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Abstract—This paper presents a cloud-native, multi-purpose,
and reusable system for collecting, processing and storing data,
with the aim of monitoring an arbitrary physical system. The
proposed system can be divided into three main parts: a private
network containing a set of microservices that perform complete
data processing, applications that implement the low-level logic
for collecting data from remote sensors, and a web client
which enables interaction between the user and the rest of
the system. The final product of this paper is a system based
on the microservice architecture named isobar.ot, that allows
monitoring of the chosen set of values of an arbitrary physical
system, through a simple and functional user interface. Using
the system presented in this paper, the user is able to control
the entire course of remote monitoring: from the selection and
specification of the collected data scheme, through the definition
of alarm values, to displaying changes of values and alarms in
real-time.
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I. INTRODUCTION

Monitoring the various parameters of arbitrary physical
systems is a crucial part of every industrial facility. Super-
visory Control and Data Acquisition (SCADA) systems are
ubiquitous in almost all industries: from the food industry to
the power industry, which results in a need for continuous
improvements of the existing, and development of new
solutions [1].

This paper concerns the development of the modern
solution for remote monitoring systems that can be used
for monitoring an arbitrary physical system. It is based
on a microservice architecture with cutting-edge tools and
technologies. Motivation for choosing this topic came from
a necessity for a system that can work with large amounts
of data and is flexible in a relation to a supervised physical
system, which makes it usable as a part of Internet of Things
(IoT) systems [2].

One of the biggest challenges when designing such a
system is the scalability, i.e., the ability of the system to work
with a large number of sensors and serve a large number of
clients without a drop in performance. Furthermore, such
a system requires a simple and functional user interface in
order to provide an operator with an efficient way to monitor
changes in the collected data, have insight into the alarming
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events in real-time, as well as defining new locations, alarm
types, schemes of the data that is collected, etc. For the
above-mentioned goals to be fulfilled, the proposed system
is designed according to the principles of microservice
architecture.

After the Introduction, basic principles, advantages and
disadvantages of the microservice architecture and the ar-
chitecture of the proposed solution are explained in Section
II. Technical details about the implementation, along with
the tools and technologies that were used are introduced in
Section III. Results and user interface are shown in Section
IV and the concluding remarks along with future plans are
given in the final Section V.

II. ARCHITECTURE

Two mandatory requirements that the proposed system
must meet are working with a large amount of data and
serving a large number of clients. The architecture of the pro-
posed system is designed so that the mentioned requirements
are satisfied for the arbitrary amount of data and number of
clients.

Microservice Architecture

Microservice architecture implies the development of ap-
plications in the form of small, isolated, and independent
services that communicate with each other via clearly defined
protocols. Such a method for developing systems came about
due to the aim of overcoming flaws and problems that come
with monolith architecture.

The traditional approach to developing software implies
the use of monolithic architecture. One of the flaws of
monolithic architecture is that it poorly copes with overload
[3]. One approach to handling overload is to vertically scale
the existing machine on which the application runs. That
is expensive and not efficient enough to solve the problem
completely. The other approach is to use horizontal scaling
and create multiple instances of the application. This ap-
proach leads to inefficient use of hardware resources because
there is no possibility to scale only those parts of the system
that require it [3]. In addition, the degree of reusability of
individual components is reduced because they are tightly
coupled with the system they were initially developed for.

The main advantage of the microservice architecture-
based systems is that the individual microservices can be
scaled independently. That way, better utilization of hardware
resources is achieved so that only the parts of the system that
are affected by overload get scaled. Additional advantages
that the microservice architecture brings are independent
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development of individual components as well as the high
degree of their reusability [3].

Fig. 1. Microservice Architecture Scheme

Fig. 1 presents the example of the microservice architec-
ture scheme. It can be noticed that system based on the
microservice architecture is suitable for scaling individual
parts that require it because each part represents an inde-
pendent application. There is also the possibility of using
different technologies for implementing individual services,
as well as the use of different communication mechanisms
and protocols depending on the need.

System development follows the divide and conquer prin-
ciple, which divides a large and complex system into smaller
units, which are easier to develop. It is important to mention
that dividing the system into smaller entities does not solve
the complexity problem, but rather it delegates it to a level
above, that is, to connect the system’s components and their
orchestration.

Previously stated benefits surpass hardware limitations of
a single machine on which the system is running and thus
make the microservice architecture an adequate solution for
implementing remote monitoring systems.

System Architecture

The proposed system represents a set of components, each
being an independent application with a unique role. The
system is made out of services that are responsible for:
authentication, user groups and user profiles, schemes of data
that is collected from arbitrary physical sensors, validation,
persistence and aggregation of the collected data, detecting
alarms, generating reports from the aggregated data, and
displaying the user interface.

The architecture of the proposed system is presented in
Fig. 2. The system runs on the cloud and is completely
independent of the physical system from which it receives
the data.

The responsibility for collecting data from physical sen-
sors and sending it to the system is encapsulated within the
Local Processing Unit (LPU). LPU acts as an intermediary

Fig. 2. System Architecture Scheme

between physical sensors which collect raw data, and the
part of the system which is launched on a cloud.

The services are a part of the private, isolated network
and it’s not possible to address them directly from the
public internet. The ingress service, acting both as a reverse
proxy and load balancer [4], is the only way to access
services from the outside. All inter-service communication
is done in a synchronous manner with one exception. The
only asynchronous communication is data ingress where the
API Gateway service sends the data to the Data and Alarm
services separately and is not interested in the content of the
response.

A brief description of individual services that make up the
system follows:

1) Authentication Service: The role of the authentication
service is to provide a safe way to persist user credentials.
This service implements the logic for generating access
tokens that are used by other services for restricting unau-
thorized access to individual resources. It’s worth pointing
out that the authorization is highly dependent on the context
it’s used in and implies that details of role-based access
control (RBAC) used for restricting access to individual
resources need to be defined in the service that owns the
resources. Otherwise, every service that implements RBAC
would be tightly coupled to the service that implements
authorization logic. The problem with that approach is that
the authorization service may represent a bottleneck of the
system. Tight coupling of services is not a problem if
they are running inside the same process. Knowing that
the presented system is distributed, this approach presents a
big problem because it increases the degree of inter-service
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communication and causes the known problem "chatting"
[5]. The problem mentioned above is the reason why the
authorization is not implemented within the authentication
service.

2) User Service: The service responsible for working with
user profiles and user groups is a very important component
of the system because it enables isolating data at the level of
user groups. This service is responsible for protecting user’s
personal information and controlling which user group does
the user belong to. Considering that most of the resources on
the system are tied to a specific user group, user has access
limited only to those resources tied to the group it belongs
to.

3) Sensor Abstractions Service: A key component of the
proposed system is a service that provides a way for arbitrary
sensors that collect data on a supervised physical system.
The role of this service is to persist information about the
schemes of data that is being collected, as well as information
about the concrete sensors that send that data. The entities
used by this service are sensor abstractions, i.e., schemes of
data that is being collected, and the information about the
concrete physical sensors along with their locations. The idea
behind defining data schemes is the possibility of validation
of incoming data on the service, as well as the possibility of
using the same data scheme for multiple different sensors.
The scheme represents a set of individual tags (physical
values of interest), each containing a name and a primitive
data type. Apart from the name and the simple type, for
every tag in the data type, aggregation methods are listed,
based on which, aggregation service knows how to process
raw data.

4) Data Validation Service: Received data first goes
through a validation process, which is carried out based
on the previously defined data type. This service is also
responsible for verifying the validity of the public API
token, using which the LPU unit proves authenticity. Apart
from validation, this component presents a suitable place for
dispatching events about received data in real-time. Events
are dispatched through previously defined bidirectional com-
munication protocol with the aim of achieving publisher-
subscriber mechanism [6].

5) Data Persistence and Aggregation Service: The com-
ponent which contains markedly the most complex logic and
which requires the most hardware resources is data persis-
tence and aggregation service. Before it gets aggregated, the
raw data are persisted inside a temporary data store that is
being cleared after a fixed period of time. The reason why
raw data aren’t stored permanently is that the amount of
data is immensely large and that storing it isn’t efficient. The
more efficient solution is doing periodical data aggregation,
such that users are able to define a time period after which
the aggregation is performed. Additionally, users are able to
define the methods by which data aggregation is performed,
which later allows them to follow trends and generate reports
of interest. By that, the system gets better performances, not
only in terms of memory usage but also in decreasing the
time needed for generating certain reports.

6) Report Service: The purpose of the persisted data lies
in the ability to generate certain reports from them, with
the aim of monitoring trends and presenting behavior of
arbitrary values that are collected. This service implements
the logic for generating reports on the aggregated data that
is permanently persisted in the system. The report takes
into account the specific frequency at which the data was
aggregated as well as the time interval within which the
data was collected. It also provides the ability to define and
store report types that contain all the information needed to
generate a particular report, except for the time interval.

7) Alarm Service: Detecting critical values, that is, data
values which deviate from predefined boundaries can be
very significant for physical systems which the proposed
system is monitoring. The responsibility of this component
is the detection of critical values and dispatching events
about them, in real-time. Critical values are detected by
rules previously defined in alarm types. Alarm type contains
priority, a threshold value, and the information about whether
the threshold presents an upper or lower limit of the normal
state. A property from the data type can have a set of
predefined alarm types tied to it. During alarm detection,
every alarm type that is tied to a certain property is taken into
consideration. When the critical value is detected, an event
is dispatched through a predefined, real-time communication
protocol. After the alarm event is dispatched, the client has
the option of caching that alarm for a certain time period
and thus preventing the system from dispatching more of
the same events tied to the alarm of a certain priority, type,
and limit value.

8) User Interface Service: This service provides elements
needed for the graphical presentation of real-time data and
generated reports. In addition to that, it contains elements
that can be used to create certain resources, set certain rules,
and take care of users and user groups.

III. IMPLEMENTATION

The microservice architecture allows the usage of numer-
ous technologies for implementing individual components
so that the most suitable technology for the requirements
specific to that component is used. Fig. 3 shows an overview
of all technologies used for implementing certain parts of the
system.

Implementation of Individual Components

The authentication service implementation was realized
using the .NET Core [7], while the MongoDB [8] database
was used for the persistence of user accounts. Each user
account consists of a unique name, password, and role. In
case of the data leak, hashing and salting [9] of passwords
is applied with the aim of preventing their misuse.

For the purpose of implementation of the service for
working with user groups and profiles, .NET Core was used.
User groups and profiles are in a one-to-many relationship,
i.e., a profile belongs to exactly one group, while a group
can contain several user profiles. The user group contains
a name, surname, and e-mail address. To ensure that the
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Fig. 3. Overview Of The Used Technologies

connection between user groups and accounts is modeled
properly, MariaDB [10] relational database was used.

Another of the services implemented using .NET Core is
a service for defining abstractions of physical sensors, i.e.,
schemes of data that come from remote sensors. Entities
relevant to this microservice are sensor schemes, physical
sensors, and locations. Since these entities are interrelated, a
relational database MariaDB was used for data persistence.
Primitive data types which are supported are real numbers,
boolean values, enumerations, and text. Each sensor has its
own public API token, which is a randomly created string of
letters and digits that can be altered. Altering the public API
token of a sensor is a significant function since it provides
a mechanism of protection from receiving false data from a
party that has obtained the token in an unauthorized way.

The implementation of the data validation logic is sep-
arated into the data validation service implemented in the
Node.js [11] environment. This service uses Redis [12] cache
as temporary storage for a public API key as well as the data
scheme of the authenticated sensor. This decreases commu-
nication with the service in charge of validating public API
tokens and evades creating the system’s bottleneck. Sending
data in real-time is done by using a WebSocket, using the
socket.io library [13].

Data persistence and aggregation service is implemented
using .NET Core and MariaDB database. One of the main
reasons for choosing MariaDB as a relational database is the
native support for built-in mechanisms that can be used for
storing and manipulating data in dynamic JSON [14] format.
The collected data is stored in a temporary table whose
content is deleted after an all-day cycle of aggregations. The
system supports several different aggregation time periods,
of which the smallest is five minutes, and several different
methods for aggregating real numbers including minimum,
maximum, sum and mean. The aggregated data is stored in
separate tables in the database, each corresponding to a single
resolution.

.NET Core was used for the implementation of the report

service. This service reads data from the database in which
the persistence and data aggregation service has stored the
processed data. Report generation was realized with the help
of mechanisms for manipulating data in JSON format that
are supported by the MariaDB database.

Implementation of alarm service is done inside the Node.js
environment, while the MariaDB database was used for
storing information about the alarm schemes and concrete
critical values themselves. Sending data in real-time is done
using WebSocket, which makes users promptly informed
about every critical value of the monitored system. This
service also uses Redis cache for storing critical values to
avoid notifying the client unnecessarily. Another role of
Redis is to synchronize socket.io events between multiple
instances of the application.

The user interface was implemented using React.js [15]
and Bootstrap [16] libraries.

Automation of Development Processes

Developing a system that is based on a microservice
architecture increases the maintenance complexity because
the source code of the system is made up of multiple
smaller and often independently maintained code bases.
Continuous Integration (CI) represents a necessary part of
the development process of systems composed of many
components with independently maintained code bases. That
includes validation and testing of individual functionalities,
as well as the rebuilding of components affected by changes.
Continuous Deployment (CD) is the process of automatic
reflection of changes to the final system which is used in
production. In systems that are subject to frequent changes,
the CD represents a necessity and can be very important
in both the development and deployment phases of the
system. In the development process, an instance of the
staging application is created in order to provide access to the
application to everyone that is involved. That significantly
increases the degree of error detection in the development
phase and reduces the chances of a bug in production.

Developing the system comprised of components that
are implemented in different technologies, complicates the
requirements for the environment in which individual compo-
nents can be started. The concept of containers is introduced
with the aim of providing a virtual environment at the
operating system level, which can be predefined, packaged,
and quickly launched. Such an environment has a high
degree of portability and can be run on any platform on
which a container engine can be run. The proposed system
uses Docker [17] for the containerization of individual com-
ponents. Docker provides an API for defining, packaging,
transferring, and running virtual environments in form of
containers. It also supports the creation of isolated private
networks within which containers can intercommunicate and
reference eachother using the local DNS server [18].

High availability and fault tolerance deserve special atten-
tion for distributed systems that are running in a production
environment. A highly available system tends to minimize
service downtime while a fault-tolerant one ensures that no
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data is lost during minor or major failures. The goal is to
have both a highly available and fault-tolerant system that
ensures high service uptime without data loss. The fact that
the proposed system can be deployed on a multi-node cluster
and that the data replication on multiple nodes is supported
ensures that the aforementioned goals are met in a production
environment. By distributing traffic across multiple nodes,
the uptime of the individual services, resilience to data loss,
and the request processing capacity are increased.

Fig. 4. Automatic Development Process Scheme

Fig. 4 illustrates the scheme of the automated CI/CD
pipeline used by the proposed system in a development envi-
ronment. Once the changes are made, they are synchronized
with the remote codebase located on GitHub. The application
that implements the CI/CD pipeline, i.e. Jenkins [19] gets
notified, via the WebHook submission mechanism, about the
changes that have been made on a certain branch. When
an event containing information about the changes reaches
Jenkins, a predefined pipeline is started. The pipeline runs the
process of validating changes and rebuilding Docker Images
if the changes prove to be valid. Additionally, the affected
parts of the system get synchronized with newly integrated
changes by a command that gets executed using SSH (Secure
Shell) on the machine on which the system is running.

The proposed system can be instantiated using the docker-
compose tool, for the needs of the development environment
or using the kubectl tool for production environments. The
role of the aforementioned tools is to take care of pulling,
configuring, starting, and shutting down previously defined
services, creating private networks within which the services
communicate and scaling certain services depending on the
needs of the system.

IV. RESULTS

The final product of this paper is a functional remote
monitoring system, based on microservice architecture and
modern technologies, called isobar.ot. The system described
in this paper supports the processing and persistence of
arbitrary data sets, as well as tracking of trends in the
collected data, i.e., periodical changes in the data values and
the detection of critical values in real-time. In addition, the
system allows the generation of reports from the persisted
data for a certain period of time, which allows the user to
analyze the behavior of the physical system that is monitored.

The most valuable aspects of the proposed system are the
fact that it can be reused for many different physical systems,

and also its scalability which is ensured by the microservice
architecture. The system solves one of the basic problems
that come with the IoT systems, which is giving semantics
to the raw data collected from the physical sensors so that
storing and processing of data is realized in a uniform way,
independent of the nature of data.

Besides various simulations, such as collecting data on
weather conditions, that were used to test the system’s
reusability, there are two successful use-cases of the proposed
system. Both of them are Road Traffic Monitoring Systems
(RTMS) that are deployed in India and Croatia. The first
receives data from two different sensor types: laser and radar.
The laser sensor sends detailed information about the passed
vehicles such as speed, class, and it’s dimensions. The radar
detects vehicle’s speed and relative position and send them
in real-time.The second use-case receives data from a camera
that detects which class of vehicle has passed. The previously
mentioned use-cases prove that the proposed solution can be
used to monitor arbitrary physical systems. In both cases, the
system ensures high availability and fault tolerance, i.e. it is
deployed on a multi-node cluster and uses data replication
in order to prevent data loss.

User Interface

Fig. 5 shows the appearance of the user interface, which
monitors critical values in real-time. The hide option gives
users an opportunity to declare that they are aware of a
particular alarm, to take all necessary steps, and not want
the system to notify them more about the alarm so that they
can pay attention to other alarms.

Fig. 5. Alarms Monitoring in Real-Time

The Dashboard section (Fig. 6) presents the appearance
of the user interface through which data arrived from sensors
is tracked. Selecting the sensors is done from the drop-down
menu, where all the sensors belonging to the corresponding
user groups are listed. It is possible to choose more than one
sensor and to display data in real-time graphically and in a
table.

For the purpose of testing the proposed system, simulation
sensors are implemented, which represent individual appli-
cations independent of the rest of the system. Their role is
to simulate the operation of LPU units by sending random
values or values of certain mathematical functions, instead of
collecting data from physical sensors. Some of the functions
supported by simulation sensors are sine, cosine, sigmoid,
ReLU (Rectified Linear Unit), and the like.
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Fig. 6. Live Data Display

V. CONCLUSION

This paper presents a cloud-native, multi-purpose remote
monitoring system, based on microservice architecture. The
implemented system is named isobar.ot and consists of three
main parts: local processing units (LPU) used for implement-
ing low-level logic for collecting data from physical sensors
and sending it to the cloud, an isolated private network with
a set of microservices that perform the entire processing and
persisting data on the cloud, a client web application that
allows users to interact with the rest of the system.

The biggest advantage of the proposed system lies in its
ability to monitor arbitrary physical systems, and the ability
to work with a large number of sensors and serve a large
number of clients. These advantages are achieved by relying
on microservice architecture and modern technologies.

Despite the fact that inter-service communication is
brought to a minimum, there are cases where a better solution
for communication would be to use asynchronous protocols,
such as AMQP [20]. Another disadvantage of the proposed
system is that some services use data that are not owned
by them, i.e., they have to turn to services that have that
data. This reduces the failure resistance of interdependent
parts of the system. A potential solution to this problem
is to use caching more frequently or replicate the data
used by multiple services while maintaining asynchronous
consistency.

In addition to overcoming the previously mentioned short-
comings of the proposed system, the plan for further devel-
opment is the implementation of a data export service in
the form of a file of a certain format, such as PDF, CSV,
JSON, and the like. Also, the plan is to implement support
for receiving data in several different protocols, and not only
in HTTP. Another possibility for further development of the
proposed system is the implementation of a uniform control

component. The task of this component is to provide a
mechanism for managing the monitored physical system, at a
high level. That way, the proposed system would be extended
to a fully functional supervisory and control system, which
is certainly in the plan for future development.
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