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Abstract—Examination of resonant frequency and coupling 
coefficient is essential part in microwave filters design with 
coupled resonators. We introduce Characteristic Mode Analysis 
(CMA) based method for calculation of coupling curve, applied 
to microstrip resonators. The main advantage of this approach is 
simplicity, due to CMs independency of any external sources. 
The results for coupling curve are presented and cross-checked 
with results obtained by equivalent two ports microstrip model 
with feeding lines. A very good agreement between the two 
methods is observed.  

 
Index Terms—Coupling coefficient, coupled resonators, CMA, 

filter, resonant frequency.  
 

I. INTRODUCTION 

DISHAL acknowledged that any narrow-band bandpass 
filter can be described by tuning frequency of the resonators, 
the couplings between adjacent resonators and the external Q-
factor of the first and last resonators [1], [2]. Initially, in case 
of distributed resonators, these parameters had usually been 
determined without a straight-forward method, but rather with 
a set of numerous experiments and measurements. With 
expansion of electromagnetic (EM) solvers, generating design 
curves for coupling and external Q-factor in terms of variables 
of interest became significantly easier. In [3], it was 
demonstrated how to extract the curves from insertion loss 
response and time delay at resonances, obtained from EM 
simulations. That approach we will later use in order to verify 
our results. 

Since it was introduced, Characteristic Mode Analysis 
(CMA) was mainly used to analyze radiating properties of 
various antennas and scattering objects [4]–[6]. Apart from 
these fields, it found a role in analysis of surface wave 
resonance as well [7]. In this paper we outline a method for 
investigating resonant frequencies and generating coupling 
curve between resonators using CMA theory, in example of 
microstrip coupled resonators. We haven’t yet considered a 
way to determine external Q-factor using CMA, which would 
allow to apply Dishal’s concept [2] with all three variables 
required for bandpass filter design obtained by CMA only. 
The main purpose of this paper is to indicate a potential of 
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CMA as a tool in narrow-band microwave bandpass filter 
design. 

Chosen example for presenting the method consists of two 
grounded λ/4 resonators in microstrip technique, designed on 
operating frequency 1 GHz. To take advantage of 
Characteristic Modes formulation for PEC bodies [8], we 
considered air substrate. All the full-wave 3D EM analysis 
was performed in WIPL-D software package [9], which 
utilizes MoM (Method of Moments) and HOBFs (Higher 
Order Basis Functions). 

II. THEORETICAL INSIGHT TO CHARACTERISTIC MODES 

ANALYSIS 

Characteristic mode analysis is the numerical calculation of 
a weighted set of orthogonal current modes that are supported 
on a given structure. The theory was first introduced to 
electromagnetic by Garbacz [3], and later Harrington and 
Mautz formulated generalized eigenvalue equation for 
conducting bodies applied on MoM impedance matrix [8]. 
Here follows brief insight to derivation of eigenvalue 
equation. When an incident plane wave Ei illuminates PEC 
structure, it induces surface currents Js, which induce 
scattered field Es. Boundary condition for E filed on the PEC 
body surface S can be written as: 

 

 i s
tan( ( ) ( )) 0, E r E r  ,Sr  (1) 

 
where “tan” denotes tangential components of electric field. 
Scattering field Es can be expressed in terms of induced 
surface current as: 
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where ε0 and µ0 are the permittivity and permeability of the 
free space, and ( , ')G r r  is Green’s function in free space 

multiplied by 4π, and given by  
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where R is distance between the field and the source point and 

0 0 0k     is the wavenumber in free space. Relationship 
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between scattering field and surface currents can be written in 
form of integro-differential operator L(∙), thus boundary 
condition (1) can be expressed as: 

 

   i
tantan

( ) ( )sL J E r , Sr  (4) 

 
that is known as EFIE (Electric Field Integral Equation). If 
we write tangential component of L(∙) operator as a new 
operator Z(∙), we obtain: 

 

  tan
( ) ( ).s sL ZJ J  (5) 

 
Operator Z(∙) has impedance property and can be split into 

real and imaginary part as: 
 

 j Z R X  (6) 

 
which represents MoM impedance matrix. By using 
impedance matrix in weighted eigenvalue equation, 
generalized eigenvalue equation for CM calculation is defined 
as: 
 
 , ,( ) ( ).s n n s n X J R J  (7) 

 
Solutions of (7) are eigenvectors Js,n, that are vectors of 
current coefficients, eigenvalues λn, and n is the order of each 
mode. Eigenvalue is the real number within a range 

 ,  , and its magnitude is proportional to the total stored 

field energy: 
 

 * *( )d .n n n n n
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Physical meaning of eigenvalues can be interpreted as 

follows: 
 In the case of 0n  , stored electric and magnetic 

energies are equal, and associated modes are 
considered as the resonant modes. 

 In the case of 0n  , stored electric energy 

dominates, and associated modes are considered as 
the capacitive modes. 

 In the case of 0n  , stored magnetic energy 

dominates, and associated modes are considered as 
the inductive modes. 

The more convenient way for graphical representing 
eigenvalue is parameter called Modal Significance, defined 
as: 
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MS takes values from [0,1], and for resonant modes, when 

n  approaches to 0, it is close to 1.  

The important property which can be noticed from (7), is 
that CMs do not depend on any external excitation, but on the 
physical properties of the structure only. MoM matrix is 
filled-in, after which eigenvalue equation is solved in order to 
calculate unknown current coefficients for each mode, i.e. 
eigenvectors, as well as eigenvalues. Consequently, there is 
no need for any feeding network in analysis of the resonant 
properties in this way. 

As it is mentioned before, the reason for analysis of PEC 
body in free space is to present the research using available 
tool [9]. In [10], theory of characteristic modes for material 
bodies is introduced, where the main difference from the 
theory for perfectly conducting bodies lies in the computation 
of the modes. It is also discussed in [10] that characteristic 
modes in material bodies have the most properties as 
corresponding modes in perfectly conducting bodies. Having 
that in mind, we may assume that the method is also valid for 
microstrip with other dielectric properties. 

III. GENERATING COUPLING CURVE 

Generally speaking, coupling coefficient can be defined as 
a ratio of coupled energy to stored energy, while 
corresponding electric and magnetic fields should be 
calculated at resonant frequencies [11]. In [12] it is given the 
expression for coupling coefficient, derived from lumped-
element circuits: 

 

    2 2 2 2
2 1 1 2 ,k f f f f    (10) 

 
where f1 and f2 are the lower and upper resonant frequency of 
the coupled resonators. Equation (10) is also valid for the 
distributed resonators, and resonant frequencies can be 
determined from full wave EM simulations. In following 
examples, coupling coefficient is always calculated using 
(10), while required resonant frequencies are obtained from 
both CMA and insertion loss response from model with 
feeding lines and ports. As an electromagnetic coupling 
increases when the elements are getting closer to each other, it 
is significant to graphically represent it as a function of 
distance, thus to generate coupling curve. 
 

 
 

Fig. 1. Single grounded resonator above infinite PEC plane. 
 

A. CMA Based Method and Numerical Model  

Firstly, a single λ/4 resonator at operating frequency 1 GHz, 
with a grounded end above PEC plane, is analyzed with CMA 
solver. Distance from PEC plane is h = 2 mm, length of 
resonator l = 74.95 mm, and width w = 9.83 mm. In CMA 
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model it is not possible to define a port between ground and 
resonators that would introduce a voltage necessary for 
transmission line. This obstacle is overcome by defining an 
infinite PEC plane that indicates the image theory to be 
applied. The original and the equivalent model after image 
theory are applied as given in Fig. 1. 

Analysis is performed in discrete frequency points, in range 
from 0.8 GHz to 5 GHz. MS for the first 3 modes is shown in 
Fig. 2.  
 

 
 

Fig. 2. MS for the first three modes of single resonator in frequency range 
0.8 GHz – 5 GHz. 

 
It can be seen from Fig. 2, that in the analyzed range there 

are three very narrow resonant modes, and the one of interest 
is at around 0.968 GHz. In order to analyze the coupling, one 
more resonator is added with the same dimensions, but 
grounded on different end, as shown in Fig. 3, and the results 
are given on Fig. 4. This model of coupled resonators is 
important for interdigital bandpass filter design. 

 

 
 

Fig. 3. Two coupled grounded resonators above infinite PEC plane. 
 

 
Fig. 4. MS for the first six modes of two coupled resonators in frequency 
range 0.8 GHz – 5 GHz. 

As it was expected, instead of each resonance in case of 
single resonator, now we have two resonances shifted in 
frequency. Each peak still comes from different characteristic 
mode, but the two in every pair is very physically similar to 
each other, meaning have similar current and near field 
distribution. With varying the spacing between resonators, the 
spikes appear in the different positions in frequency. Having 
the low and high resonant frequencies as the only unknown 
quantities in (10), coupling coefficient can be calculated 
easily. In this example for spacing s = 1 mm, coupling 
coefficient equals to 0.2. 

B. Method Based on Insertion Loss Response 

In order to cross-check calculated results for coupling 
obtained by CMA method, we created the equivalent 
microstrip model with two resonators and two loosely coupled 
feed lines, presented in Fig. 5. The dielectric is air. The 
distances between feed lines and resonators equals to 2h. Two 
resonators are grounded and two ports are placed on the 
different ends of feeding lines. The length and the width of the 
ground plane equal to 135 mm and 100 mm, respectively. The 

insertion loss response ( 10 2120log dBIL s  ) is given in 

Fig. 6, and it can be observed that six resonances appeared at 
the same frequencies as resonances shown in MS response in 
Fig. 4. 

 

 
 

Fig. 5. Equivalent model with resonators and feeding lines. 
 

 
 
Fig. 6. Insertion loss response in frequency range 0.8 GHz – 5 GHz. 
 

C. Coupling Curve Results 

In case of both methods, models were re-simulated for 
different values of spacing between resonators, from range 
0.1 mm to 10 mm. For each point, the equation (10) is 
calculated by inspecting resonances from MS graph and s-
parameters. Results are overlaid on graph shown in Fig. 7, 
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where “MS” denotes CMA based method, while “s21” denotes 
the method based on insertion loss response. 

The graph from Fig. 7 confirms that these two approaches 
result in the same coupling coefficient curves, and it can be 
said the CMA based method is verified. Negligible 
differences could be reduced by additional increasing of EM 
simulation accuracy, which is for the purpose of this research 
considered unnecessary. 

 

 
 

Fig. 7. Coupling curve in terms of spacing between resonators. 
 

IV. CONCLUSION 

In this paper, we have shown how CMA can be used in 
order to analyze resonant frequencies and coupling between 
resonators, and therefore can be used in bandpass microstrip 
filter synthesis. It provides very elegant solution to inspect 
internal resonances without taking care of feeding network 
and its potential influence. The validity of the results is 
confirmed with those obtained by inspecting s-parameters of 
the equivalent model with ports and feed lines. 
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