding closely 

to: Terminal Swing, Heel Contact, Mid Stance, Push-Off, 

and Initial Swing. Five transition events, T1-T5, identify 

these phases. This algorithm was validated on the recordings 

of ten chronic stroke patients. T2 and T4 are characterized 

by negligible time delays, while T1, T3, and T5 detections 

are affected by an intrinsic time delay (40 ms) due to the 

algorithm's real-time nature. Nevertheless, the GDP 

algorithm was able to detect all the phases across all the 

steps of each stroke patient. The validation results were in 

line with the timing and accuracy requirements that the 

stimulation demands. The proof of concept performed on a 

healthy subject showed the stimulation pattern did not 

counteract the physiological muscle activity and seemed to 

work in synergy. 

Moreover, some oscillations, which characterized the 

angular velocity signal and the heel pressure force signal, 
were reduced by the stimulation of the tibialis anterior 

during the swing phase of the gait cycle and the quadriceps 

muscle during the Heel Contact phase, respectively. Finally, 

the system's calibration from the GUI allows partial 

customization of the system for each subject. The gait 

parameters sent to the GPD algorithm before the stimulation 

permitted session to set the proper thresholds of the pressure 

and angular velocity signals. Moreover, the possibility to 

store the data of each patient after the first session reduces 

the setting time to only 5 minutes. The next step is to 

perform a feasibility study on stroke patients to evaluate the 

FES-assistive system usability in a clinical environment. 

Further improvements will involve combining the 

information coming from both insoles, allowing the 

implementation of more flexible and efficient rules. 

Moreover, the automatization of the calibration and the 

online adaptation of the parameters would reduce the setting 

time and limit the error due to a manual selection of the 

signal thresholds. 
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Abstract— We developed a method for assessment of the gait 

regularity in hemiplegic patients. We used a fully wearable 

system comprising ground reaction force sensors and inertial 

measurement units to record the dynamics and array electrodes 

and multichannel amplifiers for electromyography (EMG) 

mapping of activity of tibialis anterior m. during the gait. The 

fuzzy logic was applied to ground reaction force signals  for 

estimating the gait symmetry. This paper introduces a new 

parameter for estimation of symmetry of muscle activities in the 

ipsilateral and contralateral legs based on the entropy of EMG 

maps. The presented method forms a set of gait parameters for 

quantifying the regularity of the patient’s gait. The set of 

parameters are of interest for the assessment of the efficacy of 

the therapy. 

 

Index Terms—gait, EMG, EMG maps, IMU, wearable 

technology, drop foot 

 

I. INTRODUCTION 

Cerebrovascular lesion in most cases leads partial paralysis 

of one side of the body (hemiplegia). Hemiplegia comprises 

an irregular posture, unevenly distributed support on legs 

when standing, slow and asymmetrical gait, rapid onset of 

fatigue, etc. [1]. 

The motor status of a hemiplegic patient can be assessed by 

the analysis of the gait regularity. There are a several scales 

for gait assessment: Rivermead Visual Gait Assessment 

(RVGA), Salford Gait Tool (SGT), Observational Gait Scale 

(OGS), Clinical Gait and Balance Scale (GABS), etc. [2]. The 

listed clinical scales are largely based on the visual 

observations made by the clinician. 

Technological progress led to the reproducible and 

examiner independent methods for gait quantification. 

Different types of instrumentation are in use: sensor platforms 

for measuring the reaction forces of the ground and cameras 

with reflective markers for recording movement [3], inertial 

measurement units (IMU), and insoles for shoes with force 

sensors [4], walking paths with sensors [5], etc. These systems 

 
Ivan Topalović is with Institute of Technical Sciences of SASA, Knez 

Mihailova 35, 11000 Belgrade, Serbia (e-mail: topalovic_ivan@yahoo.com) 

Suzana Dedijer Dujović is with the Clinic for rehabilitation "Dr     

Miroslav Zotović", Sokobanjska 13, 11000 Belgrade (e-mail: 
suzanadedijer@yahoo.com) 

Ljubica Konstanitinović is with the Medical Faculty, University of 

Belgrade and Clinic for rehabilitation "Dr Miroslav Zotović", Sokobanjska 
13, 1100 Belgrade (e-mail: ljubicakonstantinovic@yahoo.com) 

Dejan B. Popović is with the School of Electrical Engineering, University 

of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia and 

Serbian Academy of Sciences and Arts (e-mail: dbp@etf.rs). 

provide various information about gait mechanics: joints 

angles, angular velocities, ground reaction forces, etc. [6]. 

Electrophysiological signals (e.g., electromyography – EMG) 

carry important information about the motor systems 

responsible for the gait [7]. The combination of physiological 

signals and gait mechanics gives the possibility of qualitative 

and quantitative gait analysis, which includes the analysis of 

the movement actuators and its mechanics. 

We presented a method for gait assessment based on 

temporal parameters [8, 9]. To obtain these parameters (gait 

cycle, step cycle, swing phase, stance phase, double support 

phase, and cadence) we used shoe insoles with built-in 

pressure sensors and IMUs to analyze gait mechanics and 

determine the characteristic moments that represent the 

boundary between individual gait phases. We showed in 

another study [10] the upgraded method where the EMG 

mapping was included. We have shown that there are 

significant differences between the intensities of EMG in 

specific regions on the paretic and nonparetic leg. We showed 

the presence of symmetrical shapes in EMG maps of 

ipsilateral and contralateral extremities and lack of intensity in 

the paretic side relative to nonparetic [11, 12]. As EMG maps 

represent digital images, in [13] we have shown the 

implementation of digital image processing techniques for 

analysis of EMG maps.  

In this paper we presented the method for gait assessment 

based on temporal gait parameters and EMG mapping. The 

method quantifies the gait symmetry in electrical activities of 

muscle tibialis anterior (TA) in legs during the gait of 

hemiplegic patients. The TA muscle is responsible for lifting 

the toes. The lack of activity of the TA results with the drop 

foot and the gait starts to be abnormal since the toes are 

catching the ground during the swing phase of the gait cycle. 

We used the recordings of mechanical and EMG signals from 

the gait of a group of hemiplegic patients before and after 

standard medical treatment in the rehabilitation. 

II. THE METHOD 

A. Instrumentation 

To record monopolar EMG signals from the TA on both 

legs we used two custom designed circular 24-pad electrodes 

(d = 8 mm). Pads were fixed in 6 rows with different number 

of pads (5 pads in 1st and 2nd row, 4pads in 3rd and 4th row, and 

3 pads in 5th and 6th row). Arrays were made of SA9327 

EKG/EMG Ag-AgCl commercially available electrodes 

(Thought Technology Ltd., Montreal, QC, CA). All pads were 
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covered with AG936 conductivity gel (Axelgaard 

Manufacturing Co. Ltd., Lystrup, DK). We used disposable 

pre-gelled EMG Ag/AgCl electrodes with 10 mm flat pellets, 

Covidien BRD H124SG (Covidien, Medtronic, Dublin, IR) as 

ground and reference electrode. 

Array electrodes were connected to two wearable 24-

channel amplifiers Smarting (https://mbraintrain.com/). The 

Smarting was designed for monopolar recordings of the 

cortical activities (brain-computer interface – BCI). Due to 

Bluetooth connection with PC Smarting has sampling rate 

limit at 500 Hz per channel. This limitation does not satisfy 

Nyquist criterion for EMG signals, but we validated the 

applicability of the Smarting for estimation of EMG 

envelopes by comparing the recordings with the signals 

acquired by a professional EMG amplifier BioVision 

(BioVision, Wehrheim, DE) [14]. For recordings, we used the 

proprietary software of the Smarting. Each Smarting system 

was connected to a separate PC. 

For the recording of the gait mechanics we used 

instrumented insoles (Gait Teacher, https://rehabshop.rs/). 

Each insole comprises five pressure sensors and one IMU to 

record accelerations and angular velocities in all three 

directions. Insoles have wireless connection with PC. For the 

signal acquisition, we used the proprietary software of the 

Gait Teacher. In this study we used signals from the pressure 

sensors that are highly correlated with the ground reaction 

forces. 

All three recording systems (two PCs with smarting 

systems and one PC connected to insoles system) were 

synchronized by Lab Stream Layer platform, which collects 

data from available streams from PCs connected in the same 

Local Area Network. 

B. Subject and Procedure 

One hemiplegic patient (female, 72-years, 175 cm, 71 kg, 

right side hemiplegia, uses four-legged cane) participated in 

our key study. She signed the informed consent approved by 

the ethics committee of the Clinic for rehabilitation “Dr 

Miroslav Zotović“). The whole procedure was supervised by a 

physiatrist. 

 
Fig. 1. a) Schematics of the electrode placement: array electrode was 

covering the region over TA  muscle; ground electrode was placed over bony 

part of knee and the reference electrode was placed under the array along the 

longitudinal axis; b) Patient with experimental setup. 

The array electrodes were placed symmetrically on both 

legs, covering the TA regions. Longer edge of the electrode 

was placed along the tibia, top of the electrode at 20 mm from 

the tibial tuberosity (Fig. 1). Ground electrodes were placed 

over patella, and reference electrodes were placed under the 

array electrodes, 10 mm along the longitudinal axis. 

Subject’s task was to walk in a straight line to cover the 

distance of 10 m. Before the recording subject was asked to 

stand with evenly distributed weight on both legs (as much as 

it was possible). Subject was asked to start and stop the gait 

on an auditory signal. The subject was asked to walk with the 

gait rate that she felt comfortable. The procedure was repeated 

three times in one session before and after three weeks of the 

therapy. 

C. Data Processing 

An original software in Matlab R2015a (MathWorks, Inc., 

Natick, MA, US) was used for processing. 

We applied fuzzy logic on signals from pressure sensors to 

estimate the heel contact (HC; beginning of the stance phase) 

and toes off (TO; beginning of swing phase) moments. 

Detailed explanation can be found in [8, 9]. We estimated the 

following parameters: gait cycle (GC) – time between the two 

consecutive HC of the same leg; step cycle (SC) – time 

between the HC of the ipsilateral leg and the HC of the 

contralateral leg; stance phase (STP)– time between the HC 

and the TO of one leg; swing phase (SWP)– time between TO 

and HC of one leg; double support phase (DSP) – time when 

both legs are contacting the ground; gait cadence (GCD)– 

number of steps per unit time. 

We applied high pass Butterworth filter (2nd order, cutoff 

frequency at 30 Hz) to EMG signals to stabilize the baseline 

and notch Butterworth filter (3rd order) at 50 Hz to minimize 

the impact of noise coming from the power lines. To remove 

the artefacts incurred during a heel strike we used FastICA 

method [15]. Recorded signals 𝒙 (surface EMG) with artifacts 

can be represented as: 

 

𝒙 = 𝑨𝒔;           (1) 

𝒙 = [

𝑥1

⋮
𝑥𝑛

]; 𝒔 = [

𝑠1

⋮
𝑠𝑛

]; 𝑨 = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

] ; 

where 𝒔 are original activities of particular sources and 𝑨 is 

the mixing matrix (matrix of constants). 

Using the ICA algorithm, the weight factors W are 

calculated such that the separated components u are 

maximally statistically independent: 

 

𝒖(𝑡) = 𝑾𝒙(𝑡) = 𝑾𝑨𝒔(𝑡)       (2) 
 

Fig. 2 shows the decomposition of 24 EMG signals from 

one array electrode (only one channel is shown on the top 

panel due to limited space) to 24 independent components 

(maximum number of components). Among the obtained 

components u (middle panel) the components with artifacts 
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stand out (examples are marked with red circles).We detected 

components that mostly contain artifacts, using visual 

inspection, and removed them manually, equating them with 

zero. After the components are deleted, the inversion 

reconstructs the EMG signals based on the remaining 

components: 

 

𝒙(𝑡) = 𝑾−𝟏𝒖(𝑡)         (3) 

 

 
Fig. 2. Removing heel contact artefacts from EMG signals by applying 

ICA method. a) The example of EMG signal with significant moving 

electrode artefacts incurred during a heel strike; b) The independent 

components obtained from 24 EMG channels from the same array electrode; 

c) The EMG signal with removed artefacts. 

 

We applied low pass Butterworth filter (3rd order, cutoff 

frequency at 3 Hz) on absolute value of EMG signals to 

estimate the EMG envelopes. All envelopes were normalized 

relative to maximal value of all channels in the analyzed 

sequence. 

We used EMG envelopes to obtain the EMG maps. Similar 

to method we used in our previous researches [13], we applied 

bicubic (“spline”) interpolation to current envelope samples 

from the same array electrode. The only difference was in 

initial matrix, due to different shape of array electrode. The 

EMG maps were formed based on the template matrix 

(72x101 pixels – one pixel corresponds to 1x1mm of array 

electrode) that contains three groups of pixels (Fig. 3): 24 

original pixels with the envelope samples, placed in 

appropriate place due to pads order; pixels interpolants; and 

empty pixels that exceed the array electrode. 

Algorithm took the samples of EMG envelopes from same 

array electrode in the same moment (1 sample per channel – 

24 samples in total) and arranged them in appropriate pixels in 

the template. In next step, algorithm applied interpolation and 

assigned the scale of colors (deep blue is region without 

activity and deep red is region with highest activity). 

Assigning colors is used just for visualization of EMG maps, 

but it is not a part of further calculations.  

Fig. 3. Template for EMG map interpolation: red squares represent the 24 

original data set; blue region represents the pixels interpolants and black 

region are the empty pixels that exceed dimensions of array electrode. 

 

To ensure better repeatability of EMG maps from step to 

step, EMG maps were calculated by averaging of 11 samples 

from each channel, in the vicinity of HC (5 samples before, 

HC moment and 5 samples after). The number of samples is 

determined heuristically. Since it is difficult to estimate the 

appropriate moment from EMG envelopes on the paretic foot, 

the detection was performed based on signals from the 

insoles, in which the desired HC is clearly distinguished. 

We calculated entropy of digital image as: 

 

𝐸𝑛𝑡 = − ∑ 𝑝𝑖 log 𝑝𝑖
𝑛−1
𝑖=0      (4) 

 

where 𝑛 is number of intensities in the color scale, and 𝑝𝑖  is 

the probability expressed in number of pixels with intensity 𝑖. 

Based on the individual entropies, the mean entropy values for 

the nonparetic and paretic leg were calculated. A coefficient 

representing their ratio was calculated, according to the 

formula: 
𝐸𝑛𝑡𝑙̅̅ ̅̅ ̅̅ −𝐸𝑛𝑡𝑟̅̅ ̅̅ ̅̅ ̅

𝐸𝑛𝑡𝑙̅̅ ̅̅ ̅̅ +𝐸𝑛𝑡𝑟̅̅ ̅̅ ̅̅ ̅
          (5) 

 

where 𝐸𝑛𝑡𝑙
̅̅ ̅̅ ̅̅  and 𝐸𝑛𝑡𝑟

̅̅ ̅̅ ̅̅  are mean entropy values for EMG 

maps from left and right leg, respectively. 

III. MAIN RESULTS 

Figure 4 shows the example of signals from pressure 

sensors and median of EMG envelopes from nonparetic and 

paretic leg for seven full gait cycles. Figure also shows 

sequences of EMG maps on both sides in characteristic 

moment of gait which are marked with red dots.  

In Figure 5 are shown the examples of EMG maps from 

nonparetic (top left) and paretic (bottom left) leg and their 

histograms (right).  
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Fig. 5. Examples of EMG maps from nonparetic (top left) and paretic 

(bottom left) leg and their histograms (right). There is noticeable difference 

between histograms: histogram on paretic side is more concentrated around 

one peak, while histogram on nonparetic side wights to uniform distribution. 

 

In Table I are presented the mean values of gait parameters 

and EMG map entropies obtained from signals recorded 

before and after therapy. Gait cycle (GC) and Step Cycle (SC) 

are given in seconds, Swing phase (SWP) and Stance phase 

(STP) are given as percent of Gait cycle, Gait cadence (GCD) 

is given in steps per second, Double support phase (DSP) is 

presented as percent of a Gait cycle and EMG entropy is 

represented in arbitrary values.  

TABLE I 
GAIT PARAMETERS AND EMG MAP ENTROPY 

 

 
GC 

[s] 

SC 

[s] 

SWP 

[%] 

STP 

[%] 

DSP 

[%] 

GCD 

[step/s] 

Entropy 

[arb.] 

B
ef

. L
 

2.30 0.62 10.3 89.7 50.4 
56.27 

5.12 

R
 

2.29 0.61 26.9 73.1 15.7 3.46 

A
ft

. L
 

1.86 0.58 17.5 82.5 38.7 
70.51 

5.43 

R
 

1.80 0.56 29.8 70.2 17.2 4.07 

 

Figure 6 shows the main ratio between swing and stance 

phase for paretic and nonparetic leg before and after therapy 

(left panel) and ratio of EMG entropies on left and right leg 

before and after therapy (right panel).  

 

 
Fig. 6. Main ratio between SWP and STP for paretic and nonparetic leg 

before and after therapy (left panel) and ratio of EMG map entropies between 

left and right leg before and after therapy.  

Fig. 4. Signals from pressure sensors and median of EMG envelopes from nonparetic leg (top panel) and paretic leg (bottom panel) for seven full gait 

cycles; Example shows the sequences of EMG maps on both legs obtained in characteristic moments, marked with red dots. Significant difference can be 

noticed in signals and EMG maps on paretic and nonparetic side. 
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IV. DISCUSSION 

In Figure 4 it is noticeable that the pressure distribution 

during the STP arises in an irregular rhythm on the paretic leg 

(all signals rise simultaneously from the HC moment). 

Segments in which the pressures are equal to 0 represent the 

SWP and it can be noticed that their duration differs on the 

paretic and nonparetic leg: the SWP is shorter on the 

nonparetic leg, because the subject tends to rely on the 

nonparetic leg as soon as possible. These differences in 

signals on both sides indicates to irregular and asymmetrical 

gait.  

In Figure 4 significant difference in EMG activity between 

nonparetic and paretic leg can be noticed: mean envelope on 

nonparetic side has relatively repetitive pattern with local 

maxima at HC moment, while on paretic side EMG envelopes 

have irregular pattern and noticeably lover amplitude. This 

difference reflects to EMG maps (Figure 4 top and bottom). 

Beside lower intensity, EMG maps on paretic side don’t have 

clearly defined high intensity regions, and activity spreads all 

over the EMG map. This can be explained as patients attempt 

to make a movement by compensatory mechanism, due to 

poor innervation of targeted muscle. The EMG maps and 

histograms in Figure 5 illustrate this scattering of EMG 

activity. Histogram of nonparetic EMG map wights to 

uniform distribution because the pixels of the EMG map have 

various intensities. On the other hand, histogram of the EMG 

map from paretic side is concentrated around one peak, 

because the majority of the pixels have same intensity (color). 

These differences in intensity distribution are clearly 

quantified by calculating entropies. The values shown in 

Table I: 5.12 for nonparetic and 3.46 for paretic leg before the 

therapy. The greater entropy is the histogram is closer to 

uniform distribution, which means more different colors in 

EMG map. After the therapy, difference between entropies are 

lower, which indicates patient’s improvement and greater 

selectivity in muscle recruitment. The EMG map entropy ratio 

shown in Figure 6 represents the symmetry of patient’s 

activities on paretic and nonparetic leg and level of selectivity 

for muscle recruitment. Due to equation (5), in ideal case this 

ratio would be 0 which would mean that both legs have the 

same selectivity (entropies are equal on both legs). 

Global improvement can be noticed in gait parameters in 

Table I: patient walks faster (GCD is greater and GC and SC 

are shorter), but also symmetry is improved (difference 

between duration of SWP and STP on paretic and nonparetic 

leg are lower; Figure 6 left panel). 

V. CONCLUSION 

The proposed method, which combines the use of pressure 

sensors with EMG array electrodes and portable amplifiers, 

provides a good base for gait analysis. The formed set of 

parameters, based on gait mechanics, and spatio-temporal 

images of muscle activity during gait (both as a visual 

assessment and quantified), gives the possibility to assess the 

patient's condition before and after therapy. 
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1 

Abstract—Objective measure of the gait quality is essential for 
evaluating the therapeutic protocol's effects on stroke patients' 
rehabilitation. We present a new proposal for assessing the gait, 
which uses the principal component analysis (PCA) of feet 
kinematics and ground reaction forces (GRF) data. The data 
have been acquired by the Gait Master comprising five GRF 
sensors and 6D inertial measurement units (IMU) per insole. The 
PCA reduces the 22-time series output from two insoles and 
generates cyclograms, allowing qualitative analysis of the 
pathologic and healthy gait differences. We suggest that 
cyclograms in the space with principal components on the axis 
provide useful information to the clinician about the gait 
performance. Five volunteers with no known motor impairment 
participated in the determination of the regular pattern. We 
tested the method in a small series of patients after stroke using 
the pattern of healthy as a standard. The results suggest that the 
PCA analysis provides a good measure of gait quality.  

 
Index Terms—Gait; Stroke; Cyclograms; Principal 

component analysis (PCA); Inertial measurement unit (IMU); 
Ground reaction force (GRF).  

 

I. INTRODUCTION 

THE characterization of gait in persons with motor 
disabilities is instrumental in selecting the most effective 
therapeutic protocol. The characterization can be performed 
based on data acquired during the gait. The data of interest are 
the ground reaction forces (GRF) and leg segments' 
kinematics since they fully define the biomechanics. 

The precise measurement of leg segments' ground reaction 
forces and kinematics can be done in the specialized 
laboratories instrumented with camera systems and force 
plates [1, 2]. The difficulty is that the recording process 
requires a specialist's participation with the experience in 
acquiring motion data and setting the markers on the 
appropriate places at the body. The gait laboratory setup is 
designed for only straight-line walking, and GRF is acquired 
for one or two steps. The alternative to the recordings in the 
gait laboratories is to implement a wearable system [3-7]. 
Wearable systems combine sensors integrated into shoe 
insoles and inertial measurement units (IMU) that measure the 
acceleration and angular rates of body segments. Information 
from all sensors must be synchronized, which is not the most 
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trivial task because of the time delays and lost packages when 
wireless technology is used. The difficulty is that sensors 
integrated into insoles, although being much improved 
(availability of new materials and miniaturization of 
electronics and wireless communication) measure only total 
ground reaction forces and have hysteresis, delay, and 
insufficient robustness when the temperature and humidity 
change. The recently introduced Gait Master system [8] with 
several industrial quality GRF sensors and IMU provides 
versatility comparable with the force plates in the gait 
laboratories. The data from the insoles is stored in a time-
stamped format for off-line analysis. The set of data 
comprises the 22-time series. This data is sufficient to 
determine gait parameters [1, 2]. Table I shows the typical 
collection of data that can be estimated from a wearable 
system. 

TABLE 1: FEATURES IN GAIT ANALYSIS 

Gait Feature Definition 
Walking Speed The average speed while the subject is walking 
Cadence Average steps per minute while walking 
Swing Time The transition time of the foot from lift to landing 
Stance Time The transition time of the foot from landing to lift 
Stride Length  The distance between the heel contacts of the 

ipsilateral foot and contralateral foot 
Step length The distance between two consecutive heel 

contacts of the same foot 
Ground 
reaction force  

The distribution of the GRF over the sole 

Symmetries Differences between the same events in 
ipsilateral and contralateral legs  

 
The reason for the quantification of the gait is the objective 

assessment of the performance. However, there is no golden 
standard what is the normal performance. Young people have 
different gait patterns than persons of older age. Females have 
different gait patterns influenced by the type of shoes used, 
etc. [9].  

Methods used in clinical studies compare the measured 
features between before and after the therapy, or between 
different therapeutic protocols. The comparison is statistically 
analyzed, and significant differences are used as measures. 

Another method to use gait data is to form cyclograms. 
Cyclograms are a spatial presentation where two or more 
recorded signals (e.g., hip and knee angles; hip, knee, and 
ankle angles) are the coordinate system axes. The cyclograms 
can be used to analyze the different gait modalities and 
compare healthy vs. pathologic gait [10]. 

 

Cyclograms Based on Principal Components for 
Assessing the Gait 
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We introduce here the method which uses cyclograms 
generated in the space of principal components calculated 
from data recorded during gait. The principal components 
analysis (PCA) reduces the 22-time series recordings to a set 
of orthogonal values that can be used for the creation of a 
two-dimensional cyclogram. In principle, the analysis can 
look into three or more dimensional cyclograms.  

The method that we present, PCA, was applied to sets of 
data separately for the left and right legs. Data recorded were 
considered as sequences of stochastic events. The reason for 
developing this method for representing the gait performance 
follows the previous research in applying PCA to analyze 
kinematic data [11]. 

We illustrate the method by using data recorded in healthy 
and patients with stroke. Besides, we associate a numerical 
measure calculated from the cyclograms to be a classifier of 
difference between the healthy and pathologic gaits. 

II. METHODS AND INSTRUMENTATION 

A. Instrumentation 

We used Gait Master insoles [8] with five GRF sensors and 
the one 6D IMU per insole. The insoles use the hardware built 
around MPU-6050 (16-bit conversion). Each insole includes a 
wireless communication circuit allowing real-time data 
transfer at 100 Hz (11 signals per insole) to the host computer 
at distances up to 30 m. The LabView environment's 
proprietary acquisition software provides online data with the 
delay of 50ms and stores data in a time-stamped format for 
off-line analysis. The program has a graphical user interface 
(GUI), allowing the clinician to intuitively operate the system. 
1) Subjects  

Six healthy volunteers participated in this study. They were 
considered healthy since no known sensory-motor impairment 
was reported or known from their health record. Four patients 
with stroke were recruited. The measurements were 
performed in the Clinic for rehabilitation "Dr. Miroslav 
Zotović“, Belgrade, Serbia. All patients signed an informed 
consent approved by the board of the Institute. Patients 
participated in testing the efficiency of the functional 
electrical stimulation assisted pedaling. 

B. Procedure 

Subjects were asked to walk at their normal walking pace. 
They repeated walking over a 5m flat surface two times. If 
necessary, they would rest between the trials.  

C. Signal processing  

Steps extraction and the stance and swing detections were 
done based on the threshold method for detecting heel strike 
and toe-off events. The threshold was set to be 5% of the 
maximum value from the GRF signal from the heel and the 
toes' lateral side. The first and last steps were excluded from 
further analysis. The singles used in the principal component 
analysis were the angular velocity in the sagittal plane 
(GyroY), the acceleration in the direction of sole (AccX), and 
the direction orthogonal to the sole (AccZ), and the all five 
ground reaction forces individually (GRF). The signals were 

selected based on the heuristic analysis of all 11 signals 
measured by each insole. We normalized the signals to make 
them have the unit variance.  

The PCA allowed the mapping of the original data into 
orthogonal space, where the principal axis is the direction of 
the data's maximal deviation [12]. The analysis includes 
calculating the correlation matrix, extraction of the application 
of the principal component of the varimax rotation, and 
calculation of factor scores. The number of principal 
components we used in this study was chosen based on 
Kaiser's proposed method [13]. We retained only elements in 
which the eigenvalues were more significant than one. The 
Bartlett's test of sphericity showed that data was suitable for 
PCA. 

The proposed method uses 2D cyclograms in the space of 
the first two principal components. Cyclograms were 
compared for consecutive steps for different gait categories. 
These cyclograms are the image representation for the gait 
performance assessment. 

  
We defined the quantitative parameter d, as shown in Eq. 1: 
 

𝑑 =
𝑑௉஼ଵ௦௧௔௡௖௘

𝑑௉஼ଶ௦௧௔௡௖௘
൘ ∗

𝑑௉஼ଶ௦௪௜௡௚

𝑑௉஼ଵ௦௪௜௡௚
൘  (1) 

 
where 𝑑௉஼ଵ௦௧௔௡௖௘

 is the maximal distance on the PC1 axis 
between points on cyclograms for the stance phase. Similarly, 
𝑑௉஼ଵ௦௪௜௡௚

 is the distance for the swing phase, while PC1 and 

PC2 subscripts represent the distance on the PC1 and PC2 
axis, respectively (Fig 1). 
 

 
Fig.1. Sketch of the parameters defining the cyclogram that can be 
automatically calculated. The left panel shows a characteristic pattern for one 
leg during healthy gait. The right panel shows an example of the non-paretic 
limb during the gait of a patient. 

III. RESULTS 

Fig. 2 shows the processed data and a characteristic single 
step for a person's left leg with no known sensory-motor 
impairment. 

 Fig. 2 shows the processed data for about eight seconds 
(left panel) and extracted data for a single step for a person's 
left leg with no known sensory-motor impairment (right 
panel). 
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Fig.2. An example of the eight signals extracted from the 22-time series was 
recorded with the insole in the left shoe during a healthy person (left panel). 
The right panel shows the processed and standardized data for a single step. 
Acronyms AccX (blue) and AccZ (red) are used to the accelerations in the 
direction of the sole, and the direction orthogonal to the sole, GyroY (green) 
is denoting the angular rate of the foot in the sagittal plane, and GRF (five 
black lines) are five signals from the GRF sensors. 
 

Left panels in Fig. 3 show the first two principal 
components (PC 1 and PC 2) vs. time. The right panels in Fig. 
3 are cyclograms in the two-dimensional PCA space (PC1 and 
PC2, the horizontal and vertical axis). The black color shows 
the stance phase, while the red color indicates the swing 
phase. 

 

 
Fig.3. Left panels show the first two principal components (PC 1, PC 2) and 
the sum of all five sensors (GRF). The right panels show PCA cyclograms for 
a single gait cycle  

and use two colors for distinguishing between the swing 

and stance phases. The upper row uses data from the left leg 
of a healthy subject. There is a distinct difference in the 
cyclograms for both paretic and non-paretic legs compared 
with the cyclogram for healthy gait patterns. 

Fig. 4 shows the variability of cyclograms for four 
consecutive steps. 

 
Fig.4. Cyclograms for four consecutive steps. The first row shows cyclograms 
for the left leg of a person with no known sensory-motor impairment. The 
second and third rows are cyclograms for a patient's non-paretic and paretic 
leg after stroke. Red lines are used to the swing phases and the black lines for 
the stance phases. 
 

The top panels show a healthy pattern, the second row 
shows the non-paretic leg, and the bottom panels represent the 
paretic limb. The red color indicates the swing phases, while 
the black lines show each step's stance phases. 

Fig. 4 indicates that there is a small variability from step to 
step in a healthy gait. There are significant differences 
between cyclogram in patients for the paretic and non-paretic 
legs. There is a high variability from step to step, especially 
noticeable in the cyclograms for the paretic limb. 

In conclusion, the pathological gait patterns have different 
cyclogram shapes than healthy gait patterns, and they have 
more substantial shape variability from step to step. 
 

TABLE II. THE VALUES OF THE RATIO OF LENGTHS dPC1 AND dPC2 FOR FOUR 

CONSECUTIVE STEPS OF A HEALTHY AND PATIENT NO1 FOR THE STANCE AND 

THE SWING PHASES 

 Healthy – left leg non-paretic Paretic 
    
 stance swing stance swing stance Swing 

Step 1 1.4 1.1 1.2 0.6 1.8 0.2 
Step 2 1.2 1.7 0.9 0.3 1.2 0.7 
Step3 1.3 2 1.3 0.8 2.3 0.2 
Step 4 1.3 1.9 1.1 0.5 2.2 0.3 

Mean±SD 1.30.1 1.7±0.4 1.1±0.2 0.5±0.2 1.9±0.4 0.3±0.3 

d ± SD 0.8±0.2 2.3±0.6* 7.8±5.6* 
 

Data for four steps for the healthy gait and one patient are 
in Table I. The columns are the values of the dPC1 and dPC2. 
The data for one leg of a healthy gait and non-paretic and 
paretic sided of one patient with stroke. The asterisks annotate 
the significant difference. 
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TABLE III. THE MEAN AND STANDARD DEVIATIONS OF d (RATIO OF dPC1 AND 

dPC2 ) FOR ALL CONSECUTIVE STEPS FOR A HEALTHY AND FOUR PATIENTS. 
  

 d ± SD 

Healthy (left leg) 0.9±0.2 

 Non paretic leg Paretic leg 

Patient No 1 2.3±0.6 7.8±5.6 

Patient No 2 3.2±.1.2 6.9±4.5 

Patient No 3 1±0.9 7.9±6.3 

Patient No 4 0.7±0.6 1.5±1.2 

 
Table III shows the values of the parameter d for the 

healthy gait and the gait of four patients.  

IV. DISCUSSION AND CONCLUSION 

The cyclograms reflect the gait performance reduced to two 
principal components. The parameter d is a quantitative 
measure of the cyclograms, which we suggest to be used as 
the gait measure. The new standard is a simple means for 
evaluating a therapy [14, 15].  

The shapes of cyclograms in patients show a discrepancy in 
patients' gait compared with healthy persons (Fig. 6). The 
cyclograms are a catching eye measure to the gait 
performance. The software we developed allows the clinician 
to superimpose the cyclogram of a patient over the cyclogram 
of a healthy gait.  

The cyclograms can be used as a simple gait event 
visualization method. The characteristic points of transition 
between swing and stance phase of the first two principal 
components are shown as one point on cyclograms. 

Data presented for patients show a significant difference 
compared with the healthy (Fig. 4, Tables I and II). The high 
variability between steps is noticeable in patients after stroke 
compared with the repeatability in persons with no known 
sensory or motor impairment. 

 
Fig.5. The superimposed cyclogram of a healthy leg over the cyclogram of 
the non-paretic leg (left panel) and the same cyclogram of a healthy 
superimposed over the cyclogram of the paretic limb for one gait cycle (right 
panel). 
 

The orientation of the axis is not essential, since if the sign 
of a component is changed, the variance contained in that 
component is not changed. More precisely, these components 
are given by PCA component scores. Each original variable is 
a linear combination of the weighted components. The 
cyclograms are not fully closed curves; some overlap since we 

observe consecutive steps, but this does not limit the 
estimation of the parameter d. 

The cyclograms shape for the non-paretic leg is more 
similar to the one presenting healthy gait (Fig. 5). This can be 
explained by the fact that the neural system still has not 
developed compensation strategies for this leg. Thus, we can 
conclude that this image representation is an effective and 
simple way to follow the therapy's progress.  

We suggest that the PCA distinguishes between healthy gait 
and gait of a person after a stroke. 

The Gait Master system also provides data that can be used 
to study the gait in more detail. More extensive clinical 
studies for the method's validation started, but the current 
Covid-19 pandemic slowed down the data collection. 
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 

Abstract—Quantification of human behavior has always been 

quite interesting and very challenging task for control engineers 

at the same time. What might seem as an automated action 

performed by a humanrepresentsin fact an expression of 

complex underlying body and brain processes. Considering 

man’s ability to memorize, adapt and learn,this task sounds even 

more difficult. Regardless of the non-linearity in human behavior 

which results from reasons listed above, some classical 

procedures have proved to be useful in practical application, and 

engineers have derived quasi-linear mathematical models which 

describe a human controller in closed-loop man-machine 

systems. In this work, a general form of these models was used 

and parameter estimation was performed. In the observed 

closed-loop system, a human controller was replaced with a 

corresponding system which contained estimated parameters. 

The performance of parameter estimation was measured using 

mean absolute error, when comparing the output of an actual 

system, controlled by a human, and a simulated one. 

 

Index Terms—man-machine interface, human-controller, 

parameter estimation, particle swarm optimization 

 

I. INTRODUCTION 

Man-machine interface (MMI) also known as Human-

machine interface (HMI) is an integral part of certain devices 

or systems that allows user inputs to be translated as signals 

for machines that provide the required output. It has been 

widely used in electronic, medical, entertainment, military, 

aerospace and automotive industries etc. Understanding 

human physical, behavioral and mental features are essential 

when designing these systems in order to provide realistic and 

natural interaction with other systems and subsystems. 

Building describing functions and modeling the performance 
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of human using linear differential equations allows prediction 

and evaluation of stability of the man-machine system. In 

research done so far, this has proven to be a very sophisticated 

problem. Beside the reason mentioned above, describing 

human behavior is also done in order to completely replace a 

human operator with an automated system. 

The first complete model of a human as an operator in man-

machine systems was described in a two-part paper [1][2]. 

The authors gave a detailed mathematical interpretation of 

human behavior in the role of a controller in MMI. All 

experimental techniques used to obtain such a model are 

discussed in [1]. Similarly, spectral analysis methods were 

used to obtain frequency domain mathematical models of the 

operator’s behavior while performing manual tracking with 

tactile displays in [3]. The input-output and input-error cross-

power spectral densities were obtained by a method of 

averaging modified periodograms. Their ratio represents a 

describing function of the human operator which analytic 

form was closely approximated using visual fitting. In [4] 

application of modern control concepts and estimation theory 

has been made to develop a model of humanoperator in 

manual tracking. It was applied to the prediction of human 

response in some simple, single-axis control tasks. The basic 

assumption was that the human operator behaves as an 

optimal controller, in accordance with his/her inherent 

limitations and task definition. The cascade combination of a 

Kalman filter, a least mean-squared predictor and a set of 

gains acting on the estimated state formed the resultant model 

and its unique features were the mathematical representation 

of the human's limitations and the resulting compensating 

elements. Later, in [5] the model proposed in [4] was used to 

analyze a more complex control situation, namely the manual 

control of the longitudinal position of a hovering aircraft. 

In work described in this paper, it is assumed that the form 

of the subject’s transfer function is known and we are not 

focusing on finding it. The idea is to place a human controller 

into a closed-loop control system and observe his/her behavior 

while performing different compensatory tracking tasks, 

which require different control strategies. Hence, our main 

goal  is to estimate the parameters of the transfer function of a 

described human regulator in MMI using the PSO algorithm 

as a key step, which includes simple principle and offers fast 

convergence and computation. 

 

 Motivation for this work is better understanding of human 

behavior in man-machine systems in order to integrate human 

into complex technological systems or even completely 

replace with a certain automated system. As mentioned in [1], 

Parameter estimation of a human controller 

transfer function in man-machine system using 

the PSO algorithm 

Jelena Bulatović, Filip Gašparić, OliveraTomašević, Boris Knežević, Nikola Jorgovanović 
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one of the limiting factors in making a human operator model 

is that, beside a quasi-linear transfer function, correlated 

linearly with the forcing function, it also consists of a residual 

output which represents all output content which cannot be 

ascribed to a linear operation on the input. In this work, the 

remnant will be neglected, and we will focus on finding 

parameters of a quasi-linear model. 

 

II. THE METHOD 

An input signal subject is tracking is shown on a computer 

monitor as well as the output of the controlled system. In each 

trial during the experiment, the subject moves the joystick up 

and down in order to minimize the difference between input 

and output signal which he observes through the visual 

feedback.  Finally, recorded input and output signals are 

stored and used for parameter estimation of a human 

controller transfer function. Functional block diagram of a 

closed-loop control system with respect to visual stimuli 

describing the experiment setup is given in Fig. 1. 

 

A. Subjects and Experimental Design 

The experiment was performed by 5 healthy subjects (3 

males and 2 females, 24.8 ± 1.5 years) after signing the 

consent form which was approved by the local ethical 

committee. The experiment involved recording the subject’s 

response for 120 seconds when operating a given system.The 

reference signal, i.e. the forcing function r(t), was multi sine 

whose frequency components ranged between 0.1 and 0.4 Hz 

and their amplitudes were randomly chosen in range 0 to 2.5. 

 

Fig. 1.  A block diagram describing closed-loop system where human has the 

role of a controller; r(t) represents the forcing function, i.e. reference signal, 
e(t) is the system error, u(t) is the human controller output, c(t) is input of a 

controlled system and y(t) represents the output of the controlled system. 

 

B. Experimental protocol 

The forcing function was shown to the subject on a 

computer monitor and his/her task was to follow its motion 

using the joystick. It can be considered that the transfer 

function of the joystick used in this experiment is equal to 

one, i.e. u(t) = c(t), since this joystick does not contain elastic 

and inertial elements that can affect its behavior in the 

observed frequency range. The signal at the joystick’s output 

c(t) represents an input signal for the controlled system which 

was modeled by one of four transfer functions of  considered 

systems. The y(t) is the output of the controlled system which 

was also shown to the subject on the computer monitor.All the 

time during the experiment, the subject wasmonitoring the 

forcing function and the output signal on the same graph. The 

subject himself estimated the error as a difference between 

two observed signals and simultaneously corrected his/her 

control in order to minimize the error. This type of control is 

called compensatory tracking, because the reference signal 

r(t) appears randomly and the only information displayed to 

the operator is an output of a controlled system y(t) and it 

represents a visual feedback to the operator. An example of a 

subject performing the tracking task is shown in Fig. 2. 

 

Transfer functions of systems controlled by the subject in 

this experiment and general form of a transfer function of a 

human controller when controlling the corresponding system 

are given in Table I. The experimental data considered for 

these systems were taken directly from the efforts of 

investigators in [1] [2] and [7]. 

In order to perform the experiment, a personal computer 

(PC), a Hall-effect joystick and an acquisition card – National 

Instruments PCI-6024 were used. Data acquisition, as well as 

a simple graphical user interface that allows the user to run the 

experiment, were implemented within the MATLAB software 

package (ver. R2018a, Math Works, USA). The application 

gives the user the ability to enter data about the subject, set 

the duration of the experiment and parameters of a system 

operator controls as well as monitor tracking performance, 

data acquisition and calibration. 

Reference signal r(t), control signal c(t) and output signal 

y(t) are stored in the .mat file with data about the subject and 

parameters of a transfer function of acontrolled system. All 

recorded signals were sampled with a period of T = 0.01s.  
 

III. PARAMETER ESTIMATION  

After the signals were recorded, parameters of a transfer 

function of the human controller were estimated. As 

mentioned above, the PSO algorithm was used for parameter 

estimation. 

Swarm-based methods such as the PSO algorithm are well-

known as powerful tools for dealing with the global 

optimization problems encountered in engineering [6]. PSO 

algorithm starts by creating initial population in a form of set 

of particles often called “swarm”, and searches the space 

which contains potential solutions. Each particle is 

characterized with its position in previous and current 

iteration. In addition, each particle is able to remember its best 

achieved position through iterations, as well as swarm is able 

Fig. 2. A subject performing the tracking task using the joystick. 
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to remember best position achieved by any particle in that 

particular swarm. Because of the rules that define the process 

of their motion, particles will eventually swarm around the 

best possible solution. The generalized PSO algorithm used 

for the purposes of this work is presented in [6].   

As an optimization criterion, mean absolute error was 

defined and the goal was to find parameters so that the value 

of this function is minimal. This means that the output of a 

simulated system needs to be as similar as possible to an 

actual output of a system obtained during the experiment. In a 

simulated system, the human controller is replaced with a 

system whose parameters are estimated. The number of 

particlesand the maximal number of iterations used in this 

work varied depending on the number of estimated parameters 

and it was set to be 10 and 100 times greater, respectively. For 

example, when the subject controlled system 1, the number of 

parameters that needed to be estimated was 3. Thus, the 

number of used particles was 30 and the maximal number of 

iterations was 300. It has been determined experimentally that 

this number of iterations is quite sufficient for the algorithm to 

converge towards the best possible solution for this particular 

optimization problem. Therefore, the stop criterion was the 

maximum number of optimization iterations. Out of 10 runs 

of parameter estimation algorithm, for each subject in every 

experiment, the run with the best available values of 

parameters for the given criterion was chosen. 

 
TABLE I 

TRANSFER FUNCTIONS OF SYSTEMS USED IN EXPERIMENT AND GENERAL FORM 

OF A HUMAN CONTROLLER TRANSFER FUNCTION WHEN CONTROLLING THE 

CORRESPONDING SYSTEM 

 

System 
Transfer function of a 

controlled system 

Transfer function of a 

human operator 

1 1 𝐾
1

(
𝑠

𝑎
+ 1)

𝑒−𝑠𝜏 

2 
1

𝑠 + 1
 𝐾

(
𝑠

𝑏
+ 1)

(
𝑠

𝑎
+ 1)

𝑒−𝑠𝜏 

3 
4

𝑠
 𝐾

(
𝑠

𝑏
+ 1)

(
𝑠

𝑎
+ 1)

𝑒−𝑠𝜏 

4 
2

𝑠(0.25𝑠 + 1)
 𝐾 (

𝑠

𝑏
+ 1)𝑒−𝑠𝜏 

 

IV. RESULTS 

The optimal parametersof a human controllertransfer 

function, when controlling systems 1 to 4that were obtained 

using the PSO algorithm are given in Tables II to V, together 

with the values of the corresponding criterion function (CFV) 

and mean absolute error (MAE). Mean absolute error is used 

to represent quality of human performance while 

performingcompensatory tracking task, that is, the average 

difference between the reference signal and the control signal 

during the experiment.Fig. 3 and Fig. 4 show performance of 

subject 3 during tracking an input signal while controlling 

system 1 and system 4, respectively.  

TABLE II 

PARAMETERS OF A TRANSFER FUNCTION OF A HUMAN CONTROLLER WHEN 

CONTROLLING SYSTEM I 

 

Subject MAE K a τ CFV 

1 0.256 4.798 1.016 0.193 0.133 

2 0.228 5.711 1.098 0.240 0.168 

3 0.286 2.861 1.686 0.268 0.141 

4 0.247 6.416 0.439 0.495 0.268 

5 0.178 7.800 0.957 0.208 0.127 

 
 
 

TABLE III 

PARAMETERS OF A TRANSFER FUNCTION OF A HUMAN CONTROLLER WHEN 

CONTROLLING SYSTEM II 

 

Subject MAE K a b τ CFV 

1 0.307 4.806 1.966 2.418 0.333 0.148 

2 0.355 1.117 1.162 0.354 0.377 0.199 

3 0.395 1.230 2.454 0.849 0.409 0.148 

4 0.368 3.852 7.985 26.757 0.252 0.236 

5 0.280 5.945 1.593 2.615 0.316 0.165 

 

 
 

TABLE IV 

PARAMETERS OF A TRANSFER FUNCTION OF A HUMAN CONTROLLER WHEN 

CONTROLLING SYSTEM III 

 

Subject MAE K a b τ CFV 

1 0.382 0.830 3.312 2.340 0.331 0.248 

2 0.468 1.006 7.513 22.169 0.248 0.317 

3 0.418 1.091 2.495 12.415 0.008 0.270 

4 0.417 1.290 3.620 4.779 0.301 0.332 

5 0.566 0.901 2.955 2.594 0.366 0.457 

 
 

 
TABLE V 

PARAMETERS OF A TRANSFER FUNCTION OF A HUMAN CONTROLLER WHEN 

CONTROLLING SYSTEM IV 

 

Subject MAE K b τ CFV 

1 0.540 1.837 0.324 0.186 0.382 

2 0.695 1.241 0.341 0.078 0.481 

3 0.409 1.730 0.173 0.205 0.274 

4 0.401 1.637 0.158 0.206 0.272 

5 0.621 1.216 0.082 0.002 0.403 
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These graphs show the reference signal that the subject is 

tracking using the joystick, the output signal which represents 

the output of the controlled system and the output from the 

simulated system. As mentioned above, in the simulated 

system the human controller is replaced with a system with 

estimated parameters. Mean absolute error that subject 3 

makes while tracking is 0.286 for the system 1 and 0.409 for 

the system 4. Clearly, system 4 is more challenging for 

subject to control due to its more complex transfer function 

(see Table I). Values of criterion function when estimating 

parameters are 0.141 and 0.274, for systems 1 and 4, 

respectively. Observing the results obtained from other 

Fig. 3. 50 seconds of the experiment is shown: the input signal (black dotted line) subject 3 is tracking using the joystick and the 

output signal (solid blue line) which represents the output of the controlled system 1. After these signals were stored and parameter 

estimation was done, the human controller was replaced with the system with estimated parameters. The output of the system obtained 
in described way is shown with solid red line. 

 

Fig. 4. 50 seconds of the experiment is shown: the input signal (black dotted line) subject 3 is tracking using the joystick and the 

output signal (solid blue line) which represents the output of the controlled system 4.After these signals were stored and parameter 

estimation was done, the human controller was replaced with the system with estimated parameters. The output of the system obtained 
in described way is shown with solid red line. 
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subjects, it can be noticed that quality of parameter estimation 

depends on quality of subject’s control.  

 

V. DISCUSSION  

Although a human behaves as a non-linear system, a human 

operator shows some regular behavior from the controlled 

system viewpoint [8]. Also, a human has the ability to adapt 

to certain situations and remember patterns, but its behavior 

could be considered linear when no detectable pattern is 

present [9]. Although the forcing function consists of 

components at the same frequencies throughout the whole 

experiment, their amplitudes are numbers that range from 0 to 

2.5, which are randomly generated at the start of each trial. 

This way, the subject cannot memorize the exact shape of the 

reference signal. The only thing a subject can learn is how to 

control the particular system. 

It is natural to assume that it is not possible to obtain the 

same parameters for different subjects. Thus, it is expected 

that the subject’s response will vary depending on several 

factors, such as the dynamics between the manipulated 

variable and the display, general condition and previous 

experience of the subject at the time of the experiment (which 

affects the subject’s precision in control, reaction delays, 

etc.)[1]. Observing the human controller transfer function, it 

can be concluded how a subject behaves when operating a 

particular system. 

The simplest way of control is modeled with gain K which 

gives an output signal proportional to the input signal. The 

next most obvious is reaction time of a human, modeled 

with𝑒−𝑠𝜏. When controlling the first threesystems, in transfer 

function of a human there is a lag, expressed by parametera, 

showing that the human controller is able to follow slower 

changes of reference signal, and filters out faster ones, i.e. 

human behaves as a low pass filter. Lastly, the human’s 

ability to predict a change in input and undertake 

corresponding control action is represented by derivative time, 

b. 

Transfer functions of a human controller when 

controllingsystem 1 and system 2 obtained in this work can be 

considered appropriate for certain applications that do not 

require high precision, as the value of the criterion function 

varies from 5% to 10% of the maximum amplitude of the 

input signal. For systems 3 and 4, the calculated error was as 

twice as large and varied between 10% and 20% of the 

maximumamplitude of the input signal. This could be 

explained by the fact that these systems were more 

challenging for subjects to control, and thus evoked 

unexpected human behavior that could not be precisely 

described using only quasi-linear models. As stated in [9], 

experiments done by highly trained subjects will give the best 

results when estimating parameters of a human controller 

transfer function. Although the subjects who did the 

experiment for the purposes of this paper had certain time to 

get familiar with the way of controlling the given systems, 

they could not be classified as highly trained. This fact could 

be useful for further work in order to improve the 

performance of parameter estimation. The more reasonable 

solution would be to divide an experiment over several days, 

provide subjects with more training time and make longer 

pauses between trials in order to prevent mental and physical 

fatigue occurring in subjects. 

 

VI. CONCLUSION 

The work described in this paper gives an insight into a 

pilot study conducted with five subjects in order to test a new 

method for quantification of a human who has the role of the 

operator in a closed-loop control system. General forms of 

human controller transfer functions when controlling 

corresponding system were taken directly from existing 

literature and their parameters were estimated using the PSO 

algorithm. The results show that using this method it is 

possible to find parameters of a quasi-linear transfer function 

which is able to successfully describe a human behavior when 

controlling the given system. In further work, in addition to 

improvements mentioned above, dozens of subject should be 

considered for this experiment inorder to find a transfer 

function of an average human controller. 

Because the experiment responded to the representation of 

an operator with a linear mathematical model in a closed-loop 

control system and examined the quality of visual feedback 

control, further steps in this research may include the use of 

another type of feedback, such as electro-stimulation or 

vibrotactile stimulation and to compare the quality of control 

when using different feedback, as well as to monitor whether 

the control can be improved by training. A functional 

description of human control could be crucial in various 

applications in biomedical engineering such as closed-loop 

upper limp prosthesis control, or for example, wheelchair 

control.  
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 

Abstract— The important indicator of the impairment and the 

course of the recovery in humans with the central nervous system 

is the assessment of spasticity. The pendulum test was accepted as 

the quantification method of knee muscles’ spasticity. We present 

a new, inexpensive, easy to use wireless pendulum test device for 

estimation of spasticity of knee muscles (quadriceps and 

hamstrings). The new system uses inertial, and electromyography 

(EMG) sensors positioned at the upper and lower leg segments. 

The measurement device was applied for the pendulum test on a 

population of thirteen healthy volunteers. We estimated seven 

parameters from the pendulum test, which form a single measure 

of spasticity in patients, termed the pendulum test (PT) score. 

Results show a small deviation for all parameters between 

subjects, and mean values of PT score are below 1, which is in the 

range for healthy persons from the literature. Hence, the mean 

values of these seven parameters can be used as a reference for 

the PT score estimation in patients. 

 

Index Terms—spasticity assessment, wireless pendulum test 

device, PT score. 

 

I. INTRODUCTION  

The quantification of the level of impairment is essential for 

clinicians to select the most appropriate treatment for patients 

after spinal cord injury (SCI), stroke, multiple sclerosis (MS) 

or cerebral palsy (CP). Spasticity is one of the main 

impairments resulting in an automatic increase of the tonus of 

affected muscles and increased sensitivity to the stretch in SCI 

patients [1]. More precisely, spasticity is defined as “motor 

disorder characterized by a velocity-dependent increase in 

tonic stretch reflexes (“muscle tone”) with exaggerated tendon 

jerk, resulting from hyperexcitability of the stretch reflex, as 

one of the components of the upper motor neuron syndrome 

[2]. The conventional method for assessing spasticity by a 

clinician is using the modified Ashworth scale [3]. The 

pendulum test was introduced to meet the need for a more 

accurate quantification method for assessing spasticity and 

reducing the subjective component of the evaluation of 

spasticity[4] [5].  The type and intensity of knee muscles 

spasticity are determined from a set of parameters calculated 

from the knee joint angle vs. time data curve acquired from the 

pendulum test [1, 4].  
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During the pendulum test, while the subject is sitting on the 

side of bed or similar, the examiner releases the subject's lower 

leg from a position where the knee joint is fully extended and 

observes deviations of the knee angle from the dumped 

oscillation pattern. Standard methods to measure knee joint 

angle include Hall-effect joint angle encoder of the knee joint 

[1], potentiometer measuring the knee joint [4], smartphone 

camera-based system with passive markers at the lateral side of 

the knee joint [6] or angle camera-based systems in motion 

laboratories with passive/active markers [7, 8]. 

We presented a new pendulum test device for the estimation 

of knee joint muscles spasticity. The instrumentation 

comprises inertial sensors (gyroscope and accelerometer) 

mounted on the anterior side of thigh and shank (one 3D 

gyroscope and one 3D accelerometer per segment) and EMG 

amplifier that measures muscle activities of two muscles via 

surface electrodes. All signals are wirelessly sent to the host 

computer with the user-friendly acquisition program. The 

acquisition program allows the examiner to follow EMG 

signals from quadriceps and hamstring muscles and angular 

velocities and acceleration of the thigh and shank vs. time 

during the pendulum test on the computer screen. The data 

recorded are used to estimate the Pendulum test (PT) score, as 

defined by Popović-Maneski et al. [1].  

In this paper, we show the data recorded in a group of 13 

healthy volunteers, and we show the estimated mean values 

necessary for the calculation of the PT score in patients. 

II. THE METHOD  

A.   Subjects 

The study includes 13 healthy volunteers with demographic 

data given in Table 1. 

 
TABLE I 

BASIC DATA FOR HEALTHY SUBJECTS PARTICIPATING IN THE STUDY 

 

No Sex Age Height 

[cm] 

Mass 

[kg] 

1H F 33 178 65 

2H F 61 166 80 

3H F 35 178 90 

4H F 36 162 55 

5H F 52 162 50 

6H M 30 175 87 

7H M 34 170 82 

8H M 68 178 92 

9H M 35 182 76 

10H M 68 179 115 

11H F 35 162 55 

12H M 24 177 81 

13H F 25 168 60 
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The inclusion criteria for healthy volunteers were the 

following: no known sensory-motor impairment, controlled 

blood pressure and pulse, and able to follow the protocol of the 

pendulum test. 

B.   Instrumentation 

The pendulum test device (Fig. 1) consists of two separate 

housings interconnected with a spiral wire. The housings are 

fixed with stretchable velcro straps on the anterior side of the 

thigh and shank. The distances of the thigh and the shank 

housing from the knee joint are about 15cm and 20cm. The 

distance between housings does not influence the 

measurements, but it is essential to position them 

perpendicularly to the sagittal plane. Thigh housing has leads 

connected with the electrodes for the recordings of two EMG 

signals with reusable surface electrodes (four leads for the 

measurements and one lead for the grounding). We used, for 

the test purposes, one EMG channel for e recording the muscle 

activity of the quadriceps. EMG signal recording was 

accomplished with pre-gelled Ag/AgCl electrodes (NM 3351 

OFI, Top Trace, CERACARTA S.p.A., Forli, Italy) placed 

over the bulk of the quadriceps muscle with the inter-electrode 

distance of 2cm. The ground electrode was placed over the 

bony part of the knee joint. We do not show in this paper the 

EMG recordings. 

 

 
 

Fig. 1. The wireless instrument for the pendulum test. The thigh and shank 

housings have inertial measurement units: 3D accelerometers and 3D 

gyroscopes. Thigh housing also has the EMG amplifiers for bipolar measuring 

of the muscle activity.  

 

Both thigh and shank housings have an inertial measurement 

unit (IMU), consisting of one gyroscope and one accelerometer 

sensor. IMU unit is based on the MPU6050 unit (InvenSense, 

San Jose, California, USA). This particular IMU unit has a 

16bit AD converter, 100Hz sample rate, +/- 500deg/s 

gyroscope sensor range, and +/-4g accelerometer sensor range. 

EMG amplifiers in thigh housing are based on one ADS1294 

ECG chip (Texas Instruments, Dallas, USA). ECG unit has a 

24bit AD converter, 500Hz sampling rate, DC coupling, and 

inputs for 2 EMG leads. 

The pendulum test device has a battery power supply in 

thigh housing. There is also an “on/off” button for Bluetooth 

wireless connection with laptop computer and pendulum test 

acquisition program. All measurement signals from inertial 

sensors and EMG amplifiers are time-synchronized and 

subsequently digitized. Signals from inertial sensors are 

resampled to 500 samples per second. 

A subject was sitting on a stable wheel-fixed clinical bed 

with the back support with a firm pillow (hip joints flexed at 

approximately 135°). The knee joint was positioned about 5 

cm in front of the edge of the bad to ensure that the lower leg 

swings freely. 

C.   Measurements 

The test was performed on thirteen healthy subjects. 

Subjects were asked to relax the leg muscles and try not to 

activate them during the trial. The examiner released the 

subject’s lower leg from a position where the knee joint was 

fully extended and allowed shank to oscillate like the physical 

pendulum about the knee joint until the foot stopped the 

swinging (Fig. 2). The angular velocity and the angular 

acceleration of shank and thigh and EMG signal from the 

quadriceps m. were simultaneously recorded during the 

pendulum movements. The pendulum test was repeated with a 

pause of 15 seconds between the trials until three successful 

pendulum test measurements were obtained. The successful 

trial is described as a pendulum test movement with no EMG 

or minimal EMG activity. EMG recordings from the 

quadriceps were used for online inspection of the leg muscle 

activity. 

 

 
 

Fig. 2. The fully extended leg reached by the examiner (a) and resting position 

of the leg (b) 

 

D.   Data processing   

The EMG signals from quadriceps were high-pass filtered 
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above 30 Hz, normalized to the maximal value for each swing, 

and filtered with a notch filter at 50 Hz with a 3rd order 

Butterworth filter. The sagittal angular velocity signals from 

the gyroscopes and sagittal angular acceleration signals from 

accelerometers were filtered with the moving average filter 

that included 50 samples. The mean value of the last second of 

the signal (resting position) was subtracted from all angular 

velocity and angular acceleration signals due to different 

resting angles for each subject. Corrected sagittal angular 

velocity of the shank was calculated as the difference of 

angular velocity of the shank, measured by shank gyroscope, 

and angular velocity of the thigh, measured by thigh 

gyroscope, to compensate the thigh movement during 

pendulum test. The sagittal angle signal was calculated as the 

first integral of the corrected angular velocity signal. We 

developed a program for data acquisition in a C# environment 

and automatic data processing in Matlab. 

The parameters from the test for the estimation of spasticity, 

as defined in [1], are: R2n – the normalized relaxation index, N 

– the number of swings, ϕmax – the first maximum of the angle 

signal after releasing the leg, and ωmax and ωmin - the maximum 

and minimum angular velocity of the shank, f- the frequency 

of dump oscillations of pendulum test and |P+ − P−|/Ptotal [%] - 

the absolute difference between the positive and negative areas 

between the angle signal and neutral line starting from the first 

minimum and divided with the total area. The normalized 

relaxation index was calculated from the knee joint angle 

signal (angle between shank and thigh). The index was 

calculated as R2n = A1/1.6A0 where A0 is the knee joint angle 

between the full extension (starting position) and the neutral 

knee joint angle (resting position), and A1 is the difference 

between the starting angle and the maximum flexion (the first 

minimum in the angle signal) as defined by Bajd et al. [4]. N 

was estimated by counting the number of maxima of the knee 

joint angle more significant than 1° during the recording 

session.  

The above-listed parameters are used to calculate the PT 

score with the following equation: 
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Where i denotes a subject, H is used for the values of healthy 

subjects and ^ represents the mean value for all subjects. Each 

member of the equation is divided with 7 (total number of 

parameters) for normalizing the PT score. 

 In this study, we estimated the values in Equ. 1 denoted with 

the nominator H (acronym for healthy).  

III. RESULTS  

A typical example of the signals recorded in one out of 

thirteen volunteers is in Fig. 3 and represents subject 6H. The 

normalized EMG recordings from the quadriceps muscle, and 

estimated knee joint angle and the angular velocity are plotted 

together for six consecutive repetitions of the test in Fig. 3a. 

Three trials were selected where the EMG was minimal for the 

calculation of the pendulum test parameters. The time 

beginnings of the selected three trials are marked with vertical 

green lines in Fig. 3a. The knee joint angle, angular velocities, 

and EMG signal for the selected three trials are in Fig. 3b. Fig. 

3c. presents the knee joint angles for the selected 3 trials. 

There are also marked angles A0 and A1 (red lines), used for 

calculation of normalized relaxation index R2n, maximal angle 

of swings (green dots), which total number represent a number 

of swings N. 

 

 
 

Fig. 3. The recordings of processed signals for subject  6H: EMG signal of 

quadriceps (normalized), the knee joint angle, and angular velocity of the 

lower leg for one healthy subject (a). The processed knee joint angle, angular 

velocity, and normalized EMG activities of quadriceps for the selected 3 trials 

(minimal EMG activity), started at the vertical green line (b). The knee joint 

angles for the selected 3 trials with marked positions of the local maxima 

(green dots), A0 and A1 angles (red lines)(c). 

 

PT values for the selected 3 trails for all subjects are shown 

in Fig.4. To calculate the PT score, we used the mean values of 

the parameters with the H index in Eq.1 from all subjects 

(three trials each). High variability of the scores comes directly 

from the subjects' inability to relax the muscles completely. 

The example of the signal in Fig.3. supports this claim because 

it is visible that the stronger EMG activity in trial 3 changed 

the regular oscillatory pattern of the angle signal. In further 

analysis, we used only the minimal PT score value for each 

subject. In Fig.5, we show the mean values and standard 

deviations of the seven parameters for the whole set using the 

trial with minimum PT score in each of 13 subjects. The value 

for the normalized relaxation index R2n (1.06±0.06), number of 

swings N (7.08±1.04), the first maximum of the angle signal 
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Fig. 4. PT scores for the three selected trials in 13 healthy subjects. 

 

ϕmax (0.62±0.09 rad), the frequency of oscillations f (1±0.05 

Hz), the absolute difference between the positive and negative 

areas between the angle signal and neutral line |P+ − P−|/Ptotal 

(7±5 %), have values in range for healthy individuals 

according to the literature [1][4]. 

 

 
 
Fig. 5. Mean absolute values of seven parameters (empty bars) and standard 

deviations (black bars) from 13 healthy subjects. 

 

The standard deviation for parameters R2n, N, and f is low, for 

parameter ϕmax relative small and for parameter |P+ − P−|/Ptotal 

relatively high; however, the absolute values of this parameter 

are close to zero. The value for maximum and minimum 

angular velocity, ωmax (5.82±0.56 rad/s) and ωmin (-4.55±0.44 

rad/s) are much lower than values for healthy range given by 

[4], but they are in the healthy range given by [1], which could 

be explained by the fact that we used calculation method for 

these parameters that are exact and more strict than in [4]. 

Standard deviations for ωmax and ωmin are relatively low. Values 

for pendulum test score PT (0.73±0.22) are below 1, and they 

are in healthy individual range according to [1].   

Fig. 6. shows the values of calculated PT score with the 

contribution of every parameter included in its calculation 

according to (1), for each of thirteen healthy subjects. 

Contribution of parameter |P+ − P−|/Ptotal, which is relatively 

unreliable because of high standard deviation, in the 

calculation of PT score, is low for all subjects.  

IV. CONCLUSION 

Previous studies with PT score included a small number of 

 
 

Fig. 6. The value of the PT score  (equal to the total height of the stacked bar) 

with the contribution of seven parameters from equation (1) used in the 

calculation for each subject. 

 

healthy subjects; hence, the reference “healthy” values 

previously used for calculation of PT score in patients were 

unreliable. We calculated PT score components from 13 

healthy subjects of different age and sex to determine a set 

reference values that can be used in future clinical studies in 

persons with disabilities. Six out of seven parameters of the PT 

score determined for the tested group had the standard 

deviation below 15%. The standard deviation for the seventh 

parameter (|P+ − P−|)/Ptotal) is in range of 75%.  However, the 

magnitude of this parameter in healthy is close to zero, so the 

contribution to the PT score is negligible. The magnitude of 

this parameter is large for the patients and it shows if the 

extension or flexion components of spasticity is dominant [1]. 

The mean values determined in this study will be used in 

future clinical studies with SCI, stroke, MS, and CP patients to 

assess their knee spasticity.  
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

Abstract—Fractal analysis provides means for the quantitative
assessment  of  geometric  patterns  in  one,  two,  and  three
dimensions.  It  is  aimed  at  analysis  of  graphical  shapes  that
belong to a class of fractal objects that are characterized by the
self-similarity over different scales. Various structures in nature
are fractals and fractal analysis techniques are widely used for
analysis of biomedical images. One such example of application
is analyzing blood vessel structure in the human retina that can
be  extracted from digital  images  captured by fundus  camera.
The most commonly used fractal analysis is estimation of fractal
dimension using  various box-counting methods for mono- and
multi-fractals.  Although two fractal images can have the same
fractal dimension they can have very different appearance and
structure. One can appear as a structure that fills most of the
available space, while the other can have a lot of empty areas.
These  differences  can  be  quantified  by  lacunarity  parameter,
which  has  greater  value  in  images  with  less space-filling
properties. This paper focuses on the estimation of the lacunarity
parameter implemented in the Python programming language,
which  is  aimed  at  lacunarity  analysis  of  microvaculae
morphology in human retina.  The implementation is validated
by comparison with  the results obtained by ImageJ, a commonly
used software for analysis of biomedical images. The value of the
lacunarity analysis is demonstrated on a set of actual images of
human retina associated with different medical conditions.

Index  Terms—Box-counting  method;  fractal  analysis;
lacunarity; image analysis; Python; retinal microvasculature.

I. INTRODUCTION

The fractal  and lacunarity  analysis  have been  around for
some time and their  usage is recognized in different areas of
science [1,2]. Fractal analysis techniques are becoming widely
used  in  medicine  for  analysis  of  biomedical  signals  and
images [3-5].  One such example of application is analyzing
blood vessel structure in human retina that can be extracted
from digital images captured by fundus camera [6,7].

The microvascular system of the retina is an integral part of
the microcirculation of the human body that can be studied
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directly,  in vivo, in a simple and non-invasive way by using
digital photography. This approach gives us information not
only about the health of the eye, but also represents one of the
standard  diagnostic methods  used to detect complications of
systemic diseases such as diabetes mellitus and hypertension
[8].  Vascular networks have fractal  structure,  so this fact  is
often  used  to  differentiate healthy  retinal  microvasculature
from the one with pathological changes [9]. Healthy vascular
network  is  characterized  by  higher  complexity  and  higher
fractal  dimension,  while  various  systemic  and  eye-specific
pathological  processes in most cases cause vascular pruning
and lower vascular complexity. Decreased fractal  dimension
of  the  microvascular  network  is  a  nonspecific  marker  of
pathological  process  in  the  organism,  because  by  itself,  it
cannot  show  what  pathological  process  caused  it.  We
previously showed that specificity of fractal  analysis results
can be increased by adding to the analysis of microvascular
geometry the lacunarity dimension that measures gappiness of
the image  [10]. This approach uses the fact that two fractal
images  can  have  the  same fractal  dimension  although they
have very different appearance resulting from different space
filling  properties  of  each  image  [11,12].  Therefore,  when
analyzing  geometric  patterns  in  biomedical  images,  in
addition to fractal dimension, it may be useful to estimate the
lacunarity  of  the  structure  and  include  it  in  the  analysis
[13,14].

This paper shows a scripting tool for quantitative analysis
of microvascular network in human retina based on estimation
of the lacunarity analysis, that was developed by using Python
programming language.  The implementation is validated by
comparison with the results obtained by ImageJ, a commonly
used  software  for  analysis  of  biomedical  images  [15].  The
value of the lacunarity analysis is demonstrated on a set of
actual  publicly available images of  human retina associated
with different medical conditions.

II.MATERIALS AND METHODS

A. Images of Retina

For  this  research,  we  used  a  publicly  accessible  High  -
Resolution Fundus (HRF) image database containing 45 raw
color images of retina.  Images were captured with a Canon
CR-digital  fundus  camera  with  a  45°  field  of  view   and
resolution  of  3504  ×  2336  pixels  [16,17].  The  database
contains 3 groups of images: 15 images of healthy retina, 15
images of retina showing signs of diabetic retinopathy, and 15
images  with  signs  of  glaucoma.  Each  image comes  with a
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corresponding  gold  standard  manual  vessel  segmentation
binary image.  In the present study, our focus was on these
binary images representing retinal microvasculature.

B. Lacunarity Estimation

Similarly  to  the  estimation  of  box  counting  fractal
dimension, we determine E that represents a set of all scales,
i.e. all square sizes by which we will cover the given image
[14,18]. The maximum value for ε ∈  E may be min (n,  m),
where n and m are the length and width of the image, and the
smallest  value  for  ε is  limited  by  the  image  resolution.
Namely, the smallest value for ε  must be greater than or equal
to 1px. We can start from the smallest scale, squares with side
length of ε, and increase it according to the algorithm in order
to form the set E. For images of retina this is illustrated in Fig.
1.  As  opposed  to  fractal  dimension,  where  each  square  is
checked  whether  the  square  covers  fractal  objects  or  not,
when determining the lacunarity we count how many pixels in
the square actually belong to the object.

Fig. 1.  Covering the fractal objects with different box scales

The lacunarty at each scale ε is estimated using the following
formula:

 Λ (ε )=( σμ )
2

(1)

where  σ is  the  standard deviation, and  µ is  the mean of the
number of pixels counted for each square with sides of length
ε. The following statistical formulas are used:

 μ=
1
n∑i=1

n

x i (2)

 σ=√ 1n∑i=1
n

(x i−μ)
2

(3)

where xi is the total number of pixels in each square and n is
the total number of squares at the given scale ε.

 As  a  final  step,  for  a  given  geometric  structure,  the
lacunarity  Λ for  a  given  image  is  estimated as  an  average
value of all Λ(ε) previously calculated for all scales ε [13].

C.Three Variants of the Estimation Algorithm

We implemented three variants of the method for lacunarity
estimation algorithm based on the approach how the squares
at different scales ε were placed over the geometric object we
are analyzing, as illustrated in Fig. 2.  The first variant of the
algorithm uses standard non-overlapping placement of squares

over  the object  until  the whole image is  not  covered.  This
process  is  repeated at  each  scale  ε and the total  number of
squares needed to cover the image depends on the size of the
image and selected scale ε.

The  second  approach  uses  gliding  overlapping  boxes  to
cover the image at each scale  ε  [19]. Here we have a much
larger number of total squares needed to cover the image and
the number depends  on how much do we move/glide each
square between the iterations.

Finally,  we  implemented  an  approach  to  lacunarity
estimation with random placement of squares over the image
at  each  scale  as  it  can  be  done  for  calculations  of  fractal
dimension [20]. The total number of squares at each scale is
arbitrary for each step, but it should be at least equal to the
total  number  of  squares  with  sides  ε needed  to  cover  the
whole image.

As for the settings, the following values were used for for
the scales  ε:  {3, 5,  7, …,19}, both in our script  and in the
ImageJ  program.  As  for  the  gliding  box  approach,  when
“gliding” the box, each next box was moved 50% to the right,
and 50% down when moving to the next row. Finally, for the
random placement method, we used the number of boxes for
each scale ε to be the same as the the total number of squares
of size ε needed to cover the whole image.

Fig.  2.  Three variants of the algorithm: a) Standard non-overlapping boxes,
b) Gliding box approach, c) Random box placement

D.Programming and Statistical Analysis Tools

The algorithm for lacunarity analysis is developed using the
Python  programming  language  and  the  Jupyter  Notebook
scientific  computing  software [21].  The  Jupyter  Notebook
provides a  web-based  collaborative  environment  for
experimenting with the code and the intermediate results can
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be accessed using a standard web browser. Statistical analysis
of  the  results  was  performed  and  visualized  using  R
programming language.

E. Validation Using ImageJ Software

Validation of the lacunarity analysis results obtained using
our Python script is done by the comparison with the results
obtained  by  ImageJ  software  and  FracLac  plugin  [15,22].
ImageJ  is  a public  domain  Java  program  that  is  commonly
used for image analysis in biomedicine. All 45 binary images
from the  HRF image  database  that  represent  blood vessels
microvascular  network  were  processed  in order  to compare
lacunarity  parameter  estimates calculated by ImageJ and all
three  variants  of  the  presented  new  software  tool  were
implemented in Python.

III. RESULTS AND DISCUSSION

First, we performed the sanity check using arbitrary images
of known fractals. We compared the numbers obtained with
new Python script and ImageJ and observed matching results
in up to two decimal places (data not shown). Next, we used
the  45  images  coming  from  the  open  access  HRF  image
database  containing  retina  images  from  three  groups  of
subjects:  15 images from patients  with diabetic  retinopathy
(DR),  15 images  from patients  with  glaucoma (G),  and  15
images  of  healthy  retina  (H).  We  observed  a  very  good
alignment  of  the  results  coming from ImageJ  and  all  three
approaches implemented in our script as depicted in Fig. 3.
The  best  alignment  with  the  ImageJ  is  achieved  with  the
gliding box approach,  but  the  computing  time was  slightly
longer than the time that  was needed for the standard non-
overlapping box approach.  As for  the method with random
placement of boxes, it yielded very good results, even with the
number of boxes in each step that is equal to the total number
of squares of  size  ε needed to cover the whole image, let us
call it M. This method becomes even more accurate when we
use a number of boxes that is much larger than the number M,
i.e. 5x, 10x,  50xM, but in those cases the calculation would
take much more time.  Therefore, the approach with random
placement of boxes  can be  very accurate, but  the computing
time for this method would be the longest out of the three.

Fig. 3. Results for lacunarity estimation vs. image ID# : a)  ID#  1-15 DR, b)
ID# 16-30 G; c) ID#  31-45 H

The  main  evaluation  criteria  for  our  research  was  to
perform  a  comparison  of  our  implementation  in  Python  to
ImageJ for the type of experiments we plan to do in the near
future. For that purpose we performed statistical analysis in
order to compare the three groups of images coming from the
HRF image database.  As shown in Table 1, there is a very
good match of the mean values and standard deviations for the
results coming from all three variants of the Python method
and ImageJ  program.  The mean lacunarity  distributions for
each group of images are also depicted  by using box plots in
the Fig. 4. It can be seen that the data coming from all four
methods,  all  three  variants  and  ImageJ,  display  almost
identical distributions.

TABLE I
COMPARISON  WITH IMAGEJ SOFTWARE:  HRF IMAGE DATABASE

Method vs.
Diagnosis

Healthy (H) Glaucoma (G)
Diabetic

Retinopathy (DR)

Standard 0.4438±0.0234 0.5626±0.0249 0.5557±0.0348

Gliding 0.4438±0.0232 0.5624±0.0254 0.5559±0.0343

Random 0.4424±0.0231 0.5606±0.0256 0.5556±0.0334

Image J 0.4439±0.0232 0.5627±0.0255 0.5559±0.0339

Note: showing values mean ± SD

Fig. 4 Statistical visualization of the mean lacunarity distribution for each
group of retinal images (H- healthy, G-glaucoma, DR- diabetic retinopathy)
Distributions of data points were obtained with our script for three variants
for lacunarity calculation in Python vs. results obtained with ImageJ program

In addition, a one-way ANOVA with Tukey post-hoc test
was  used  to  analyze  if  the  mean  lacunarity  dimension  is
different among the different diagnoses. More importantly, in
each case, the p value obtained with the statistical analysis led
to  the  same  conclusion  regardless  which  method  for  the
estimation of lacunarity parameter was used (Fig. 5). These
results  validated  the  data  obtained  with  three  variants  of
lacunarity  estimation  from  our  script  versus  the  results
obtained by ImageJ program and FracLac plugin.
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This Python script is developed as a part of the project with
a main goal to study the use of new methods for stratification
of patients with Alzheimer’s  dementia according to the risk
for progression of this disease [23]. One of such methods is
use  of  portable  digital  fundus  camera  to  evaluate
microvascular  geometry  of  the  retina  in  elderly  people.
Despite the fact that the resolution of images captured with a
portable  non-mydriatic  digital  fundus  camera  is  relatively
small, its use has many advantages.  This type of camera is
affordable, and also quick and easy to use because does not
require  prior  dilatation  of  the  pupil.  It  could  be  used  for
screening in primary care clinics in a large number of patients.
It could be also used in the field outside the outpatient clinic
for  patients for  whom specialized health  care  is  difficult  to
access.  Digital  photographs  can  be  subsequently  easily
transmitted to a diagnostic center by an ophthalmologist for
expert analysis [24,25].

The  main  advantage  of  the  use  of  this  new  script  is
possibility to perform fully automated scripting and control
over  our  in-silico experiments  that  will  be  performed  on
segmented  digital  retinal  fundus  images  of  patients  with
Alzheimers dementia and the subjects with normal cognitive
function. An additional control group of subjects will be made
of the patients with colon cancer  because it has been shown
that in people with some cancers, the incidence of Alzheimers
dementia is  very  low,  and  vice  versa  –  people  with
Alzheimers  dementia  rarely  have  decreased  incidence  of
cancer [26].

The  next  steps  in  development  of  this  analysis  tool  will
include  integration  with  automated  fractal  dimension  and
multifractal parameters estimation in order to create a  single
Python library.

Fig. 5. One-way ANOVA test using lacunarity from different methods

IV. CONCLUSION

This research focuses on the implementation of a Python
library to enable performing automated lacunarity analysis of
biomedical images. The paper describes three variants of the
implementation  aimed  for  the  use  when  analyzing  fractal
objects  commonly  found  in  biomedical  images.  The
implementation  was  validated  using  an  open  access  set  of
images of human retina. The results obtained by three variants
of the method implemented in Python were compared with the
results of ImageJ program. It should be pointed out that the
method using non-overlapping box placement was the fastest,
but not as accurate as the method using gliding box approach.
The method with random placement of boxes needs a larger
number of boxes than the non-overlapping method in order to
achieve desired accuracy and it was the slowest one out of the
three. However, the method with random placement of boxes
could be very useful if we wanted to estimate the lacunarity of
a part  of an image that  is  cut  out using an irregular  shape.
Furthermore,  the  results  for  all  three  methods  were
statistically analyzed and in each case the statistical analysis
led to the same conclusion, regardless which method for the
estimation of  lacunarity parameter  was used. This new tool
allows for  easy automation of  experiments  with biomedical
images.

Further steps in the research will include improvements of
various argument options and additional settings in order to
enable  advanced  and  fully  automated  fractal  analysis  of
fundus images of human retina. Additional image sets will be
used including fundus images obtained by a hand-held fundus
camera that can be operated by family physicians. Usage of
such cameras, combined with the use of fractal analysis and
quantification,  could  potentially  allow  for  development  of
non-invasive disease detection in early stage.
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 

Abstract—Acute lymphoblastic leukemia (ALL) is the most 

common type of leukemia among children. It is characterized by 

excessive occurrence of immature lymphocytes – lymphoblasts, 

especially in bone marrow and lymphoid organs. Diagnosing 

ALL based on blood samples is routinely done by hematologists, 

often using cytogenetic analysis or immunophenotyping. 

However, these visual examinations are often slow and limited by 

subjective interpretation; therefore standardized inexpensive 

automated systems for detecting lymphoblasts in blood images 

are needed. Systems for ALL detection are still in the 

development stage; improving techniques of lymphocyte 

segmentation from blood images and classification techniques is 

a challenge. The aim of this paper is to perform a segmentation 

of lymphocytes on images from the publicly available ALL_IDB2 

database and to compare different classification algorithms for 

ALL  detection. Morphological, color and texture feature 

extraction from segmented lymphocyte images was performed as 

well as Principal Component Analysis (PCA) for dimensionality 

reduction. Classification into two groups (healthy lymphocytes 

and lymphoblasts) was performed using three different 

algorithms:  k-Nearest Neighbours (kNN), Support Vector 

Machine (SVM) and feedforward neural network (NN). 

 

Index Terms—acute lymphoblastic leukemia; lymphocyte 

segmentation; feature extraction; lymphoblast classification 

 

I. INTRODUCTION 

Leukemia is a blood cancer which is characterized by 

uncontrolled proliferation of white blood cells in bone 

marrow. Leukemias can be divided into acute and chronic; 

according to the type of white blood cells that are affected by 

malignant transformation, they are divided into myeloblastic, 
lymphoblastic and monoblastic. Acute lymphoblastic 

leukemia (ALL) [1] is a disease caused by the proliferation of 

immature lymphoid cells (lymphoblasts), mostly in bone 

marrow and lymphoid organs. According to the French-

American-British (FAB) classification of ALL [2], ALL is 

divided into three groups: L1, L2 and L3. L1 is the most 

common form of ALL among children, L2 is much more 

common among adults, while L3 is very rare. This disease 

mostly occurs in children (about 80%), and in adults it occurs 

usually around the age of 50. It can be fatal if not treated 

adequately, hence, early diagnosis is of the utmost 

importance. 
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Routinely, diagnosing of ALL is done manually by a medical 

expert - hematologist. Disadvantages of such an analysis are 

slowness, as well as the fact that the results are under 

subjective influence of the doctor. For these reasons, there 

was a need to create a fully automated computer-aided system 

that would perform the detection of lymphoblastic cells from 

blood images. The advantages of such systems would be 
speed, affordability and procedure standardization.  

The most important step in automated ALL systems is the 

high accuracy recognition of lymphoblasts in microscopic 

images of blood. Lymphocytes are cells with regular circular 

shape and with a compact cytoplasm. In contrast, 

lymphoblasts have more irregular shape and may contain 

small cavities in the cytoplasm. Each system for detecting 

lymphoblasts using blood images should contain 3 main parts: 

segmentation of lymphocytes from blood images, feature 

extraction from segmented lymphocytes (from whole 

lymphocytes or their nuclei) and classification into two 

groups: lymphoblastic and healthy cells. 
Various segmentation and classification methods can be 

found in literature. There are several attempts to design semi-

automated system for detecting ALL. The image database 

ALL_IDB [3], which consists of two sets of images: 

ALL_IDB1 (blood images with more than one blood cell) and 

ALL_IDB2 (cropped areas of individual normal and blast 

cells that belong to ALL_IDB1) , was created to develop and 

test such systems by Department of Information Technology - 

Università degli Studi di Milano. F. Scotti et al. [4] proposed a 

method for lymphocyte segmentation and classification based 

on the feedforward neural network (NN) with the accuracy of 
98.67% on the ALL_IDB1 image database. M. Madhukar et 

al. [5] used c-mean clustering for leukocyte segmentation 

from the ALL_IDB1 image database, morphological and 

texture features were extracted and the Support Vector 

Machine (SVM) classificatory reached the accuracy of 93.5%. 

S. Mishra et al. [6] performed image segmentation using 

watersheds and classification using Random Forest algorithm 

with the classification accuracy of 99% on the ALL_IDB1. 

Putz et al. [7] performed a transformation to CMYK color 

space, determined a threshold value for segmentation using 

Zack’s algorithm, morphological, texture and color features 

were extracted, and classification was performed using 
Support Vector Machine with the accuracy of 93% on the 

ALL_IDB1. V. Singhal and P. Singh [8] used the 

transformation of images into HSV space, threshold 

segmentation and classification by Support Vector Machine 

and the classification accuracy was 89.72% on the 

ALL_IDB2. Abdeldaim, Ahmed and Talaat et al. [9] 
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performed a transformation into CMYK color space, 

segmentation was done using Zack's algorithm, texture, color, 

and shape features were extracted, and the highest accuracy of 

96.01% on the ALL_IDB2 was obtained using k-Nearest 

Neighbours (kNN). Siew Chin Neoh et al. [10] performed 

segmentation using clustering, and classification accuracy of 
96.67% was obtained using 10-fold cross-validation and 

Support Vector Machine method on the ALL_IDB2. 

In this paper, following steps were performed: 

segmentation of leukocyte images from the ALL_IDB2 

database (because it contains only one blood cell per image) 

using Otsu's threshold, extraction of 3 types of features 

(morphological, color and texture), dimensionality reduction 

using Principal Component Analysis (PCA) and classification 

using 3 different algorithms: k-Nearest Neighbours, Support 

Vector Machine and feedforward neural network. The aim of 

this paper was to segment both whole leukocytes and their 

nuclei from a publicly available blood image database, to 
extract different features from segmented cells/nuclei, and 

finally, to test different classification methods, in order to 

conclude which method has the greatest potential for further 

development, as well as which features are the most 

distinctive. 

II. THE METHOD 

A. Dataset 

Segmentation and classification methods were tested on 

ALL_IDB2. All images in this database were taken with an 

optical laboratory microscope coupled with a Canon Power 

Shot G5 camera. ALL lymphoblast classification was 

provided by expert oncologists. ALL_IDB2 dataset consists of  

260 cropped regions of one healthy leucocyte or lymhoblast; 

resolution of each image is 257 x 257 pixels. There are 130 

lymphoblast images (class 1) and 130 images of normal cells 

(class 0). Fig. 1 shows some example images from this 

database. 
 

(A)                       (B)                         (C)                          (D) 

 
 

Fig. 1.  Images from ALL_IDB2 database: (A) lymphoblast, (B) healthy 

lymphocyte, (C) platelet, (D) eosinophil  

 

B. Segmentation 

Segmentation method consisted of three steps: 

preprocessing, threshold-based segmentaton and 
postprocessing. It is necessary to segment the whole cell (both 

nucleus and cytoplasm), as well as nucleus only, because 

parameters of both elements are important in order to properly 

distinguish lymphoblast cell from healthy one. At the end, 

only leucocyte images should be selected for further 

classification.  

1. Preprocessing 

In the preprocessing step, two images based on the original 

one were prepared for further processing [13]. For the first 

one, the original image was converted to a grayscale image 

and global contrast correction method was applied using 

following formula: 

 

                             𝐼𝑝(𝑥, 𝑦) = 255 ∙
(𝐼𝑜(𝑥,𝑦)−𝑚𝑖𝑛)

(𝑚𝑎𝑥 − 𝑚𝑖𝑛)
 ,                    (1) 

 

where (𝑥, 𝑦) are pixel coordinates, 𝐼𝑝 is in output grayscale 

image, 𝐼𝑜 is input grayscale image, 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are the 

minimum and maximum gray values of an input image. This 

image will be used to segment only nucleus from lymphocyte. 

The second image for further processing is an image of H 
channel from HSV color space: this image will be used to 

segment the whole cell, because clear difference can be seen 

between leucocytes, red blood cells and background. 

2. Treshold-based segmentation 

In histograms of grayscale image with contrast stretching 

and H channel image (Fig. 2), three sections can be observed. 

The part with low levels of gray belongs to the background, 

the middle part belongs to the remains of cytoplasm in the 

grayscale image and to the remains of red blood cells in the H 

channel image and the part with the highest brightness levels 

belongs to the nucleus in grayscale image and the whole cell 
in the H channel image. Therefore, segmenting the part of the 

image with the highest brightness levels should be done. Both 

in grayscale and H channel image, Otsu’s threshold method 

was used twice in a row in order to achieve this [11]. In the 

first use of Otsu’s threshold method background is eliminated; 

the second one was performed to remove the remains of the 

cytoplasm/red blood cells. 

 
(A)                                                     (B) 

 
 

Fig. 2.  (A) Grayscale image histogram, (B) H channel image histogram; red 

arrow -  first Otsu’s threshold, green arrow – second Otsu’s threshold 

 

3. Postprocessing 

After the segmentation step, there will still be remains of 

the noise in the segmented images. The binarization of these 

two segmented images was done to perform morphological 

opening [11], using a 5 x 5 kernel of circular shape (due to the 

circular shape of the lymphocytes). Extraction of the largest 
connected region was performed and then median filtering 

with a 15 x 15 kernel and, lastly, morphological closing to fill 

the holes and remove dots.  

4. Leucocyte selection 

Since the ALL_IDB2 dataset contains images of all types 

of blood cells, only leucocyte images should be selected to be 

used in further classification. The following three parameters 
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[7] were used to determine whether a cell would participate in 

the classification: 

1)  Roundness 

                               𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 =  
4𝜋∙𝑃

𝑂2  ,                        (2) 

 

where P is the area and O is the perimeter of the 

object. If roundness is 1, then the shape is circle. This 

parameter is relatively insensitive to irregular edges of 

the object, and experimentally the threshold was set to 

0.58. 
 

2)  Solidity 

 

                                   𝑠𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =  
𝑃

𝑃𝑐
 ,                            (3) 

 

where P is the area and Pc is the area of the convex 

shell of the object. The closer solidity is to 1, the more 

regular the edge of the object is and it does not have 

many holes. The threshold is set to 0.899. 

 

3)  Area 

The area of the segmented object should be at least 

one-twelfth of the whole image area, in order to avoid 

selection of platelets which are circular, but very 
small. 

If the value of at least one of these parameters was less than 

the specified threshold, the image would not participate in 

further classification.  Out of all 260 leucocyte images, 130 

lymphoblasts and 76 healthy cells were selected. 

C. Feature extraction 

After segmenting whole lymphocyte cells and their 

nucleuses, the next step was extracting features from these 

segmented areas. Three types of features were extracted: 26 

morphological, 10 color and 24 texture features [7]. 

1. Morphological features: area, perimeter, major axis, 

minor axis, convex area, convex perimeter, orientation, 

roundness, solidity, elongation, eccentricity, 

rectangularity and convexity are calculated for both 

nucleus and whole segmented cell. 

2. Color features: mean value, standard deviation, 

skewness, kurtosis and entropy are calculated for both 
nucles and whole cell. 

3. Texture features: contrast, dissimilarity, homogeneity, 

ASM (Angular Second Moment - Energy), root value of 

ASM and correlation are calculated from GLCM - Gray 

Level Co-occurence Matrix [11]. These features were 

calculated only for the segmented whole cell for 4 

different angles: – 0°, 45°, 90° and 135°. 

 

D. Principal Component Analysis 

Dimensionality reduction is performed to eliminate 

redundant features. One of the most widely used method for 

this is the Principal Component Analysis method [12] and it 

was perfomed in this paper. The process for reducing the 

feature vector X from n to m dimensions is: 

1. Estimate the covariance matrix from vector X. 

2. Determine the eigenvectors and eigenvalues of the 

covariance matrix and sort eigenvalues in descending 

order. 

3. Form a transformation matrix A that contains m 

eigenvectors that correspond to the largest eigenvalues. 

4. Calculate transformation 
 

                                       𝑌 =  𝐴𝑇𝑋 ,                                   (4) 

 

where Y is the new feature vector with m dimensions. 

E. Classification 

Class 0 represents the class of healthy cells, while class 1 

represents lymphoblast cells and data is imbalanced (there are 

63.1% lymphoblast images and 36.9%  healthy cell images); 
80% of the images from both classes were used for the traning 

set and 20% for the test set. The following three algorithms 

were used and compared: 

1. K-Nearest Neighbours (kNN), where 5 neighbours  

were taken. 

2. Support Vector Machine (SVM) with Gaussian kernel 

3. Feedforward neural network with hyperarameter 

optimization – the goal was to find hyperparameters 
that maximize a certain criterion, in this case F1 score. 

Hyperparameters for optimization were: number of 

nodes in hidden layers, activation functions and class 

weights, where 20% of the training set was used as a 

set for validation. 

III. RESULTS AND DISCUSSION 

A. Segmentation results 

Fig. 3 shows a characteristic example of the original image 

of a single lymphoblast from ALL_IDB2. Fig. 4 shows the H-

channel of the original image used for segmenting the whole 

cell, the results after segmentation based on the first Otsu 

threshold, the binary image after segmentation based on the 

second Otsu threshold and finally, the segmented whole cell 

after morphological processing. Fig. 5 shows the grayscale 

image of the original image, grayscale image with corrected 

contrast,  the results of its two segmentations and the final 

segmented nucleus. Two additional examples of segmentation 

results from this dataset can be seen in Fig. 6. 

 
Fig. 3.  Original image of one cell from ALL_IDB2 
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            (A)                                                        (B) 

 
            (C)                                                        (D) 

 
 
Fig. 4.  Steps for segmenting the whole cell: (A) H-channel of the original 

image, (B) result after first Otsu thresholding, (C) result after second Otsu 

thresholding (D) segmented whole cell 

     

          (A)                                                           (B)        

 
           (C)                                                           (D) 

 
                                          (E) 

 
 

Fig. 5.  Steps for segmenting the nucleus: (A) grayscale image of the original 

image, (B) grayscale image with contrast stretching, (C) result after first Otsu 

thresholding, (D) result after second Otsu thresholding (E) segmented nucleus 

             (A)                                                   (B)                                 

 
             (C)                                                   (D) 

 
 

Fig. 6.  Two examples of (A), (C) segmented cells and (B), (D) segmented 

nuclei 

 
From each of the selected 206 images 60 features were 

extracted, and then dimensionality reduction was performed 

using the PCA method. It was decided to reduce the 

dimensions from 60 to 15; the contribution of each eigenvalue 

can be seen in Fig. 7. Also, dimensionality reduction was 
performed again for all features except morphological, 

because morphological features are the most sensitive to 

segmentation. In this case the dimensions were reduced from 

34 to 12 (Fig. 8). 

 

 
 

Fig. 7.  Eigenvalues for all features 

 

 
 

Fig. 8.  Eigenvalues for texture and color features 
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B. Classification results 

Based on 20 consecutive classification results, mean values 

and standard deviations for precision, sensitivity and 

classification accuracy were calculated for random train and 

test splits. Four combinations of features were used: 1) all 60 

features, 2) 15 features when PCA was applied to all 60 

features, 3) 34 color and texture features and 4) 12 features 

when these features were reduced. The following table shows 

the results for 3 different classification algorithms – k-Nearest 

Neighbours, Support Vector Machine, and feedforward neural 

network. 

 
TABLE I 

CLASSIFICATION RESULTS  

 

 

Precision  
[%] 

Sensitivity 
[%] 

Accu-

racy 

[%] Class 0 Class 1 Class 0 Class 1 

k
 N

 N
 

  all 

feat. 

60.45±

10.72 

95.52± 

3.90 

84.28±

10.85 

74.45± 

3.86 

75.85± 

4.78 

all 

feat. 

+ 

PCA 

75.53±

10.44 

92.37± 

4.92  

85.24± 

8.50  

87.41± 

4.79  

86.35± 

4.82  

color 

and 

texture 

feat. 

67.76±

10.76  

93.56± 

4.57  

85.89± 

9.03  

83.79± 

4.89  

83.99± 

4.94  

color, 

texture

+ 

PCA 

84.40± 

8.73  

95.36± 

3.86  

91.42± 

6.74  

91.85± 

4.24  

91.45± 

4.00  

S
V

M
 

  all 

feat. 

72.49±

10.15 

96.40± 

3.97 

92.58± 

7.40 

86.66± 

5.12 

87.86± 

4.44 

all 

feat. 

+ 

PCA 

81.33± 

9.71 

94.65± 

4.22 

89.96± 

7.26 

90.36± 

4.57 

89.89± 

4.20 

color 

and 

texture 

feat. 

81.28± 

9.11 

94.78± 

4.26 

90.25± 

7.24 

90.38± 

4.70 

89.96± 

4.18 

color, 

texture

+ 

PCA 

87.00± 

7.74 

95.30± 

3.88 

92.31± 

6.50 

93.12± 

3.87 

92.53± 

3.60 

N
 N

 

  all 

feat. 

77.67± 

4.71 

95.04±  

4.14 

83.59± 

5.97 

91.50± 

3.95 

88.76±  

4.66 

all 

feat. 

+ 

PCA 

85.83±  

9.52 

93.33± 

5.24 

81.75±  

7.63 

95.40± 

5.64 

90.65±  

5.76   

color 

and 

texture 

feat. 

91.67± 

7.66 

90.26± 

4.44 

86.90± 

3.98 

95.25± 

4.6 

91.90± 

3.19 

color, 

texture

+ 

PCA 

95.00± 

6.45 

94.02± 

1.79 

90.80±  

2.56 

97.28± 

3.38 

95.33± 

2.04 

  
  

C. Discussion 

It can be seen from the Table I that the highest 

classification accuracy is achieved using a feedforward neural 

network  when only color and texture features are used with 

PCA - from 34 dimensions to 12. The best accuracy is 

95.33%. A significant disadvantage of this method is the long 

execution time (about 240 s). This method, on the other hand, 

has the most opportunities for further improvement out of all 

3 used algorithms. When using color and texture features with 

PCA, the results of classification using kNN and SVM 

algorithms are also satisfactory - 91.45% and 92.63%, 

respectively. It can be concluded that this selection of features 
used with PCA shows the best results when using images 

from the ALL_IDB2 database. Compared to the reference 

papers, accuracy of 95.33% was higher than in [8], where it is 

achieved 89.72%, and slightly lower than in [9] and [10], 

where it is 96.01% and 96.67%, respectively.  

IV. CONCLUSION 

This paper presents steps for ALL detection from blood 

images: segmentation, feature extraction, dimensionality 
reduction and classification. Different classification 

algorithms were tried out to determine which one should be 

developed further. Future work could focus on improving 

automatic segmentation, developing one of the classification 

methods and achieving better accuracy. Less sensitivity to 

initial data partition into train and test sets could be achieved 

using k-fold crossvalidation when classification using neural 

networks is performed. Finally, testing on larger image 

datasets is necessary to decide which features are the most 

distinctive in general case and so that progress in future 

research work could be made.  
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 

Abstract—In this paper an algorithm for segmentation of 

brain tumor lesions in magnetic resonance images (MRI) using 

convolutional neural networks (CNN) is proposed. Precise 

determination of brain tumor regions is important for diagnosis, 

treatment choice and patient follow-up. The realized CNN model 

has the U-Net architecture, which is able to simultaneously 

extract structure characteristics and their precise locations in the 

input image. The U-Net is applied on the scans of high-grade 

glioma patients. The resulting segmentation is evaluated using 

Dice coefficient and the median Dice values achieved on the test 

images are 0.83, 0.58 and 0.74 on the whole tumor, active tumor 

and core tumor region respectively.  

  

Index Terms—brain tumor segmentation; biomedical image 

processing; convolutional neural networks; U-Net architecture.  

 

I. INTRODUCTION 

BRAIN tumor represents the uncontrolled growth of 

abnormal cells within the brain tissues [1]. Brain tumors can 

be malignant, when they are referred to as cancer, or benign. 

Both types of tumor can harm the proper functioning of the 

affected brain region and need adequate treatment [1].  

There are more than 130 types of brain tumors [2]. Based 

on the organ in which they first appear, brain tumors are 

classified either as primary or secondary (metastatic) tumors. 

Primary brain tumors appear in the brain and can spread to 

other regions in the brain or spinal cord, while metastatic 

tumors first appear in other body organs and spread to the 

brain tissues. The most common primary brain tumor type in 

adults is astrocytoma or glioblastoma multiforme (GBM). 

GBM is a type of glioma brain tumor which is formed of glial 

cells, supporting cells of the central nervous system [3]. 

According to the World Health Organization, the 

classification of the brain and spinal cord tumors is done on 

the molecular and histological level [4]. Brain tumors are 

categorized in four different grades based on the abnormality 

of tumor cells observed under a microscope and the pace of 

their growth and spreading. Grade I tumors, also referred to as 

low-grade tumors, grow and spread slower than higher grade 

tumors, rarely affect the surrounding tissues and can be cured 

if completely removed by surgery. Tumors classified as grade 

IV, also referred to as high-grade tumors, are the most 

aggressive brain tumor types, as they grow and spread at a 

very rapid pace and usually cannot be cured [1, 4].  

Medical imaging modalities used in medical practice for 
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brain tumor diagnosis are: computerized tomography (CT), 

magnetic resonance imaging (MRI), single photon emission 

computed tomography (SPECT) and positron emission 

tomography (PET). Identifying the exact position, shape and 

size of tumor lesions in the obtained images or 3D volumes is 

crucial for correct diagnosis and choice of adequate treatment 

methods [1]. Therefore, development of image processing 

techniques which automatically analyze tumor scans with the 

aim to segment the tumor regions and identify tumor 

substructures are of great importance, as they could improve 

and accelerate the process of diagnosis, treatment choice and 

patients’ follow-up care [5]. Automatic segmentation of brain 

tumor lesions is a challenging task, as the tumor lesions can 

be of different shape and size and can appear in any region of 

the brain, as well as vary in pixel intensities in the scanned 

images, due to the usage of different modalities and scanning 

devices. Thus, automatic brain tumor segmentation techniques 

cannot assume any information about the position, size and 

pixel intensity of tumor lesions in scanned images [5].   

Based on the type of information used for the segmentation 

of tumor regions, segmentation methods can be categorized as 

either generative probabilistic or discriminative [5]. 

Generative probabilistic methods combine knowledge of 

anatomical brain models with the spatial distribution of 

different tissue types in the brain and can usually generalize 

well on the previously unseen scans. Discriminative methods 

do not require information related to the brain structure and 

they segment the tumor lesions by learning the characteristics 

from the images and their relations to the segmentation labels 

manually annotated by the experts. Such methods require 

large datasets for the training purposes. Segmentation 

techniques which combine the characteristics of both 

generative probabilistic and discriminative methods are called 

generative-discriminative methods [5].  

Starting from 2012, the Brain Tumor Image Segmentation 

Challenge (BRATS) is organized annually with the 

conjunction of the international Medical Image Computing 

and Computer Assisted Interventions (MICCAI) conference 

[6], with the aim of proposing different brain tumor 

segmentation methods and comparing the results on the 

commonly used publicly available dataset and using the 

common protocol for the results evaluation [5, 7]. Since 2014, 

discriminative methods based on convolutional neural 

networks (CNNs) have become the most commonly proposed 

segmentation methods in the BRATS challenges, with a 

number of novel network architectures as well as their 

variations suggested every year. CNN models trained on 

extracted 2 dimensional (2D) or 3 dimensional (3D) image 
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patches aim to predict the class of the central pixel in the 

patch while learning local relations between the pixels inside 

the extracted patch regions [8-12]. In [13] a cascaded two-

pathway CNN architecture was proposed, where each path 

extracts features respectively from the larger-size and the 

smaller-size 2D patches extracted around the central pixel, so 

that the network can make predictions based both on the local 

and more global features. Fully convolutional neural networks 

(FCNN) do not contain dense neural layers and can produce 

dense segmentation of the whole images or image patches 

given at the network input. Number of methods proposed 

variations of different FCNN architectures, such as 

DeepMedic [14-16], VGG [15], SegNet [17, 18], U-Net [19-

23] and V-Net [24, 25]. DeepMedic is a FCNN architecture 

with 2 parallel paths which process the input 3D patches 

extracted from the image at different pixel resolutions, while 

SegNet, VGG, U-Net and V-Net can be modified to process 

either whole image slices or 3D patches. Several methods 

propose cascaded network architectures, where the output of 

one network architecture is used as the input into the next 

network, thus achieving segmentation results through several 

phases [25-28]. In [29] several network architectures were 

trained independently and then used to form the network 

ensemble for final segmentation results by averaging the 

outputs of individual models.  

In this paper the automatic discriminative method for 

glioma brain tumor segmentation in multimodal MR images 

based on the U-Net architecture of CNN is described. In 

Section II, the proposed CNN architecture, dataset used and 

the details on the algorithm implementation are described. 

Section III represents the segmentation results. Finally, 

Section IV gives brief conclusion of the proposed method, as 

well as possible ways of future improvements of the results.   

II. THE METHOD 

A. The Database 

Database used for the training and testing of the proposed 

segmentation algorithm is the publicly available database of 

MRI scans of glioma patients [30] used in the BRATS 

challenges 2015 and 2016 [5, 31]. The training and validation 

dataset contains 220 scans of high-grade glioma patients and 

54 scans of low-grade glioma patients, while the testing 

dataset consists of 110 mixed scans of both high-grade and 

low-grade glioma patients.  For each patient, there are 155 2D 

images in axial plane available, acquired with each of 

following MRI contrasts: T1-weighted, T1-weighted contrast-

enhanced (T1c), T2-weighted and T2-weighted FLAIR. The 

training and validation dataset also contains masks with 

annotated labels of the tumor structures for all patients. All 

scans in the database were anonymized, scull stripped, co-

registered to corresponding T1c scans and were set to the 

1 mm3 spatial resolution using linear interpolation.  

The scans were manually annotated by the expert 

radiologists, based on the radiological criteria, so that the 

annotated structures belong to visually separable structures 

and do not strictly represent different biological structures 

within the brain. The tumor structures in the images are 

divided into four categories: edema, non-enhancing core, 

enhancing core and necrotic core. The annotation masks are 

the same size as the MRI scans and contain the following 

pixel-wise labels: 0 – background, 1 – necrotic core, 2 – 

edema, 3 – non-enhancing core, 4 – enhancing core. The 

enhancing core can be extracted on the high-grade glioma 

scans solely. The extracted tumor structures are further 

grouped into the following tumor regions: 

- whole tumor region, which contains all four tumor 

structures; 

- tumor core, which contains necrotic core, non-enhancing 

core and enhancing core; 

- active tumor region, which contains enhancing core. 

 

B. U-Net architecture 

The U-Net architecture is the CNN architecture which, for 

the image given at its input, returns as the output the map of 

probabilities for each image pixel to be belonging to each of 

the considered segmentation classes. It was first proposed in 

[32], where it was used for the segmentation of the biomedical 

images: scans of neural structures obtained with an electron 

microscope and cell images obtained with a light microscope. 

Originally proposed U-Net architecture, as well as its 

modifications, found application in many other problems of 

biomedical image segmentation [19-23, 27, 28, 33-35]. 

Compared to many other CNN architectures used for 

segmentation purposes, the main advantage of the U-Net 

architecture is that it can take the whole image as its input, 

instead of taking various patches from the image. Thus, the 

network training process becomes faster and the problem of 

simultaneous feature extraction and their precise localization 

is avoided [32].   

 U-Net is a fully convolutional neural network. It consists 

of the two symmetric paths of convolutional layers, the 

contracting path and the expansive path, which can together 

be schematically represented to form the shape of the letter 

“U”. The aim of the contracting path is to capture context in 

the image and it has the typical form of the CNN. Its main 

block consists of two convolutional layers, with activation 

function applied to the output of each of them and max 

pooling operation applied after the 2nd convolutional layer. 

Every succeeding layer in the contracting path uses the 

doubled number of convolutional filters compared to the 

preceding layer. The aim of the expansive path is to precisely 

locate the captured details in the image. Each layer of the 

expansive path has the input formed by the concatenation of 

the output of the symmetric layer from the contracting path 

and the up-sampled output from the previous layer of the 

expansive path. On such formed input tensor, similarly as in 

the contracting path, two convolutional layers, each followed 

by activation functions, are applied and the result represents 

one of the inputs to the next layer of the expansive path. In the 

last layer of the expansive path an additional convolution 

operation is applied after the double convolutional layers and 

its output represents the map consisting of the probabilities for 
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each pixel in the input image to be belonging to different 

segmentation classes. The number of convolutional filters 

applied in the last convolution operation equals the number of 

different segmentation classes in the input image [32]. 

The U-Net architecture implemented in this paper, 

schematically represented in Fig. 1, resembles the original U-

Net architecture, with several changes in the network 

architecture. It contains four symmetric layers in both the 

contracting and the expansive path, while the output of the 5th 

layer in the contracting path is up-sampled and concatenated 

to the output of the 4th layer in contracting path to form the 

input to the deepest layer of the expansive path. Different 

from the original U-Net architecture, the convolutional layers 

include zero-padding, so that the output of the network has the 

same dimensions as the input image and no cropping of the 

outputs from the layers of the contracting path is needed. The 

number of convolutional filters applied in the first layer of the 

contractive path is 32 and the dropout [36] is added in all 

layers of both the contracting and expansive path, as 

suggested in [33]. The up-sampling of the outputs in the 

expansive path is done using transposed convolution.  

 

 
Fig. 1.  Implemented U-Net architecture 

 

C. Implementation details 

The code was written using Python 3.7.4 programing 

language (Python Software Foundation, SAD). The network 

model was formed and trained using TensorFlow 1.13.1 with 

Keras API, with the GPU version installed for the faster and 

more efficient computing. The program was tested on the PC 

with Windows 10 Education 64-bit (Microsoft Corporation, 

Redmond, Washington, USA) operating system, Intel® 

Core™ i7-5820K (Intel Corporation, Santa Clara, California, 

USA) processor with 3.30 GHz frequency, 64 GB RAM and 

NVIDIA GeForce GTX 1060 (NVIDIA Corporation, Santa 

Clara, California, USA) GPU with 6 GB memory. 

As the training dataset of the high-grade glioma scans 

contains annotations of four tumor structures, while low-grade 

glioma scans contain annotations of three tumor structures, as 

they lack enhancing core, it was chosen to train the CNN to 

segment only high-grade glioma scans, with the aim to 

segment all four tumor structures. The dataset was divided so 

that the scans of 170 randomly chosen patients were used for 

network training and validation, while the scans of the 

remaining 50 patients were used for testing of the trained 

network. The network was trained using 140 patients for 

training and remaining 30 patients for validation. Thus, the 

training and validation data subset is divided so that 83% of 

the data are used for training, while 17% are used for the 

validation of the network parameters. The test set contains 

23% of the whole dataset. 

As the dataset preprocessing was already done by the 

BRATS challenge organizers, the only preprocessing step 

required was the data normalization along each MRI contrast, 

so that the pixel values belong to the interval [-1, 1], with the 

zero mean and unit standard deviation, which is a suitable 

range for the CNN input values. The input of the network is 

the 4-channel tensor formed of the MRI contrasts. The masks 

with segmentation labels were transformed into 5-channel 

matrices, one for each segmentation class, using one-hot 

encoding principle [37]. The output of the network is the 5-

channel map of the same dimensions as the input, containing 

the probabilities for each pixel in the input to belong to one of 

the 5 classes: background, necrosis, edema, non-enhancing 

core or enhancing core. Each pixel is assigned to the class for 

which the belonging probability is greater than 50%. 

The loss function and metrics used for the performance 

evaluation during the network training are categorical cross-

entropy and categorical accuracy [38], which were also 

chosen for the training of the original U-Net architecture [32]. 

The activation function after the final convolutional layer in 

the expansive path of the U-Net is the softmax activation 

function, which calculates the probability distribution for each 

pixel in the input image to belong to each of the segmentation 

classes. The formulas for softmax and categorical cross-

entropy loss are given in (1) and (2):  
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where ip  are the weight maps which give more weight to 

some pixel values during the training process, and 
iz  

represents the unnormalized probability for the pixel x to 

belong to the segmentation class i [38], as shown in (3): 

 

 log ( | ).iz P y i x   (3) 

 

The segmentation results were evaluated using Dice 

coefficient, which represents the overlapping proportion of the 

segmented area and the annotated label: 
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Here 
1| |gS and 

1| |tS  are the areas of pixels belonging to 
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the considered class in the annotation mask and the segmented 

result each, while 
1 1| |g tS S is the area of pixels belonging 

to the considered class in both the annotation mask and the 

segmentation result [5]. 

The network was trained using Adam optimizer [39] for the 

maximum of 50 epochs. Regularization techniques used are:  

validating the network performance on the validation set, 

learning rate reduction by the coefficient of 0.1 after 3 epochs 

and early stopping after 10 epochs of non-improving 

validation loss applied. After the network is trained, the 

parameters of the saved best model are loaded and the 

segmentation results are predicted on the training, validation 

and test sets. Dice coefficient is then calculated for 

segmentation results for each of the four tumor structures, as 

well as for the tumor regions consisting of them: tumor core, 

enhancing tumor and whole tumor. 

III. RESULTS AND DISCUSSION 

The neural network training lasted 70 min. The best 

evaluation result on the validation dataset occurred in the 4th 

epoch and the training was stopped 10 epochs later due to 

early stopping. The best model achieved loss value of approx. 

0.03 on the validation set and 0.02 on the training set. The 

average prediction time per image using the trained model 

was 8 ms. 

 
TABLE I 

NUMBER OF IMAGES CONTAINING TUMOR STRUCTURES 

 

 necrosis edema non-enhancing enhancing 

train 4201 10149 7525 6705 

valid 1022 2252 1644 1440 

test 1379 3666 2634 2284 

 

The number of scans containing each of the tumor 

structures in the annotation masks for each of the datasets is 

given in Table 1. Overall, the training set contains 10179 

images with at least one tumor structure labeled, the 

validation set contains 2262 images, while the test set contains 

3673 images with at least one tumor structure. Table 1 clearly 

shows imbalanced data, as the majority of scans in all three 

sets contain the edema structure, while more than a half of the 

scans in all sets do not contain a single pixel labeled as 

necrosis and around a third of the scans do not contain pixels 

labeled as non-enhancing or enhancing core. 

The boxplot diagrams of the Dice coefficient calculated for 

the tumor structures and tumor regions in all three sets are 

given in Fig. 2. Median values and mean values are presented 

as red horizontal lines and green triangles respectively. The 

boxplot diagrams show better segmentation results for the 

edema and enhancing core structures than the non-enhancing 

core and necrosis on all three sets. Dice coefficients achieved 

for edema and the enhancing core have mean values greater 

than or equal to 60% and median values greater than or equal 

to 75% for all three sets, so the segmentation results obtained 

for these structures can be considered acceptably good. On the 

other hand, mean values of Dice coefficient obtained for 

necrotic core are lower than 40% and for the non-enhanced 

core are around 20% on all three sets, showing poor 

segmentation results for these structures. The results are 

expected, as the edema and enhancing core have larger 

surfaces in the image slices than the necrosis and non-

enhancing core, which makes the pixels belonging to the first 

two structures more common in the image data and makes it 

more likely for the network to classify them correctly. The 

mean Dice values for the tumor regions in all the sets are 

between 0.5 and 0.8, with the highest values achieved for the 

whole tumor and the lowest values for the tumor core. The 

mean value achieved on all three datasets for the whole tumor 

region is greater than 70% and median is greater than 83%. 

Active tumor region has the mean values greater than or equal 

to 60% and median greater than or equal to 75%, while the 

tumor core has the mean value and median each between 50% 

and 60%, achieved on the test set, and 60% and 80%, 

achieved on the training set. Achieved mean values greater 

than 50% and median values greater than or equal to 60% for 

all tumor regions suggest the successful segmentation of the 

tumor regions. The achieved segmentation results are 

comparable to the results of the algorithms available at the 

BRATS 2015 database website [30]. The greatest limitation of 

comparing the results of the proposed algorithm with the 

results in [30] is that in this work two subsets of the high-

grade glioma set were used for training and testing of the 

algorithm, while in the BRATS 2015 challenge the training 

set consisted of high-grade and low-grade glioma sets, while 

the separate set without the annotations was used for testing. 

An example of the segmentation results for the four tumor 

structures is given in Fig. 3, while Fig. 4 shows the 

segmentation results of the tumor regions formed from the 

structures in Fig. 3. In both figures the segmentation results 

are overlapping the corresponding annotation masks. Pixels 

belonging to the annotation masks which were not recognized 

as the tumor structure by the U-Net are shown in green, pixels 

predicted as the tumor structure which do not belong to the 

annotation mask are shown in dark blue, while pixels assigned 

as tumor structure in both the segmentation result and the 

annotation mask are presented as bright blue. The achieved 

values of Dice coefficient are listed under each image in both 

figures. The best segmentation result was achieved for the 

edema structure, with the Dice coefficient value of 93%, while 

the necrotic core was not recognized by the U-Net at all, with 

the Dice value 0%. It can be noticed that edema has the largest 

surface of all the structures, while the necrosis has the 

smallest surface, containing only several pixels in the 

annotation mask. Furthermore, the incorrectly classified pixels 

usually belong to the border between the structure area and 

the background, while pixels inside the area of the annotated 

structures are usually classified well. Despite the unsuccessful 

segmentation of the necrotic core and the average 

segmentation result of the non-enhancing core, with Dice 

value of 48%, the segmentation of the tumor regions formed 

from the segmented structures shows good result,    
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Fig. 2.  Boxplot diagram for the Dice coefficient achieved on the tumor structures (1st row) and tumor regions (2nd row).  

 

as shown in Fig. 4, with Dice values of 95% for the whole 

tumor, 90% for the tumor core and 85% for the active 

tumor. It is notable that the incorrectly classified pixels 

usually belong to the borderlines between the different 

structures. 

 

 
 
Fig. 3.  Example of the segmentation results for tumor structures. Bright 
blue pixels belong both to the segmented lesion and the annotation mask. 

Green pixels are ground truth pixels not recognized by the model as tumor 
structures, while dark blue pixels resemble background pixels incorrectly 

recognized as tumor structures.  

 
 
Fig. 4.  Example of segmentation results for tumor regions formed from the 

structures in Fig. 3. The results are presented in the same color order as 

described in Fig. 3. 

IV. CONCLUSION 

In this paper a model of the U-Net CNN architecture was 

proposed and successfully applied for the segmentation of 

different tumor structures in the 2D MRI contracts, as well 

as tumor regions formed from them. The segmentation 

results are evaluated using Dice coefficient and can be 

compared to the results proposed at the BRATS 2015 

benchmark. It is also shown that the promising segmentation 

results can be achieved for all tumor regions, with mean 

Dice values greater than 0.5, despite the poor segmentation 

results of some of the tumor structures.  

Possible improvements could be achieved by modifying 

the U-Net architecture and tuning some of its parameters as 

hyper-parameters, such as the number of layers in the 

contracting and expansive path, number of convolutional 

layers applied at the input layer of the contractive path, or 

loss function and metrics used for the evaluation of the 

network training. Employing data augmentation could create 

more input images available during the training process and 
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thus prevent the network from early overfitting. 

Furthermore, as the consecutive axial slices of the MRI 

contrasts are mutually dependent, transforming the network 

architecture so that it extracts information from 3D volumes, 

instead of 2D images, could also improve results, as 

proposed in [19, 22].   
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Abstract—In this paper the development and testing of a 

system prototype for a novel real-time navigation using 100 kHz 

ultrasound technology intended for the precise positioning of a 

CVC (Central Venous Catheter) inside the central venous system 

is presented. For the prototype realization a DSP (Digital Signal 

Processor) based hardware, including data converters, an 

ultrasonic transducer and a hydrophone, has been used. The 

processing algorithms implemented in C programming language 

included amplitude modulation/demodulation, matched filtering, 

and polyphase interpolation of chirp signals. For testing 

purposes, a measurement setup with a model of the upper part of 

the human torso based on water, agar-agar, pork ribs and pork 

lung was established. This paper shows the results of testing the 

developed prototype in terms of robustness, accuracy, and the 

possibility of ultrasound transmission through tissue, lungs, and 

ribs. The presented results indicate that even though the 

developed system shows a high level of accuracy (> 98 %) with a 

distance estimation update rate of 3.2 s and a usability for 

distances up to 20 cm in case of transmission through tissue and 

ribs, the overall applicability of the introduced ultrasound based 

navigation system is limited by the presence of the lungs. 

Additionally, the results confirm the existence of a statistically 

significant difference between ultrasound transmission through 

tissue and ribs. 

 
Index Terms—ultrasound, central venous catheter, navigation, 

real-time. 

 

I. INTRODUCTION 

CENTRAL venous catheterization is a well-known 

technique of accessing the central venous system by 

cannulating large veins to enable the administration of 

medications or fluids in cases when standard administration 

methods are not possible or insufficient [1]. A CVC (Central 

Venous Catheter) can be applied during surgery and/or 

postoperatively for parenteral nutrition, dialysis, or pain 

control therapy. To accomplish the successful delivery of 

medication, the CVC tip needs to be positioned inside the 

vena cava just above the heart [2].  

Current solutions for the CVC navigation and positioning 

include usage of X-ray or ECG (electrocardiogram) 

technology. In both cases, the CVC is blindly navigated using 

anatomical indicators. The confirmation of correct position of 

the CVC can then be verified once at the end of procedure 
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using X-ray or in real-time using ECG [3][4]. 

 In this paper a novel navigation system using ultrasound 

technology is proposed. The main idea is to transmit 

ultrasonic signals from the patient’s chest and receive them at 

the tip of the CVC under placement. The time between signal 

transmission and signal detection shall be used to determine 

the corresponding distance and calculate the position of the 

catheter tip in relation to the patient’s anatomy [5]. It was 

expected that for ultrasound frequencies between 10 kHz and 

750 kHz the developed system will enable transmission of 

ultrasound signals through lungs (air) and bones [6][7]. In 

comparison to X-ray and ECG techniques, the introduced 

system should ensure a reliable real-time CVC navigation 

unaffected by changes in physiological signals, which is not 

dependent on the applicant’s skills and is not exposing the 

patient to unnecessary X-ray radiation. 

This paper provides deeper insight into the possibility of 

ultrasound transmission through the human chest. It 

introduces an idea for a new and original CVC navigation 

system and investigates its applicability in the real-life 

environment. 

II. THE METHOD 

The implementation of the developed system included 

realization of a suitable hardware, a model of the upper part of 

the human torso and appropriate signal processing techniques. 

 

 
Fig. 1. Schematics of the implemented system. 

A. Hardware 

The technical part of the system comprising of evaluation 

boards for DSP (Digital Signal Processor) -    

TMDSEVM6657LS (fixed and floating point, dual core, 1 

GHz CPU speed per core), DAC (Digital to Analog 

Converter) – DAC80504EVM (16-bit) and ADC (Analog to 

Digital Converter) – ADS8920BEVM-PDK (16-bit), all 

manufactured by Texas Instruments (Dallas, Texas, USA), 

Real-time navigation system for Central Venous 
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was responsible for the real-time signal generation and 

processing. The communication between DSP and data 

converters was established using a 41.67 MHz SPI (Serial 

Peripheral Interface) channel of the DSP. The sampling rate 

of the implemented system was 306.7 kHz. An ultrasound 

transducer of frequency 100 kHz, bandwidth 16 kHz, diameter 

40±0.5 mm, manufactured by Multicomp Electronic 

Components (Leeds, England) was used. The hydrophone 

used in this project was a miniature probe BII-7186 

manufactured by Benthowave Instrument Inc. (Collingwood, 

Canada). The BII-7186 probe is equipped with a built-in 

digitally programmable preamplifier and a high pass filter 

with a cut-off frequency of 30 kHz. The amplification factor 

used in the project was 40 dB. Schematics of the implemented 

system can be seen on Fig. 1. 

B. Model of upper part of human torso 

In order to obtain a model with comparable results in terms 

of ultrasound transmission through the human chest, raw pork 

ribs and pork lung were used considering the anatomical 

similarity as well as the speed of sound. Due to the similarity 

of the speed of sound in tissue, vein, and water (1540 m/s for 

tissue and vein, 1493 m/s for water), water was used to model 

tissue. A plastic rectangular water tank (43 cm/40.3 cm x 27 

cm x 34 cm/31 cm) with a silicone membrane (26 cm x 19 

cm, thickness 3 mm, speed of sound 990 m/s) was designed as 

a basic setup, whereas different samples of agar-agar moulds 

(thickness 2 cm, speed of sound 1547 m/s) with samples of rib 

or lung were used to establish different transmission mediums 

(Fig. 2. left). The agar-agar moulds were prepared by 

dissolving agar-agar powder in cold water (5 g agar-agar per 

100 ml water), bringing it to boil, cooling it down for 2 h (at a 

room temperature of approximately 22 °C), pouring the still 

liquid solution over the samples of lung (8 cm x 7 cm, 

thickness 2 cm) or rib (8.8 cm x 1 cm x 0.6 cm) within a 

rectangular glass container (9 cm x 15 cm x 2 cm) and leaving 

it to cool down in a refrigerator for another 2 h. The silicone 

membrane was used on the front part of the water tank to 

simulate the transmission of ultrasound signals through the 

skin on the human chest (Fig. 2. right). The influence of the 

ultrasound attenuation during the transmission from the 

transducer to the silicone membrane was minimized using 

conductive gel. The final measurement setup can be seen on 

Fig. 3. 

 

 
Fig. 2. Left: rib and lung measurement samples with dimensions, right: front 

view of water tank with silicone membrane, transducer, and rib measurement 

sample (inside the water tank) including corresponding dimensions.  

 
Fig. 3. The final measurement setup. 

C. Signal processing 

The processing algorithms were developed in C 

programming language within the CCS v9.1 (Code Composer 

Studio) development environment (Texas Instruments, Dallas, 

Texas, USA). A block diagram of the implemented signal 

processing can be seen on Fig. 4. 

It has been shown that for frequencies inside the interval 

from 10 kHz to 750 kHz, the attenuation of the ultrasound 

signal in lungs decreases as the frequency increases [8], 

whereas for the transmission of ultrasound through ribs the 

opposite is valid [7]. The frequency of ultrasound signals used 

in this project was 100 kHz, chosen as a tradeoff between the 

conditions mentioned above. 

The linear baseband chirp signal with unit amplitude, 

duration T and frequency sweep (bandwidth) B is defined as 

follows [9]:  

 

                             (1) 

 

where N is the number of samples of the chirp signal  

sampled in the time moments t = ,  is the sampling 

period, , and  is the frequency in the time 

moment t = 0.  In this project a bandwidth of 16 kHz and a 

duration of 20 ms have been used.  

DSBSC-AM (Double Sideband Suppressed Carrier -

Amplitude Modulation) of the chirp signal can be formulated 

as follows [10]:  

 

 

                         (2)     

 

where is the frequency of the carrier wave with the 

amplitude  (here:  = 100 kHz,  = 1.25 V). Due to 

characteristics of the used DAC, the transmitted signal was a 

unipolar value of the modulated signal, as given per: 

 

                                                               (3) 

 

The removal of the DC (Direct Current) component of the 

received signal (present due to characteristics of the used 

ADC) is performed as follows: 

 

                                (4)  
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                                                         (5) 

                                                              (6) 

                                                    (7) 

                         (8) 

 

where  are samples of the signal , obtained as the 

sum of the received attenuated signal  with amplitude   

and the noise  in time moments t = ,  is the 

estimated DC component,  are samples of the received 

signal obtained after the removal of the DC component .  

The process of amplitude demodulation of the passband 

chirp signal can be formulated as follows [10]: 

 

    

        

             (9) 

 

where  are the samples of the received demodulated 

signal.  

Matched filtering generates its output by correlating a 

known template signal with the input signal. It is analogue to 

convolving the input signal with a complex-conjugated and 

time inverse version of a known template signal [11]. The 

output of the matched filter is defined as: 

 

      (10) 

 

where  is the impulse response of the matched 

filter corresponding to the complex-conjugated time inverse 

version of the baseband chirp signal with a duration of N 

samples. 

The output of the matched filter in an ideal noiseless case 

for a chirp signal as defined per (10) is: 

 

         

                     (11) 

where  represents scaling factor resulting from frequency 

response of a compression filter in a form of a dispersive 

delay line that enables an ideal compression of chirp signal. 

The magnitude of the matched filter output is therefore: 

          

                        |                          (12) 

 

and represents a form of a standard  function. 

In order to increase the resolution of the matched filter 

output, a polyphase interpolation was used. The polyphase 

interpolation implements a parallel bank of polyphase FIR 

(Finite Impulse Response) filters, whose impulse responses 

within matched filtering are upsampled values of the template 

signal. If the factor of interpolation is U, then for each sample 

of input signal the interpolation filter will provide U new 

values between successive samples of the interpolated signal 

[12]. The interpolation factor used in the project was 6. 

The time of arrival of a transmitted signal was calculated as 

follows: 

 

                                                                    (13) 

                                                                      (14) 

                                                                                 (15) 

 

where   and  are the time moments corresponding to the 

measured peak of magnitude of matched filter output during 

experimental measurement and calibration and  the correct 

time delay expected for a distance  during calibration in a 

transmission medium with the speed of sound . The peak of 

the magnitude of the matched filter was estimated using a 

simple algorithm for signal maximum computation. 

Additionally,  denotes the time offset in time of arrival 

estimation introduced by the system (DAC-ADC conversion, 

transducer maximum amplitude rise time). The estimation of 

the distance  was defined as: 

 

          (16) 

 

where  is the speed of sound in the transmission medium [5].  

Fig. 4. Block diagram of implemented processing techniques. 
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D. Testing of system and statistical analysis 

The robustness of the system was estimated by observing 

the SNR (Signal-to-Noise Ratio) in correspondence to the 

change in the transmission medium and the distance between 

transmission and reception. The SNR was defined as: 

 

                                                         (17) 

 

where  and  stand for the magnitude of the strongest and 

the second strongest peak in the output of the matched filter. 

The relative error of distance measurement  was 

estimated using the following relation: 

 

                                                                (19) 

 

where  is the measured distance and  is the exact distance 

between transducer and hydrophone. The exact distance was 

measured using a ruler (resolution 1 mm) positioned at the 

bottom of the water tank by measuring the distance between 

the marked center of the transducer on the inner part of the 

silicone membrane and the tip of the hydrophone, which were 

aligned prior to the measurement.  

System testing with different mediums on different 

distances has been realized using testing conditions shown in 

Table I. For each of the testing conditions 30 repetitions have 

been performed.  
 

TABLE I. TESTING CONDITIONS 

 

Medium Fc[kHz] B[kHz] T[ms] D[cm] 

Tissue 

Rib 

Lung 

 

100 

 

16 

 

20 

5 

10 

20 

 

After obtaining samples for all of the previously described 

testing conditions, statistic descriptors (mean, standard 

deviation, median, variance, range, interquartile range, 

skewness, kurtosis) have been computed using the SSPS v. 27 

(Statistical Package for the Social Sciences) software package 

(IBM, Armonk, New York, USA). 

The existence of a statistically significant difference 

between samples of distance estimation in different mediums 

was examined using the Wilcoxon signed rank test. It tests the 

hypothesis that the difference of samples of two vectors of 

data comes from a distribution with a zero median. The result 

of the test is 1 if it successfully rejects the hypothesis at 5 % 

significance level, and 0 otherwise. For the implementation in 

the project the built-in MATLAB (MathWorks, Natick, 

Massachusetts, USA) function signrank was used. 

The speed performance of the system was verified by 30 

repetitive measurements of the number of clock cycles needed 

for an execution of the implemented processing algorithm.  

III. MAIN RESULTS 

Results of the signal processing described in Section II in 

case of a generated baseband chirp signal with a bandwidth of 

16 kHz, a duration of 20 ms, a modulation with carrier on a 

frequency of 100 kHz and a transmission through the testing 

medium tissue on a distance of 5 cm, can be seen on Fig. 5-9.  

 
Fig. 5. Baseband chirp signal  with bandwidth 16 kHz and duration 

20 ms (top to bottom): real part, imaginary part, magnitude of Fourier 

spectrum. 

 
Fig. 6. Transmitted signal  (baseband chirp signal after modulation with 

carrier on frequency 100 kHz and DC component addition, top to bottom): 

real part, magnitude of Fourier spectrum.  

 
Fig. 7. Received signal  after DC offset removal in case of transmission 

through testing medium tissue on distance 5 cm (top to bottom): time domain, 

magnitude of Fourier spectrum. 
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Fig. 8. Received signal without DC component after demodulation with 

carrier on frequency 100 kHz - , in case of transmission through testing 

medium tissue on distance 5 cm (top to bottom): real part, imaginary part, 

magnitude of Fourier spectrum. 

 
Fig. 9. Magnitude of matched filter output of received demodulated signal 

without DC offset and baseband chirp signal - |  (top to bottom): all 

samples, magnified section [-60 cm, 60 cm]. 

 

Fig. 7. shows that the DC offset component on 0 kHz was 

successfully removed. Additionally, Fig. 7. (bottom) indicates 

that there is a substantial amount of noise present on all 

components of the spectrum. 

Fig. 9. (top) shows that the matched filter output in case of 

a transmission through the testing medium tissue on 5 cm 

contains several smaller peaks originating from the reflection 

of the sides of water tank besides the most prominent peak. 

Fig. 9. (bottom) indicates that the most prominent peak 

corresponds to the 5 cm distance (the exact distance between 

the points of transmission and reception). 

SNR characteristics (mean values with confidence 

intervals) obtained during the transmission of chirp signals 

with a bandwidth of 16 kHz, a duration of 20 ms, modulated 

with carrier on a frequency of 100 kHz in testing mediums 

tissue and rib on distances of 5 cm, 10 cm, and 20 cm can be 

seen on Fig. 10. It shows that as the distance between the 

points of transmission and reception increases, the estimated 

SNR decreases. Additionally, the introduction of a rib results 

in an additional loss of SNR of approximately 4 dB.  

 
Fig. 10. SNR characteristics in case of transmission of ultrasound signals of 

frequency 100 kHz, with bandwidth 16 kHz, duration 20 ms in testing 

medium tissue and medium rib for distances 5 cm, 10 cm, and 20 cm.  

 

The overlapped output of the matched filter and the fraction 

of the first millisecond of the received signal after offset 

removal in case of a transmission through testing medium 

lung on 5 cm can be seen on Fig. 11. The graphs indicate that 

the most prominent peak does not correspond to the exact 

distance of 5 cm (approx. 115 cm). As it is not known whether 

the ultrasound travels through the connective tissue of the 

lung or through a lot of air-tissue interfaces, it is difficult to 

estimate whether one of the smaller peaks prior to the most 

prominent one corresponds to the indirect path through the 

lungs. Considering that the first peak is present at 

approximately 17 cm and that the distance from the transducer 

to the water surface above the water tank is 8 cm (Fig. 2. 

(right)), this peak could be the result of a surface reflection. 

 
Fig. 11. Overlapped magnitude of matched filter output of received 

demodulated signal without DC component and baseband chirp signal (blue 

line) and received signal after DC offset removal (black line) obtained during 

transmission of ultrasound signals in testing medium lung on distance 5 cm. 

 

The values of the statistic descriptors for the relative error 

of distance estimation during transmission within the testing 

medium tissue on distances of 5 cm, 10 cm, and 20 cm can be 

seen in Table II, whereas comparative values of statistic 

descriptors for the distance estimation during transmission 
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within the testing mediums tissue and rib on an exact distance 

of 5 cm can be seen in Table III. 

 
TABLE II. RELATIVE ERROR OF DISTANCE ESTIMATION DURING TRANSMISSION 

IN TESTING MEDIUM TISSUE ON DISTANCES 5 CM, 10 CM, AND 20 CM 

 

 

 

Descriptor 

 

 

D = 5 cm D = 10 cm D = 20 cm 

Mean [%] 0.36 0.62 1.66  

Median 3.67 · 10-3 8.86 · 10-3 1.67 · 10-2 

Variance 0.68 · 10-3 0.14 0.28 · 10-1 

Std. deviation [%] 0.26 · 10-3 0.38 0.17 

Range 2.00 · 10-3 8.04 · 10-3  1.21 · 10-2 

Interquartile Range 0.00 8.04 · 10-3 0.00 

Skewness -2.49 -0.74 -3.39 

Kurtosis 5.73 1.55 19.95 

 
 

TABLE III. COMPARISON OF DISTANCE ESTIMATION DURING TRANSMISSION IN 

TESTING MEDIUMS TISSUE AND RIB ON DISTANCE 5 CM 

 

 

 

Descriptor 

 

dm 

Tissue Rib 

Mean  5.02 3.35 

Median 5.02 3.24 

Variance 1.69 · 10-6 2.25 · 10-4 

Std. deviation 0.13 x 10-2 0.15 

Range 0.01 0.04 

Interquartile Range 0.00 0.32 

Skewness -2.49 0.87 

Kurtosis 5.73 1.22 

 

The values in Table II show that with the increase in 

distance the mean value of the relative error also increases. 

The standard deviation of the relative error < 1 % indicates 

that there are no significant changes in the repetitive 

measurements of the received signal. Table III shows lower 

mean values of the distance estimation for the testing medium 

rib than medium tissue. This result is corresponding to the 

theoretical consideration that the speed of sound in bones is 

bigger than in tissue/water. 

Based on the 30 repetitions of clock measurements, it has 

been calculated that the update rate of the distance estimation 

was 3.2 GHz (3.2 s). 

The Wilcoxon signed rank test on measurements in the 

testing mediums tissue and rib for a distance of 5 cm shows 

value 1. Therefore, there is a statistically significant difference 

between transmissions in these two mediums. 

IV. DISCUSSION AND CONCLUSION 

Based on the previously shown results the presented system 

ensures a low error of distance estimation (< 2 %) for 

distances up to 20 cm with a relatively reasonable update rate. 

However, even though the system is usable in the testing 

mediums tissue and rib, the results of a transmission through 

the testing medium lung do not give enough information to 

confirm the premise that a transthoracic transmission on a 

frequency of 100 kHz is possible as contrary to the expected 

results, given in [7]. Therefore, the presented system did not 

prove to be a viable replacement for existing real-time CVC 

navigation systems.  

Besides the limitation resulting from the ultrasound 

attenuation in lungs, the performance of the prototype was 

limited by the characteristics and the interconnection of the 

hardware. The usage of long wires affected the speed of the 

SPI and the sampling rate of the system. The low amplitude of 

the transmitted signals has resulted in low sound pressure 

levels, whereas the narrow bandwidth of the transducer has 

affected the amplitude of the matched filter output. By 

increasing the sound pressure levels of the transmitted signals 

and the usage of wideband transducers within a uniform 

electronic system, a further investigation of the possibility of 

transthoracic transmission can be obtained in future attempts. 
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