
 

  

Abstract—Various audio features can be extracted from audio 

signals. One of very important ones is pitch. Different algorithms 

and methods have been proposed in literature to detect pitch. 

Among them, cepstrum-based pitch detection as a frequency 

domain method has often been used in practice. Cepstrum is 

calculated as the inverse Fourier transform of the logarithm of 

signal spectrum. The fundamental frequency and pitch in this 

way is estimated as the maximum value of cesptrum in the 

defined segment. Here, pitch of some industrial products 

(compressors and DC motors) are estimated by applying the 

modified cepstrum-based algorithm. The detected pitch values 

can be used to make a distinction between different working 

conditions of these products such as different rotation-per-

minute (rpm). 

 
Index Terms—Cepstrum analysis; Pitch detection; Peak 

finding; Audio Feature; Audio signals; Industrial product sound.  

 

I. INTRODUCTION 

PITCH detection is a common task present in a number of 

researches mostly related to speech, since the pitch (or 

fundamental frequency) is one of the most important 

parameters of speech. Thus, detection of pitch can be found in 

different speaker recognition and identification systems, 

speech synthesis systems, telecommunication systems, etc. [1-

3]. In addition, pitch is one of the audio features (attributes) 

used for audio classification, detection and recognition by 

applying machine or deep learning [4]. 

Pitch can be detected in the time or frequency domain. One 

of simple time domain algorithms (methods) is the zero 

crossing rate method. The most important methods in the time 

domain are typically based on auto-correlation using a 

hypothesis that the auto-correlation function of a periodic 

signal is also periodic and that these two periods are 

coincident [5]. 

Regarding the frequency domain methods for pitch 

detection, one of the most popular is cepstrum-based method. 

Power cepstrum has some similar properties with the complex 
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cepstrum obtained by homomorphic deconvolution [5], with 

the main difference that phase information is lost in the power 

cepstrum, which is called in the rest of the paper cepstrum. 

Cepstrum, complex cepstrum, and homomorphic 

deconvolution have been applied in various areas such as 

audio processing, speech processing, geophysics, radar, 

medical imaging, etc. [5]. Some of the applications of both 

cepstrum and complex cepstrum include restoration of old 

phonograph recordings [6], cepstral pitch detector, speech 

recognition and speaker identification. 

The periodicity present in a signal that is related to the pitch 

can be estimated from the cepstrum. Comparing with some 

other methods for pitch detection, the cepstrum method is able 

to provide accurate and robust results, but it is 

computationally complex [5]. 

This paper presents potentials for using pitch as an audio 

feature of sound of certain industrial products such as 

compressors and DC motors. The goal is to investigate if such 

a feature is able to provide clear distinction between different 

compressors or DC motors. The pitch is estimated by using 

cepstrum-based algorithm modified in a sense that peak finder 

is applied to the obtained cepstrum. Different compressors are 

related to compressors working with different rotations-per-

minute (rpm), while different DC motors are related to 

different types of DC motors used in the automotive industry. 

II. PITCH DETECTION ALGORITHMS 

Pitch is an important attribute of some audio signals such as 

speech signals. In speech, as a consequence of the vocal fold 

vibrations, the signal waveform contains certain periodicity 

translated into “pitch step” in the time domain and 

“fundamental frequency” or pitch in the frequency domain. 

However, pitch as an audio feature can also be of significance 

in machine and deep learning applied to a variety of audio 

signals including those containing sounds of industrial 

products, e.g. DC motors, home appliances or internal 

combustion engines of passenger vehicles [7]. 

There are various algorithms for pitch detection divided 

according to different criteria. Thus, there are block based and 

event based algorithms [9]. In the block based algorithms, the 

signal is sliced into small segments assuming that the pitch 

remains constant during the segments. On the other hand, 

event based algorithms use pitch marking or epoch detection. 

Here, pitch is not assumed to be constant over several pitch 

cycles. This is why these algorithms are able to track fast 

pitch changes even during the segments [10]. 

According to domain in which the algorithms are applied, 
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they can be divided in three groups: time domain, frequency 

domain and hybrid group (combining time and frequency 

domain) [11]. Algorithms in the time domain use 

characteristics of a signal in the time domain, e.g. amplitude 

fluctuations, zero-crossing and auto-correlation attributes. 

This group contains the algorithms such as parallel processing 

time-domain method [12], data reduction method [13], 

modified auto-correlation (AUTOC), average magnitude 

difference function (AMDF) and YIN [14]. 

Frequency domain algorithms are based on the property 

that periodicity in the time domain is translated into series of 

peaks (impulses) in the frequency domain. This group of 

algorithms contains methods such as harmonic product 

spectrum (HPS), cepstrum-based pitch detection, linear 

predicting coding (LPC) and sawtooth waveform inspired 

pitch estimator (SWIPE) [15]. 

Hybrid detectors combine both the time and frequency 

domain algorithms. In that regard, frequency domain 

algorithms can yield temporary spectral aligned sound waves, 

and after that, auto-correlation methods are applied to 

determine the pitch period [11]. Hybrid pitch detection 

methods include pitch estimation filter with amplitude 

compression (PEFAC) [16], YAAPT [17], multi-band 

summary correlogram (MBSC) [18] and BaNa [19]. 

A. AUTOC as Time Domain Method 

Among the time domain pitch detection methods, the most 

used one is the autocorrelation approach. It is based on 

finding the highest value of the auto-correlation function. 

Here, the auto-correlation function (AF) of a signal s(n) 

(n=0, 1, … , N-1) is defined as  
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where N is the signal (or frame) length, while k is the lag 

index. The pitch is detected at the location of the peak of auto-

correlation function. 

B. Cepstrum-based Algorithm as Frequency Domain Method 

Cepstrum C(m) can be calculated as the inverse Fourier 

transform of the logarithm of Fourier transform of the target 

signal, s(n): 

 

( )

( )













=














=





−

=

−

=

−

1

0

2

1

0

2

exp)(
1

exp)(log

N

k

mk
N

j

N

n

nk
N

j

kS
N

mC

nskS





. (2) 

The pitch is detected at the location of cepstrum maximum 

calculated as given in (2). It is presented in the literature that 

the cepstrum-based method is sensitive to noise in the target 

signal [11]. 

C. PEFAC as Hybrid Method 

The pitch in the PEFAC algorithm is detected by 

convolving the power spectral density of the signal in the log-

frequency domain with the filter summing the energy of the 

pitch harmonics [11]. The model at the time moment t of a 

perfectly periodic signal (having fundamental frequency f0) in 

the power spectral density domain can be expressed as 
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where Nk (f) is the power spectral density of the undesired 

noise and ak,t is the power of the k-th harmonic. The signal 

model gets the following form in the logarithmic domain 
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where q = log(f). The energies of the signal components in 

this domain can be combined by convolving Yt (q) with the 

impulse response filter. 

The filter h(q) can suppress the noise with smoothly 

varying spectra, but this is not the case for high amplitude 

narrowband noise. This is why the spectrum compression is 

applied before the convolution with the filter h(q) 
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where t represents time index and at (q) represents the 

compression exponent [11]. 

III. METHODS APPLIED 

For the purpose of carrying out this research, audio signals 

with different spectral contents are selected. Some of them 

have known pitch and harmonics distribution, such as the 

trumpet sound given in Fig. 1, while in the other signals 

(containing the sounds of certain industrial products) these 

parameters are unknown. The sound of trumpet is tonal sound 

with pronounced pitch, and the main characteristic of such a 

sound is periodicity, which can be seen in the time domain as 

presented in Fig. 2. 

 

 
 

Fig. 1.  Spectrum of trumpet sound consisting of fundamental (f0) at 

frequency of 787 Hz and partials that have a harmonic distribution relative to 

the fundamental. 

 

Cepstrum-based pitch detection uses signal periodicity. In 

this case, the periodicity refers to a particular waveform of the 

specific length that is repeated throughout the signal, and it is 

reflected in a discrete spectrum containing prominent peaks 

equally distributed throughout the frequency range. 

The cepstrum-based pitch detection algorithm consists of 

five main steps described below. In the first step, the signal is 
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transformed from the time to the frequency (spectral) domain 

using the Fourier transform. By applying the relevant function 

in Python, two variables are obtained - spectrum (given in 

complex numbers) and frequency vector. In the second step, 

the logarithm of the spectrum magnitude is calculated. The 

basic idea of cepstrum is to transfer the periodicity from the 

logarithmic representation of the spectrum to the time domain. 

For that reason, in the third step, the inverse Fourier transform 

is applied over the logarithm of the spectrum magnitude data. 

The cepstrum of the trumpet sound from Figs. 1 and 2 

obtained in the described way is shown in Fig. 3. 

 

 
 

Fig. 2.  Trumpet sound shown in time domain. 

 

 
 

Fig. 3.  Cepsrum of trumpet sound. 

 

As can be seen in Fig. 3, the x-axis is titled quefrency, 

which is an anagram of frequency and it is related to time 

scale. The reason is in performing the inverse Fourier 

transform, that is, in inverting the frequency by this 

transformation. As a consequence, the highest frequencies are 

located at the beginning of the x-axis, while the lowest 

frequencies are located at the end of the x-axis. Frequencies 

are converted into quefrencies by taking 1/frequency. 

The fourth step is related to finding the maximum value of 

the cesptrum, that is, finding the quefrency value at which the 

cepstrum maximum occurs. In majority of cases, the 

maximum amplitude of the cepstrum is located at the 

beginning of the x-axis – at the zero quefrency or its vicinity, 

which greatly complicates the pitch detection in an automated 

manner. There are several approaches to overcome this 

problem. One of them is to limit the quefrency band in which 

the search of cepstrum maximum is carried out. In this way, 

an error can be introduced in estimating the pitch of some 

sounds, such as sound of certain industrial products, since it is 

not known in advance in which frequency band to expect the 

pitch. The second approach is not to detect the pitch at the 

absolute maximum of the cepstrum, but instead to skip the 

cepstrum maximum at the zero quefrency, and to use the 

second largest value of the cepstrum for the pitch estimation. 

Such an approach leads to an error of pitch detection in the 

case where the cepstrum do not have the maximum value at 

the zero quefrency. 

In this paper, an alternative approach to solve the 

mentioned problem is applied. Thus, the function for finding 

peaks (find_peaks) from the library scipy in Python is used. 

This function finds all local maxima by simple comparison of 

neighboring values, with the ability to define large number 

conditions for the peak properties. Due to the fact that there 

are no neighboring values on the left side of the cepstrum 

maximum at the zero quefrency (or in close vicinity), this 

maximum is automatically not considered as a peak.  

When the relevant maximum of the cepstrum is selected, 

the quefrency value of that maximum is converted into 

frequency representing the estimated pitch 

(pitch = 1/(quefrency of cepstrum maximum)). 

To check the described algorithm, the fundamental 

frequency from the trumpet sound is removed by filtering, see 

the spectrum shown in Fig. 4.a). The determined maximum of 

the cepstrum is located at the same quefrency position, see 

Fig. 4.b), as before removing the fundamental component. 

 

 
 

Fig. 4.  Spectrum a) and cepstrum b) of trumpet sound after removing the 

fundamental component located at 787 Hz. 
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For the purpose of this research, the estimation of pitch by 

the modified cepstrum-based algorithm described above is 

done on different sounds of industrial products including 

fridge compressors and DC motors. The sound of fridge 

compressors were recorded in the semi-anechoic chamber in 

three working cycles (modes of operation) having different 

rpms (4000 rpm, 2400 rpm and 1300 rpm). Sounds of DC 

motors were also recorded in the semi-anechoic chamber (not 

the same one used for the compressor recording) within the 

production line. The recording was done on two different 

types of DC motors (here denoted type A and type B), in two 

different directions of rotation (here denoted direction 1 and 

direction 2) and for two different conditions regarding the 

failure (without failure and with certain failure). The analysis 

of recorded audio signals is carried out using the scripts 

developed in Python 3.8. 

IV. ANALYSIS OF DETECTED PITCH 

Th 

e potentials for applying the cepstrum-based pitch detection 

in making difference between different samples or working 

conditions of certain industrial products is investigated here 

focusing on spectrum and cepstrum of the sounds of these 

products, that is, on one-figure value of the detected pitch. 

The first product whose sound is analyzed is fridge 

compressors. The target for this product is to consider if it is 

possible to make a distinction between three different working 

conditions of compressors – three different rpms (4000, 2400 

and 1300). The spectrum and cepstrum of the compressors 

having 4000 rpm are shown in Fig. 5. The pitch estimated by 

the described procedure is 6400.05 Hz. 

 

 
 

Fig. 5.  Spectrum a) and cepstrum b) of fridge compressor sound at 4000 rpm. 

When the rpm is changed from 4000 to 2400, it causes 

certain changes in the spectrum, but also in the cepstrum and 

consequently in the detected pitch. Fig. 6 shows the spectrum 

and cepstrum of the fridge compressor sound at 2400 rpm, 

where the estimated pitch is 2756.25 Hz. 

 

 
 

Fig. 6.  Spectrum a) and cepstrum b) of fridge compressor sound at 2400 rpm. 

 

By changing the rpm to 1300, the detected pitch is changed 

to 5120.04 Hz. The spectrum and cepstrum for that rpm are 

presented in Fig. 7. Regarding the cepstrum, not only the 

relevant maximum of the cepstrum, but also its pattern is 

changed by changing rpm. This is why it seems reasonable to 

introduce at least one more attribute that will reflect 

dissimilarity of the cepstrum pattern. This attribute can be 

related either to decay of the cepstrum envelope, cepstrum 

energy within certain qefrency limits or even a vector 

containing the cepstrum values within pre-defined qefrency 

limits. 

The next step in the analysis includes DC motors. Spectrum 

and cepstrum of the same DC motor of type A, but in two 

opposite directions of rotation are shown in Fig. 8. Comparing 

the spectra, it can be concluded that overall pattern is similar 

for both directions of rotation, with certain differences in 

particular frequency bands and at particular frequencies. The 

patterns of cepstrum are also similar, but still having some 

differences for different directions of rotation. The estimated 

pitch for both directions is the same, 2666.33 Hz, since the 

maximum value of cepstrum is located at the same quefrency.  

Comparison of spectra and “cepstra” of sounds of two DC 

motors of different types (A and B) is presented in Fig. 9. 

Shapes of the spectra given in Fig. 9.a) and Fig. 8.a) for the 

motor A are similar, with certain differences, since different 
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motors of the same type A are used for the analysis. The same 

situation exists in the “cepstra” from Fig. 8.b) and Fig. 9.b). In 

spite of these differences, the estimated pitch for two motors 

of the same type A is the same (2666.73 Hz), while the 

estimated pitch for the motor of type B is 888.91 Hz. 

 

 
 

Fig. 7.  Spectrum a) and cepstrum b) of fridge compressor sound at 1300 rpm. 

 

 
 

Fig. 8.  Spectrum a) and cepstrum b) of DC motor A in two opposite 

directions of rotation. 

When detected pitch values for DC motors with and 

without failures are analyzed, the differences between motors 

depend on the failure itself. In some cases, the failure causes 

change of periodicity or pseudo-periodicity of sound 

waveform leading to a certain change of the estimated pitch. 

Fig. 10 illustrates one of such cases presenting spectra and 

“cepstra” of DC motors without failure (OK motor) and with 

failure (NOT OK motor). The estimated pitch for OK motor is 

2666.73 Hz and for NOT OK motor is 1333.36 Hz. Here, the 

differences between the spectra and “cepstra” are larger in 

comparison to the previously analyzed two cases of DC 

motors. 

 

 
 

Fig. 9.  Spectrum a) and cepstrum b) of different DC motors (motors of type 

A and B) and direction of rotation 1. 

 

V. CONCLUSION 

This paper analyses potentials for making a difference 

between working conditions or states of two industrial 

products, fridge compressors and DC motors, based on pitch 

of their sounds. The pitch is detected using the cepstrum-

based algorithm. 

The results show that there are conditions and states where 

the estimated pitches are different for different conditions 

(states). However, there are also cases where the pitch only 

could not be used for making a difference between conditions 

(states) of these products. Even in such cases, the patterns or 

shapes of the “cepstra” show certain differences for different 

conditions (states). This is why a measure calculated from the 

cepstrum can be introduced in addition to pitch that can be 

used as a new audio feature. 
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Fig. 10.  Spectrum a) and cepstrum b) of OK DC motor (without failure) and 

NOT OK DC motor (with failure). 
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