
 

 

Abstract— Target tracking in heavy cluttered environment 
requires methodology for false track discrimination and data 
association. Recently, we present a new particle filter (PF) 
approach which recursively calculates the probability of target 
existence for the false track discrimination. Our approach 
treats possible detections of targets followed by other tracks as 
additional clutter measurements. It starts by approximating 
the a priori probabilities of measurement origin. The posterior 
data association probabilities are calculated to discriminate 
clutter measurements when updating trajectory probability 
density function. A new complete recursive track initiation, 
confirmation and deleting algorithm based on PF and 
Integrated Track Splitting (ITS) and named Integrated 
Particle Filter (IPF) is presented. Through the extended 
simulations showed the effectiveness of this approach in a five 
targets scenario. 

 
Index Terms—Target tracking, data association, particle 

filter, Integrated Track Splitting.  
 

I. INTRODUCTION 
Each sensor measurements may either be a spurious 

(clutter) or a target measurement. The target existence and 
trajectory are not a priori known [1]. The tracks are 
initialized using measurements, thus both true tracks and 
false tracks simultaneously exist. The false track 
discrimination (FTD) is a procedure to terminate a majority 
of false tracks and confirm majority of true tracks [2],[3]. A 
track quality measure needs to be calculated for successful 
FTD.  The multiple hypothesis tracker (MHT) [4][5] is one 
of the first widely used algorithm for target tracking in 
clutter. The measurement-oriented MHT, often known as the 
Reid algorithm [1], forms new tracks and measurement 
allocation hypotheses centered around global origin of 
measurements. The MHT uses statistical methods (track 
score) to discriminate between false and true tracks. The 
probability of target existence obtained by utilizing  Markov 
chain propagation models and Bayes update is used as the 
track quality measure in Integrated Probabilistic Data 
Association (IPDA) of [6] and Integrated Track Splitting 
(ITS) [7],[8]. 

 
The application of the Sequential Monte Carlo estimation 

framework to real multi-target tracking problems is plagued 
by many difficulties. Among other things, realistic models 
for the target dynamics and measurement processes are 
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often nonlinear and non-Gaussian, so that no closed-form 
analytic expression can be obtained for the tracking recurs.  

When tracking a single object closed-form expressions 
are generally not available for nonlinear or non-Gaussian 
models, and approximate methods are required. The 
extended KF liberalizes models with weak nonlinearities 
around the current state estimate, so that the KF recursions 
can still be applied. However, the performance of the EKF 
degrades rapidly as the nonlinearities become more severe. 
To alleviate this problem the unscented KF (UKF) [9], [10] 
maintains the second-order statistics of the target 
distribution by recursively propagating a set of carefully 
selected sigma points [11]. This method requires no 
linearization, and generally yields more robust estimates. 

When tracking with Particle Filter [12],[13] an analog to 
the predicted measurements covariance is not directly 
available and could only be constructed as an approximation 
to the current particle cloud. A common alternative is to use 
a form of soft gating based upon a Student’st likelihood, 
combine the same function and probabilistic data association 
approaches to develop a new method for tracking in clutter 
using a particle filter. This is done by deriving an expected 
likelihood from known measurements and clutter statistics.  

In this paper, we propose the integrated particle filter 
(IPF) solution for the target tracking in clutter. Each track 
trajectory pdf is represented by a disjoint set of particles, 
and the probability of target existence is integrated into the 
track state, similar to [14], [15], [16]. The FTD may use the 
probability of target existence as the track quality measure. 
The standard IPF is a single-target tracker, and we also 
include multi target approach [17] for target tracking. They 
all share common recursion elements, being distinguished 
by the data association calculus. In addition to the recursive 
calculation of the probability of target existence and non-
uniform clutter, we also include the state dependent 
probability of target detection, and maneuvering (multi-
model) target trajectories [18]. 

Rest of the paper is organized as follows. The models and 
the particle filter background are presented in Section 2. The 
common IPF framework is detailed in Section 3, and the 
implementations of IPF is presented in Section 4. This 
approach is indicated by simulations in Section 5, followed 
by the concluding remarks in Section 6. 

II. PROBLEM STATEMENTS  
   

The dynamic target trajectory state models at the time k 
are given by the:  

 
kkk Fxx  1                           (1) 

where F is the propagation matrix, k is a zero mean and 
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white Gaussian sequence with covariance R. At each scan 
the sensor returns a random number of random target and 
clutter measurements. The measurement of existing and 
detectable target is taken with a probability of detection PD. 
At time k, one sensor delivers a set of measurements 

kM
jjkk zz 1, }{   track out of which a set of measurements are 

selected for track update. Converted target measurement y is 
given by [19] : 

 
kkk wHxy                                (2) 

 
where H is measurements matrix and the measurements 
noise kw  is zero mean and white Gaussian sequence. A 
measurements of target is present in each scan with a 
probability of detection PD . Clutter measurements follow 
the Poisson distribution characterized at location by clutter 
measurements density )( yk [19].  

Particle filtering samples at the continuous posterior 
density function of interest into a set of weighted particles. 
If the weights are chosen appropriately, then these weighted 
set of particles represent the posterior density in a way that 
the posterior density function can be made arbitrarily close 
to the equivalent set of weighted particles. The target 
trajectory state pdf at scan k is defined by set of 
particles },{ kk wx , parameterized by set of N particles 
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sequential importance sampling [xx], particle filters can 
approximate the posterior density function, regardless of the 
time interval k of the trajectory model [20].  

III. INTEGRATED PARTICLE FILTER  
 
The track state consists of the target existence event, and 

the trajectory state, and for each track we recursively 
calculate the probability of target existence, and the 
trajectory state probability density function (pdf). The 
trajectory state pdf are only defined conditioned on target 
existence. Depending on the calculated probability of target 
existence we may conclude that the target exists and confirm 
the track. Each confirmed track stays confirmed until 
termination. Alternatively, if the calculated probability of 
target existence dips below certain level we conclude that 
the target does not exist and terminate the track [21]. 

Key topics of new IPF algorithms are: 
 new particles arise by re-sampling;  
 heavy particles are multiply,  
 weak particles are extinguished 
 measurements are used to correct the weight of the 

particles and the probabilities of target existence. 
 

At begin, lets define key parameters.  The number of  

particles from 
thk )1(  scan, 1kN N   does not  change from 

scan to scan. Lets represent particle },{ 11
i
k

i
k wx  , 

1,...,1  kNi  from 
thk )1(  scan , mean and weight. Number 

of measurements arriving from 
thk scan are kM , and 

pN N   is number of particles after re-sampling step. 
Probability of target detection, as the function of target 
trajectory state is DkD Pxp )( . Also we have equation 
[22]: 
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Proposed IPF algorithm is perform by the following steps:  

- prediction step,  
- measurements likelihood calculating 
- update step and  
- re-sampling step.  

A. Prediction step: 
At begin, we calculate probability of target existence, by 

the:  
  1|1111|   kkkk              (4) 

 
The mean of particle is given by the: 
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where particle propagation noise  is ),0( QNi

k   and   

measurements  sets is given by },...,{ 1 kM
kkk zzZ   

 

B. Measurements likelihoods  
 

After KF prediction, we estimate measurements by the:  
 i

k
i
k Hxy ˆ                  (6) 

 
In order to compute statistical distance: 
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Probability density function is given by the: 
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        (8) 

 
where likelihoods of measurements is: 
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i
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                          (9) 

Now, we can calculate measurements likelihood ratio, by 
the equation: 

    
j jk
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                   (10) 

 
Beta’s coefficients we can update by the: 
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C. Update step:  
In update step, we first calculate weight of particles, in 

purpose of trajectory state update, by the [23]: 
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At the end of update step, we calculate target existence 
probability of track, by the equation: 
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D. Resampling step: 
Resampling step calculates mean and weight of particles, 

by the foloowing [24]: 
  

1{ , } ,i i I I w
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where wS is sum of weights, U[.] means uniform 
distribution, lu is interval of weights.  

E. Output Calculation 
Finally, we can calculate the output state estimate and 

covariance (for output purpose only):  
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IV. IMPLEMENTATION OF IPF 
 
 In this section, a brief  instruction of IPF sofware 
implemenattion, we describe.  Track initiation and 
termination is an part for establishing the records of the new 
targets and terminating the unwanted records of the 
inexistent targets when they leave the surveillance region. 
But in the heavy cluttered environment, there exists due to 
the unknown state of the target and the sequence of 
measurements which originate from the target. Here, we 
present a track management procedure.    

Track initiation is composed of two parts:  
- produce temporal tracks and 
- confirm the temporal tracks.  

 
Track termination is of two meanings:  
- reject the temporal tracks;  
- terminate the confirmed tracks when the detected 

targets leave the surveillance region.  

A. Software implementation of  IPF  
One cycle of the recursive IPF algorithms software 

implementation consists of the following procedure: 
 

for scan = 1 : number of scans 
     --Read  Measurements  
     -Target Tracking with IPF  

-Initializing of Measurements Selection  
-Measurements selection (measurement likelihood for all 

particles) 
-Taking into account clutter density 

    -Update Tracks of IPF 
-Single Target Track Data Association  

  -Update Weights 
-Resampling  
-Estimate IPF 

    -Tracks Initializing  
-Update Old Samples 
-Update Status  

 -Update Age 
 -Eliminate Wide 

-Merge Close Tracks 
-Eliminate Tracks -Out of Bound  
-Update Tracks (Confirmation and Deleting) 
-Prediction of  IPF 
-Determine Target Track  
-Target Statistics of Scans (True, False, Confirmed,…)  

  -Reduce Tracks  
   End 

V. SIMULATIONS  
 

For the purpose of research, a simulation scenario with 
five targets motion scenario (Fig.1). Targets are initially 
positioned at the edges of a circle with the center at 
(500,500) and a radius of 450. Each target moves with a 
uniform speed towards the center of the circle, which they 
should reach in 20 scans, after which they carry on with 
uniform motion for further 20 scans. A random (noise) 
component is added to the speed vector of each target, with 
covariance (2*R/400).  

A random component is added to the speed vector of each 
target, thus at scan 20 the variance of the distance between 
each target and the centre of the circle will be double the 
sensor measurement error noise covariance matrix. In the 
two targets scenario, the targets initial separation is 20o, 
instead of fifteen targets scenario with the targets initial 
separation 10o. The following definitions of true and false 
tracks are used. Each initiated track is false with respect to 
all existing targets. A false track becomes a true track with 
respect to a target when the state estimate is sufficiently 
close to the true target state.  

Each simulation experiment consists of a number of 
simulation runs. In each simulation run, targets will repeat 
their trajectories. The measurements are generated 
independently. Each algorithm uses the same set of 
measurements. False tracks may be initiated using target 
measurements, either in a conjunction with a clutter 
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measurement, or by using measurements from different 
targets in different scans.  

Thus, the average number of initialized false tracks per 
scan will depend on the number of targets present. The 
average number of initialized false tracks per scan was 8, 
and 120 for the two and fifteen targets experiments, 
respectively. A confirmed false track in one scan is 300 and 
200 for the two and fifteen targets cases, respectively. The 
performance measures used to compare the algorithms 
confirmed true tracks, root mean square error positions and 
target retention statistics. Results are presented by a number 
of confirmed true tracks and Root Mean Square Error 
Position.  

The target retention statistics was obtained by noting the 
identity of the confirmed true track following each of the 
targets at scan 14. These identities are checked again at scan 
38, and the following statistics is accumulated for each 
experiment:  

nCases: total number of cases of a target being followed 
by a confirmed track at scan 14; 

nOK: percentage of tracks still following the original 
target at scan 38; 

nSwitched: percentage of tracks that end up following a 
different target at scan 38; 

nLost: percentage of tracks not following any target at 
scan 38, 

nMerged: percentage of tracks lost due to merging 
between tracks counted in nCases between scans 14 and 38 

 
For the target retention statistics, each algorithm identifies 

the confirmed true track for a specific interval that includes 
intersection of trajectories. The targets intersect at scan 24 
and many joint events occur around that time. In the 
experiment, the identities of the confirmed true tracks are 
obtained at scan 17 for performance comparison.  

Parameters were used: probability of target detection is 
pD=0.8, number of Monte Carlo runs is 100, duration of one 
recursion 40, measurements noise matrix -R=[25 0; 0 25], 
maximum of target speed -25 [m/s], variance of acceleration 
q =0.75, number of particles -1000, maximum number of 
components -40, starting cross statistics in 14 scan, ending 
cross ststistics scan 38. 

.  
Fig. 2. Simulation scenario (Five targets) 

 

 
Fig. 2. confirmed true tracks diagram over time  (five target ) 

 
The sampling period of radar sensor is T=1s. Duration of 

the scenario is 40 scans. The system input is modeled as 
follows: vector state  Tyyxxk ][)( x  where the 
Cartesian coordinates of the target position are, and   are the 
appropriate velocities. Transition matrix and process noise 
matrix are given by: 
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respectively. Measurements matrix and measurements noise 
matrix is given by:   
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respectively.  

All simulations were done in a software package 
MATLAB, with CPU Intel Core i7, 2.93 GHz. Results of 
simulation are governed by the number of confirmed true 
tracks (Fig, 2) and target retention table. We compare 
standard ITS and proposed IPF algorithms.  

 
Target retention table 

 ITS IPF 
nCases[n] 91 80 
nOK[%] 31.86 42.5 
nSwit[%] 15.38 18.75 
nLost[%] 52.76 38.75 
merged 26 14 
CPU [s] 1.65 1.81 

 
The results confirm the justification of the proposed IPF 
approach compared to standard ITS algorithm. IPF has a 
smaller percentage of losses and switched targets and higher 
percentage of full tracking targets with approximately the 
same CPU consumption.     
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VI. CONCLUSION 
The multiple target tracking algorithm, known IPF, is 

proposed and was tested in a special scenarios with five 
crossing targets. It uses the well-known features of ITS 
algorithms that account the probability of target existence of 
objective forms, trace and ease of use offered by the Particle 
Filter. A Simulation results with two-dimensional scenario 
showed that the proposed algorithm ends up with good 
performance and small computational load. Proposed 
algorithm, which has been presented for tracking multi, have 
the ability to estimate the number of targets. Tracking the 
trajectories of the target over time, operate with missed 
detections and give the trajectories of the targets.  
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