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Abstract—Stability of fractional systems is yet an open problem
especially when dealing with incommensurate differentiation
orders. The objective of the invited talk is twofold. First of
all, a new method [1] for determining stability regions, in
the parametric space, of fractional incommensurate systems is
presented. It is based on interval arithmetics and allows, beyond
the stability property, to specify the regions in the parametric
space that have the same number of unstable poles. Hence, all
transfer functions which parameters belong to the same stability
region have the same stability property.

Contrary to rational systems, the stability property of frac-
tional systems does not guarantee the existence (or the bound-
edness) of the Lp-norms, 1 ≤ p ≤ ∞, of their impulse response.
Hence, the second objective of the talk is to examine the existence
conditions of these Lp-norms [2]. The established results are used
to choose a performance index for evaluating stable feedback
control system performances.

I. INTRODUCTION

Fractional systems has been attracting a lot of interest during
the last two decades in different fields of engineering and
science, since the seminal work by Oldham and Spanier [3],
[4] for modeling diffusive phenomena.

Fractional systems can be described in transfer function
form:

F (s) =

M∑
i=0

bis
βi

1 +
N∑
j=1

ajsαj
(1)

where the exponents of s can be ordered 0 < α1 < α2 <
. . . < αN , 0 ≤ β0 < β1 . . . < βM and (ai, bj) ∈ R2,∀i =
0, 1, . . . ,M,∀j = 1, 2, . . . , N . The multivalued function s 7→
sν becomes holomorphic in the complement of its branch cut
line of the complex plane, chosen to be along the negative real
axis, R≤0, including the branching points 0 and ∞. Hence,
F (s) is a meromorphic function in the complement of R≤0
of the complex plane: C \ R≤0.

The Lp-norm of f(t), the impulse response of F (s), is
defined as1

‖f‖p = p

√∫ +∞
0
|f(t)|p dt for 1 ≤ p <∞

‖f‖∞ = sup
t∈R≥0

|f(t)| (2)

1Note that f(t) is a continuous-time function and hence the supremum is
used instead of the essential supremum in the definition of ‖f‖∞.

A function f(t) is said to belong to the Lebesgue space
Lp(R≥0) with p ∈ [1,∞], or Lp in short, if its p-norm is
finite: ‖f‖p <∞.

The system F (s) is Lp-stable, 1 ≤ p ≤ ∞, if and only if:

sup
u∈Lp,u6=0

‖f ? u‖p
‖u‖p

<∞ (3)

where ? stands for the convolution product and u(t) the system
input. Condition (3) is satisfied, ∀p ∈ [1,∞], when

f ∈ L1(R≥0) (4)

In such a case:

‖f ? u‖p < ‖f‖1‖u‖p (5)

The bounded-input-bounded-output (BIBO) stability is de-
fined as the L∞-stability.

Due to its simplicity, the most used criterion for testing
stability of fractional systems is Matignon’s theorem [5, the-
orem 2.21]. It allows deciding whether a system is stable
by locating its sν-poles. It generalizes the classical Routh-
Hurwitz criterion for rational systems. It is extended to take
into account variations of ν ∈ (0,∞) in [6].

Theorem 1. A commensurate transfer function, of order ν,
F (s) = T (sν)

R(sν) , where T and R are coprime polynomials, is
BIBO-stable if and only if

0 < ν < 2 (6)

and for every s ∈ C such that R(s) = 0

|arg (s)| > ν
π

2
(7)

However, Matignon’s theorem applies only for stability
checking of commensurate fractional systems. When the sys-
tem is incommensurate, some other criteria, mainly based on
Cauchy’s principal theorem [7] or its derivatives such as the
Nyquist theorem [8] are used. However, these methods are
quite difficult to implement in practice.

Since (4) is only a necessary condition, the system might
be Lp-stable and yet have an impulse response, f , with an
infinite Lp-norm ∀p ∈ [1,∞]. This feature is not common
in the classical rational systems: when a rational system is
Lp-stable then its Lp-norms are finite.
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II. STABILITY OF UNCOMMENSURATE FRACTIONAL
SYSTEMS

This section of the paper contains results of a joint work
with Milan R. Rapai’c and Vukan Turkulov, which is currently
submitted at the ICFDA’2021 conference [1].

Bonnet and Partington [9] proved that F (s) is BIBO-stable
if and only if it is analytic in the right-half complex plane
{Re(s) ≥ 0}. In such a case

F (s) ∈H∞(C+) (8)

where H∞(C+) is the Hardy space of analytic functions on
the open right-half plane C+.

On the other hand, it can be proven from Rouché’s theorem
that all system poles vary continuously with its parameters
anywhere in the complex-plane except the branch-cut, R≤0.
Moreover, when transfer function differentiation orders vary,
new poles can appear or vanish only on the branch-cut. Hence,
the basic idea is to consider that if a fractional system is stable
for a given parametric point then it remains stable unless its
poles cross the imaginary axis. Further, assuming that there is
no possible simplification between poles and zeros of F (s) in
(1), the stability of F (s) depends only on the position of the
zeros of the characteristic function:

f̄(s,α) = 1 +
N∑
j=1

ajs
αj (9)

A. Problem formulation

According to the previous remarks, the following problems
can be formulated in the parametric space:
(P1) Finding stability and instability regions. In this case, the

objective is to check whether, for positive α ∈ Rn≥0,
f̄(ρejθ,α) has zeros in the right half complex plane
including the imaginary axis. However, due to the sym-
metry of complex conjugate zeros, the searching domain
can be restreint to the first quadrant of the complex s-
plane: (ρ, θ) ∈ R≥0 ×

[
0, π2

]
.

(P2) Finding the Stability Crossing Sets (SCS) between stabil-
ity and the instability regions. In this case, the searching
domain in the complex plane is restraint to (ρ, θ) ∈
R≥0 × {π2 }. Hence, only values of α ∈ Rn≥0, for which
the poles are crossing the imaginary axis towards the
instability region are searched for.

Hence, the problems (P1) and (P2) can be formulated as
finding the set of all feasible parameters

θ = (ρ, θ,α)T ∈ Ω =
(
R≥0 ×Θ× ∈ Rn≥0

)
, (10)

where Θ =
[
0, π2

]
for (P1) and Θ =

{
π
2

}
for (P2), satisfying

Re{f̄(ρejθ,α)} = 0

and
Im{f̄(ρejθ,α)} = 0

(11)

If ∃θ = (ρ, θ,α)T ∈ Ω such that f̄(ρejθ,α) = 0, then, for
the problem (P1), the characteristic function has zeros in the

closed right half complex plane and, for the problem (P2), on
the imaginary axis, which allows determining the SCS.

Both of these problems can be formulated as a Constraint
Satisfaction Problem CSP2

CSP :


Re{f̄(ρejθ,α)} = 0

Im{f̄(ρejθ,α)} = 0

0 < ρ < R, θ ∈ Θ,

α ∈ Rn≥0

(12)

where R is ∞ in theory and is finite in practice for evident
implementation reasons. The solution set S for the problem
(12) is rewritten as:

S =
{
θ ∈ Ω | Re{f̄(ρejθ,α)} ⊂ [0] and

Im{f̄(ρejθ,α)} ⊂ [0]}. (13)

The characterization of the whole set S can be formulated
as a set inversion problem:

S = f−1([0]) ∩ Ω, (14)

and solved by guaranteed methods using interval arithmetics,
introduced in the next subsection.

B. Introduction to interval arithmetics

Interval analysis was initially introduced by Moore [10]. An
interval [x] = [x, x] is a closed, bounded, and connected set of
real numbers. The set of all intervals is denoted by IR. Real
operations are extended to intervals as follows. Given [x] ∈ IR
and [y] ∈ IR:

[x] + [y] = [x+ y, x+ y], (15)

[x]− [y] = [x− y, x− y], (16)

[x]× [y] = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)] (17)

[x]/[y] =

{
[x]×

[
1
y ,

1
y

]
, if 0 /∈ [y]

(−∞,∞), if 0 ∈ [y].
(18)

Interval arithmetics do not define an algebra because (IR,+)
is not a group. Indeed, elements of IR do not have an inverse.
Take for instance A = [−1, 1] ∈ IR, then A+(−A) = [−2, 2]
is not equal to the degenerated interval [0] = [0, 0] = {0}.
Either, (IR,+, ∗) is not a ring etc. Additionally, arithmetic
operations on intervals introduce often pessimism because the
result of each operation must be included in an interval.

2Usually a CSP is formulated using inequalities

CSP :


x ≤ Re{f̄(ρejθ,α)} ≤ x
y ≤ Im{f̄(ρejθ,α)} ≤ y
0 < ρ < R, θ ∈ Θ,

α ∈ Rn≥0,

where x, x, y, y can also be set to small enough values −ε, ε,−ε, ε; as in the
fourth initialization of the example in section II-E5.
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C. Solving the CSP
1) Contractors: The CSP (12) is solved by a contractor C,

which is an operator which permits to reduce the domain [θ]
without any bisection. Hence, contracting the box [θ] means
replacing it by a smaller box [θ]∗ such that the solution
set S remains unchanged, i.e. S ⊂ [θ]∗ ⊂ [θ] [11]. There
exists different types of contractors depending on whether the
system to be solved is linear or not.

In our study, a non linear type contractor named forward-
backward contractor is used to reduce the initial searching
space. The basic idea when implementing this contractor is
to decompose a principal constraint into primitive constraints.
Each primitive constraint involves elementary operators and
functions such as {+,−,×, /, exp, log, . . .}. The next example
illustrates how a given constraint is used to contract a domain.

2) Example: Consider the constraint:{
f(x) = x3 − x2x1 = 0,

x1 ∈ [2, 10], x2 ∈ [1, 10], x3 ∈ [1, 5],
(19)

which can be rewritten as:

x3 = x2x1.

The forward interval constraint propagation removes all incon-
sistent values from [x3] as follows:

[x3] = ([x1]× [x2]) ∩ [x3] = [2, 5].

Then, the backward interval constraint propagation removes
all inconsistent values from x1 and x2 as follows:

[x1] = ([x3]/[x2]) ∩ [x1] = [2, 5],

[x2] = ([x3]/[x1]) ∩ [x2] = [1, 5/2].

After a forward and a backward propagation, the contracted
box is [x] =

(
[2, 5], [1, 5/2], [2, 5]

)T
which contains the

solution of the CSP .
In some cases the contractor cannot reduce enough the

parameters domain. In such cases, bisection of the variable
vector θ is necessary. The algorithm SIVIA [12], which is
described in the following section is based on the association
of contractors and splitting.

D. Set Inversion Via Interval Analysis (SIVIA)

This algorithm, proposed by Jaulin and Walter in [12],
allows to obtain an inner S and an outer S enclosures of the
solution set S (if it exists), such that:

S ⊆ S ⊆ S. (20)

SIVIA is a recursive algorithm based on partitioning of the
parameter set into three regions: feasible, undeterminate and
unfeasible. SIVIA uses an inclusion test [t] : IR → N which
is a function allowing to prove if an interval [θ] is feasible in
which case it is added to the set S. Any undetermined region is
bisected and tested again, unless its size w([θ]) is less than a
precision parameter η tuned by the user and which ensures that

the algorithm terminates after a finite number of iterations. The
outer approximation is then computed as S = S ∪∆S where
∆S is the union of all remaining undetermined boxes. Hence,
the SIVIA algorithm is presented in algorithm 1.

Algorithm SIVIA (in: [t], [θ], η ; out: S,S )
1) Option: Call contractor on θ.
2) If [t]([θ]) = [0], return;
3) If [t]([θ]) = [1], then S := S ∪ [θ];S := S ∪ [θ], return;
4) If w([θ]) ≤ η,S := S ∪ [θ];

Else bisect [θ] into [θ1] and [θ2];
5) SIVIA (in: [t], [θ1], η ; out: S,S);
6) SIVIA (in: [t], [θ2], η ; out: S,S).

Algorithm 1: The algorithm

The option in line 1 allows either to call the contractor or not
at each execution of the SIVIA algorithm which complexity
is known to be exponential!

E. Example

Consider the following transfer function having two differ-
entiation orders.

F (s,α) =
1

sα2 + 2sα1 + 1
, (21)

where α = (α1, α2) ∈ A1 × A2 ⊂ R2
≥0, A1 and A2 define

the searching domains. It can be analyzed by checking the
position of the zeros of the characteristic function

f(s,α) = sα2 + 2sα1 + 1 (22)

f̄(ρejθ,α) = ρα2 cos(θα2) + 2ρα1 cos(θα1) + 1+

j (ρα2 sin(θα2) + 2ρα1 sin(θα1)) (23)

1) Implementing the forward-backward contractor on the
system under study: A first contractor could be implemented,
after the real part of f̄ :

Re{f̄(ρejθ,α)} = 0⇔
ρα2 cos(θα2) + 1 = −2ρα1 cos(θα1) (24)

A second one could also be implemented, after the imaginary
part of f̄ :

Im{f̄(ρejθ,α)} = 0⇔
ρα2 sin(θα2) = −2ρα1 sin(θα1) (25)

However, handling sin and cos functions in each contractor
is not an easy task because asin and acos functions return
angles in their principal determination, i.e. between 0 and π
for the acos, and between −π2 and π

2 for the asin. In that
case, care must be taken to set back the angles to the correct
determination. Another alternative, is to combine (24) and (25)
to obtain another contractor with less sin and cos functions.
Such a contractor, named combined contractor, is obtained by
squaring both equations and summing them up

ρ2α2 + 2ρα2 cos(θα2) + 1 = 4ρ2α1 . (26)
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1 function [x]=Comb_Contractor_Red(x)
2 global nb_siv;
3 xx = x;
4 rho = x(1); theta = x(2);
5 alpha1 = x(3); alpha2 = x(4);
6 %Forward
7 x1 = rhoˆ(2*alpha2);
8 x2 = 2*rhoˆalpha2;
9 x3 = theta*alpha2;

10 x4 = cos(x3);
11 x5 = x2*x4;
12 x6 = x1 + x5 + 1;
13 x7 = 4*rhoˆ(2*alpha1);
14 %Backward
15 x7 = intersect(x6, x7);
16 alpha1= intersect(alpha1,1/2*log(x7/4)/log(rho));
17 rho = intersect(rho, (x7/4)ˆ(1/(2*alpha1)));
18 x6 = intersect(x6, x7);
19 x5 = intersect(x5, x6 - x1 - 1);
20 x2 = intersect(x2, x5/x4);
21 alpha2= intersect(alpha2, log(x2/2)/log(rho));
22 rho = intersect(rho, (x2/2)ˆ(1/alpha2));
23 x1 = intersect(x1, x6 - x5 - 1);
24 rho = intersect(rho, x1ˆ(1/(2*alpha2)));
25 alpha2= intersect(alpha2, log(x1)/(2*log(rho)));
26

27 x = [rho, theta, alpha1, alpha2];
28 if any(isnan(x))
29 x=xx;
30 end
31 end

Fig. 1. The implementation of the combined contractor (26) using the IntLab
toolbox [13] under Matlab.

A single cos function remains in (26) instead of two in
the previous two contractors, which is easier to handle. This
contractor is implemented in Fig.1, using the IntLab toolbox
[13] under Matlab.

The algorithm is applied to the characteristic function
(22), using four different initializations. In the first three, the
problem (P2) is considered and in the fourth, the problem (P1)
is treated.

2) First initialization: The initial searching box and toler-
ance are respectively set to:

θ = (ρ, θ, α1, α2)T ∈ [0, 4]×
{π

2

}
× [0, 3]× [0, 4.5] (27)

η = diam(θ)/27 (28)

where diam(θ) defines the length of each element of (θ).
The SIVIA algorithm is executed:
• without contractors (without step 1 in the algorithm). In

this case the SIVIA function is called 13 543 times in 190
sec. The obtained outer enclosure S is plotted in Fig.2.

• with the combined contractor (26) called at each step of
the SIVIA algorithm (with step 1 in the algorithm). The
SIVIA function is called 8 711 times in 296 sec. The
obtained outer enclosure S is plotted in Fig.3.

Moreover, the values at which the poles cross the imaginary
axis correspond more or less exactly in both cased to the plot
of Fig.4, which validates a posteriori that all the poles are
inside the searching interval ρ ∈ [0, 4]. In case some poles

Fig. 2. First initialisation – Stability crossing sets obtained without
contractors. Zeros of the characteristic function f̄ which arguments equal
π
2

are probably contained in the yellow boundary (outer enclosure S). The
lower left region delimited by the yellow boundary represents the guaranteed
stability region.

Fig. 3. The same as Fig.2, however with contractors.

were touching the limit R = 4, it would have been necessary
to choose a bigger R.

As a conclusion, regarding this first initialization, the al-
gorithm using the combined contractor is a little bit more
precise for the same tolerance factor η. Execution speeds of
both algorithms are comparable. The former as compared to
the latter converges in a bigger number of iterations, however
quicker, because the latter calls the contractor at each SIVIA
iteration.

3) Second initialization: Let’s search for the SCS by en-
larging the searching domain. The initial box is now set to:

θ = (ρ, θ, α1, α2)T ∈ [0, 4]×
{π

2

}
× [0, 15]× [0, 20] (29)

The tolerance is defined as in (28), however applied to the
new definition of the initial searching box.
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Fig. 4. First initialization – Zeros of the characteristic function f̄ crossing
the imaginary axis.

Fig. 5. Second initialization – Stability Crossing Sets (wider intervals as
compared to Figs.2 and 3). The number of unstable poles is indicated in each
region.

The SIVIA algorithm, without contractors, is called 73 037
times in 1 090 seconds. The obtained outer enclosure S of
the SCS is plotted in Figs 5, which indicates additionally the
number of unstable poles, computed at integer values of the
parametric points. Hence, all systems with parameters inside
the different regions delimited by the SCS have the indicated
number of poles. The intervals of poles look very much like
the ones in Fig.4.

4) Third initialization: A major change is operated here.
Instead of testing, the CSP defined in (12), a new CSPN is
defined by enlarging the acceptable mapping of f̄(ρejθ,α) to
a square of size ε instead of a single point (the origine).

CSPN :



−ε ≤ Re{f̄(ρejθ,α)} ≤ ε,
−ε ≤ Im{f̄(ρejθ,α)} ≤ ε,
0 < ρ <∞, θ ∈ Θ,

0 < α1 <∞, 0 < α2 <∞,
ε = 0.1

(30)

Fig. 6. Third initialization – Inner S (in red), and Outer S (in yellow)
enclosures of the CSPN defined in (30)

Hence, instead of searching for the zeros of the characteris-
tic function f̄ in (22), the algorithm searches for intervals [θ]
that are mapped according to f̄ inside a square of length ε. This
is the usual way CSPs are formulated. The same parameters
and tolerance are chosen as in the first initialization in (27)
and (28).

The results, obtained without contractors in 27 795 iterations
and 443 sec, are plotted in Fig.9, where red and yellow parts
indicate the inner and the outer enclosures S and S of (20).

It turns out not to be interesting to consider the CSPN (30)
instead of the initial CSP (12), because it widens the feasible
solution set as the square, of length ε, defining the admissible
mapping gets wider.

5) Fourth initialization: In this part, the problem (P1) is
solved. Hence, instead of looking for the stability crossing sets,
let’s look for all the zeros of f̄(ρejθ,α) in the first quadrant.
Consider the CSP in (12), and the following searching box:

θ = (ρ, θ, α1, α2)T ∈ [0, 4]×
[
0,
π

2

]
× [0, 3]× [0, 4.5] (31)

When setting the tolerance to (28), the algorithm is stopped af-
ter an hour because of convergence issues. Then, the tolerance
is augmented to:

η = diam(θ)/24

The algorithm converges in 12 525 iterations and 194 sec. The
obtained outer enclosure S is plotted in Fig.7.

Apparently, the root-searching-domain in the first quadrant,
is validated a posteriori in Fig.8: all the poles of the first
quadrant are inside the searching domain, defined by ρ ∈ [0, 4],
when (α1, α2) ∈ ×[0, 3]× [0, 4.5].

Higher precision is definitely required to find out a better
sketch of the stability region (in white).

However, this problem appears to be ill-posed as the CSP
(12) evaluated for interval values of [θ], can never be satisfied.
A mapping of [θ] with f̄ is an interval that can never be a
subset of {0}. Hence, in the instability region, the algorithm
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Fig. 7. Fourth initialization – Guaranteed stability in white and possible
instability (outer enclosure S) in yellow

Fig. 8. Fourth initialization – Possible root location in yellow, searching
domain boundary in blue

will keep bisecting, until reaching the precision η. It turns out
that the time complexity of the SIVIA algorithm is higher than
a brute-force search on boxes of elementary sizes η, which is
not interesting.

As a conclusion of this part, it turns out that it is more
interesting to solve the problem (P2) by looking for the
stability crossing sets and deducing the stability regions.

III. WHICH NORM FOR FRACTIONAL SYSTEMS?

This section of the paper contains results originally pub-
lished in [2].

As mentioned previously, (4) is only a necessary condition.
The system might be Lp-stable and yet have an impulse
response, f , with an infinite Lp-norm ∀p ∈ [1,∞]. The fol-
lowing theorem, proven in [2], states the existence conditions
of the Lp-norms.
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Fig. 9. Finiteness region of the Lp-norm of fractional stable transfer
functions in the relative-degree versus p plane. The border curve (1 − 1

p
)

does not belong to the finiteness region.

Theorem 2. Let a fractional transfer function as

F̃ (s) =
F (s)

sµ
(32)

where F (s), given by (1), is BIBO-stable and where µ ≥ 0.
Numerator and denominator of F (s) are assumed to be
coprime (with no possible simplification between poles and
zeros). Then, the Lp-norm, 1 ≤ p ≤ ∞, of the impulse
response of F̃ (s) is finite if and only if the transfer function
relative degree satisfies:

µ+ αN − βM > 1− 1

p
(33)

and the integrator order satisfies:

0 < µ < 1− 1

p
(34)

or
µ = 0 (35)

The yellow zone in Fig.9 shows finite combinations of Lp-
norms, in the plane relative-degree versus p. Similarly, the
orange zone in Fig.10 shows finite combinations of Lp-norms,
in the plane integrator-order versus p.

Remarks:
• Lp-norm finiteness conditions (33)-(34) are in accor-

dance with the L2-norm finiteness conditions determined
in [14].

• Equation (33) shows that all the Lp-norms of rational
systems, ∀1 ≤ p ≤ ∞, are always finite because the
relative degree is an integer at least equal to one (for
a proper transfer function with no nonzero feedthrough
gain). Additionally, (34) shows that the Lp-norms, ∀1 ≤
p ≤ ∞, are always infinite in presence of a rational
integrator, with µ = 1.

• A pure integrator 1
sµ , ∀µ ∈ R>0, has always an infinite

Lp-norm, ∀1 ≤ p ≤ ∞, because conditions µ + αN −
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Fig. 10. Finiteness region of the Lp-norm of fractional stable transfer
functions in the integrator-order versus p plane. The border curve (1 − 1
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)

does not belong to the finiteness region, except the point (p = 1, µ = 0)
which does.
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Fig. 11. A simple feedback control system structure

βM > (1 − 1
p ) and µ < (1 − 1

p ), cannot be satisfied
simultaneously (here αN = βM = 0) .

In the following example, the results are used to choose
a proper criterion for evaluating performance of a feedback
control loop.

IV. EXAMPLE

This example is taken from [15, example 2]. Consider
the simple feedback control system structure of Fig.11 and
different fractional order PI controllers, with i ∈ {1, 2, 3, 4},

Ci(s) = Kpi +
KIi

sλi
, (36)

which yield different closed-loop transfer functions:

Ti(s) =
Ci(s)Gi(s)

1 + Ci(s)Gi(s)
(37)

as reported in Table 1. Tavazoei (2010) evaluates numerically
different integral performance indices among which the in-
tegral of absolute error (IAE) and the integral of squared
error (ISE), on a step response. The IAE and ISE-indices
are respectively the L1-norm and the L2-norm squared of
the error signal ei(t) of Fig.11 (respectively ‖ei‖1 and ‖ei‖22)
when the input r(t) is a step:

Ei(s) =
1

s
(1− Ti(s)) (38)

The L2-norm of ei(t) was also computed analytically in
[14] and allowed to confirm the results announced in [15]
regarding the ISE-index. In this paper, the L4-norm of ei(s)

is additionally computed by numerical integration of the time-
domain signals ei(t). The L∞-norm is deduced easily.

Note that E1(s) has a proper integrator of order 0.2 and
hence, according to (34), an infinite L1-norm and finite Lp-
norms for p > 1.25. Consequently, ‖ei‖2, ‖ei‖4, and ‖ei‖∞
are finite. E4(s) has a proper integrator of order 0.5 and hence
infinite L1 and L2-norms. Additionally, [15] has evaluated
other performance indices such as the integral of time mul-
tiplied absolute error (ITAE), the integral of time multiplied
squared error (ITSE), and the integral of squared of time
multiplied error (ITSE). All these performance indices were
shown to be infinite for E4(s). No finite performance index
has been proposed in [15] for evaluating the output feedback
control law for E4(s). Theorem 2 and condition (34) show that
the Lp-norm is finite for all p > 2. Here, the L4-norm of the
error signal can be used as a finite performance index of the
output feedback control. For the remaining systems, E2(s) and
E3(s) have no integrators, relative degrees greater than (1− 1

p ),
stable s0.5-poles, and hence finite Lp-norms ∀1 ≤ p ≤ ∞.
Note that ‖ei‖∞ equals 1 for all i, because the step response
always starts at yi(0) = 0 and hence ‖ei‖∞ = ei(0) = 1.
Consequently, the L∞-norm is not, in this case, an interesting
performance index.

V. CONCLUSIONS

This paper proposes an algorithm, based on interval arith-
metics, for stability analysis of fractional transfer functions.
Guaranteed stability region is determined in the parametric
space. Two problems have been formulated and it has been
shown that the problem of finding the parametric region for
which the system is unstable is ill-posed because the bisection
algorithm has a time-complexity worse than a brute-force
search. However, the problem of finding stability crossing sets
turns out to be very interesting, as it allows finding with a
reasonable complexity, the stability crossing sets and hence
deducing the whole stability region.

Having stable fractional transfer functions does not, how-
ever guarantee the existence of the Lp-norms of its impulse
response. Some additional conditions on its relative degree
must be fulfilled. This helps choosing a performance criterion
for feedback control loops.

The analytical computation of the L2-norm was proposed
in [14] for commensurate systems only. A challanging task
would be to extend this result to incommensurate systems.

REFERENCES
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