
 


 

Abstract—The response mechanisms to different neural stimuli 
are a challenging task in neuroscience research. The auditory 
activity (response to music, speech, noise, etc.) can cause various 
emotional and cognitive responses. The neural responses to 
speech and music are of particular significance since they are 
almost constantly present in day-to-day life. We present the 
classification of the reactions to speech and music based on the 
spectral EEG features. The mean values of four frequency 
intervals (corresponding to the theta, alpha, beta, and gamma 
rhythms) were assessed for seven brain regions. These features 
were then used as the inputs to the classification based on logistic 
regression and artificial neural networks; both were used to 
analyze each subject individually and all available data. Feature 
selection was also performed, and the classification algorithms 
were trained using all, a half, and a quarter of the features for 
comparing their importance and variance for each individual and 
the entire dataset. The best classification accuracy for a single 
subject was 85.8%, and an accuracy of 67.1% was achieved for all 
subjects. This result is promising and calls for the analysis of a 
larger dataset. 

 
Index Terms—EEG; artificial neural networks; logistic 

regression; classification; feature selection. 

I. INTRODUCTION 

The analysis of the neural responses to different stimuli is 
quite widespread in the neuroscience research [1]. One area of 
interest is the analysis of the relationship between the different 
types of auditory stimuli and brain activity. More specifically, 
speech and music are found to be of particular significance, as 
they are present in all cultures and play an important role in 
everyday life. 

Different modalities can be used to track a person’s neural 
response, with the three most commonly used being 
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electroencephalography EEG [2], magnetoencephalography 
(MEG) [3] and functional magnetic resonance imaging fMRI 
[4]. These modalities measure the electrical neural activity, 
magnetic byproducts of neural activity, the changes related to 
blood flow, respectively, and are used in a wide range of 
studies regarding the functional analysis of the brain. 

In [5], the authors explored the neural response of 15 
subjects when exposed to, and when anticipating audio stimuli. 
The stimuli were selected to either be neutral, or to induce 
positive or negative emotions and the response was tracked 
using MEG. Each stimuli category was preceded with a cue 
tone of a different frequency so that the subject could know 
what emotion the following stimuli was meant to induce. It was 
shown that the brain response was different during the 
exposure to emotion inducing as opposed to neutral sounds, 
and that the response of a given stimuli was similar to the 
response elicited by its corresponding cue tone. 

An investigation was carried out in [6] to determine whether 
neural separability between music and speech response could 
be detected. There were 47 participants that took part in the 
experiment and fMRI recordings were made during the 
exposure to short music excerpts and human vocalizations in a 
pseudo-random order. The results have shown that there is a 
specific brain region (a region within the anterior superior 
temporal gyrus) that responds more strongly to music than 
voice stimuli. 

In [7], a study was conducted with the goal of classifying 
different musical notes based on the EEG response. Five 
participants took part in the experiment and the event-related 
spectral perturbation features were extracted and used as the 
input to the support vector machine classifier. The results of the 
study showed a 70% classification accuracy for 12 different 
classes (notes). 

The classification of auditory stimuli (English vowels “a”, 
“i” and “u”) was conducted in [8]. Eight subjects took part in 
the experiment and a recurrent neural network combined with 
Ben’s Spike Algorithm encoding was implemented to classify 
the EEG signals. The accuracy of 83.2% was obtained when 
using all 64 available electrodes, and an accuracy of 81.7% 
when using only 10 of the electrodes. 

A classification of speech and music audio recordings was 
performed in [9]. Although not based on neural response, this 
paper is interesting because it implemented a novel Spectral 
Peak Tracking approach applied to the audio recording itself, to 
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differentiate between music and speech. Very high 
classification accuracies (above 99%) achieved using deep 
learning techniques have shown that the complex structure of 
music and speech can be differentiated quite well. 

Considering that there seems to be neural overlap between 
the brain response to music and speech [10], effectively 
distinguishing them using EEG could help separate these 
responses [11]. This can in turn, aid in the accuracy of the 
classification of the subjects focus point in the cases of 
exposure to multiple stimuli, which would be helpful in 
assistive therapies and the design of hearing loss devices [12]. 

Although the classification of audio stimuli has been 
attempted, no study was conducted to differentiate speech and 
music based on the spectral features of the subject’s EEG, 
using artificial neural networks (ANN).  

In this study, the classification of auditory stimuli into two 
categories (speech and music) was performed using a basic 
logistic regression model, as well as ANNs. The experiment 
setup and the EEG processing pipeline, along with the ANN 
architectures are described in Section II, the results are given in 
Section III, and the conclusion with directions for future work 
is given in Section IV. 

II. METHOD  

A. Experiment setup 

Five healthy participants (Age: 31.4±8.8 years) took part in 
the experiment. All participants have signed the informed 
consent. A galvanic skin response (GSR) sensor (Mindfield 
Biosystems, Gronau, Germany) and an EEG cap (EASYCAP 
GmbH, Wörthsee, Germany) with 24 electrodes, placed in 
accordance with the 10–20 system connected to the 24-channel 
Smarting amplifier (mBrainTrain, Belgrade, Serbia) were used 
for the recording. Electrode M1 was used as an ECG channel 
and electrode M2 was excluded from the measurement in order 
to keep the symmetry of the EEG electrodes. In this study only 
the EEG signals were taken into consideration, with the sample 
rate of 256 Hz. The participants were asked to close their eyes 
and listen to the 30-minute-long audio file containing six sets 
of recordings trials. Each trial lasted four minutes with a 
one-minute-long interval of silence beforehand. Three types of 
audio recordings were played within a trial, each lasting for one 
minute, separated by 30-second silence intervals. One 
recording set consists of instrumental music, human speech and 
bird chirping. A single trial is a random permutation of the 
three mentioned recording categories. In this study, only the 
responses to the speech and instrumental music were analyzed. 
For two of the participants (ID2 and ID3) the measurements 
from the final third of the experiment were excluded due to the 
reported discomfort of the participants. 

B. EEG processing 

Firstly, the recorded EEG signals were filtered using a notch 
filter to remove the power supply noise at 50 Hz. The EEG 
corresponding to the music and speech stimuli was cut into data 
snippets using a time window of two seconds and the time 
stride of two seconds (i.e., non-overlapping time windows). 

The data snippet was labeled according to its corresponding 
stimuli. The feature extraction process was performed on each 
snippet and consists of the following steps. An estimation of 
the power spectral density (PSD) was performed 
electrode-wise, denoted as PSDe (PSD for electrode e). For 
every PSDe, a reference PSDe,ref was extracted from the 
10-second interval of silence which precedes the particular 
stimulus recording. The difference between PSDe and its 
respective PSDe,ref (denoted as PSDe,diff) was then calculated. At 
this point, the 22 observed EEG channels (their corresponding 
PSDe,diff) were grouped into 7 categories as follows: 
 Frontal left: Fp1, F3, F7, Fz, AFz; 
 Frontal right: Fp2, F4, F8, Fz, AFz; 
 Central: C3, C4, Cz, CPz; 
 Parietal left: P3, P7, Pz, POz; 
 Parietal right: P4, P8, Pz, POz; 
 Occipital: O1, O2; 
 Temporal: T7, T8. 

The electrodes were grouped according to their position 
(frontal, central, parietal, occipital, and temporal), with the 
frontal and parietal regions being split into two hemispheres, 
since the number of electrodes in each of the hemispheres was 
sufficient for them to be observed independently. The PSDe,diff 
of the electrodes in a single category were averaged, thus 
creating seven PSDg,diff (PSD for group g, g ∈ 1÷7). Finally, the 
mean spectral power of the following frequency bands (i.e., 
brainwave activity [13]) was estimated for each PSDg,diff :  
 [4 Hz, 8 Hz] – theta; 
 [8 Hz, 12 Hz] – alpha; 

 [12 Hz, 30 Hz] – beta; 
 [30 Hz, 80 Hz] – gamma. 

This resulted in 4 frequency bands × 7 groups = 28 features 
for the classification algorithms. 

C. Classification algorithms 

Multiple models were engineered for the purposes of this 
study and evaluated using 20-fold cross-validation [14]. In the 
first part of the study, both a logistic regression (used as a 
baseline algorithm) and an ANN architecture were designed 
and trained per participant. The same architectures were used 
with either 7, 14 or all 28 features as inputs. In the cases of 7 
and 14 chosen features, the selection was based on the 
ANOVA F-value estimated on the training set (Fig. 1.) [15].  

 
Fig. 1.  F-value visualized for each electrode group for a single participant, 

plotted on the locations of all observed EEG electrodes. 
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To summarize, there were two different model architectures, 
three different numbers of input features and five different 
participants, adding up to 30 different models in total, that were 
evaluated in this part of the study. In the second part of the 
study, one logistic regression and three ANN architectures 
were designed and trained on all collected data, i.e., the data 
from all participants was placed into a single dataset. These 
architectures were used for building up different models with 
either 7, 14 or all 28 features as inputs. Having had four 
different model architectures and three different numbers of 
input features, this meant building up 12 different models in 
total, in the second part of the study. 

The shallow ANN used in both the first and second part of 
the study (ANN1) contained three fully connected (FC) layers 
(with 5, 4, 2 neurons, respectively). The first hidden layer of 
ANN1 was a random projection layer, with the purpose of 
adaptive dimensionality reduction [16]. The other two ANN 
architectures (ANN2 and ANN3) were evaluated only in the 
second part of the study. ANN2 contained three FC layers 
(with 5,10, 2 neurons, respectively). ANN3 consisted of four 
FC layers (with 5, 15, 10, 2 neurons, respectively). Both ANN2 
and ANN3 had a random projection layer as their first hidden 
layer for the same reason as ANN1. The ANN architectures 
used for all 28 input features are shown in Fig. 2 (the varying 
number of input features changes the size of the input layer). 

 
Fig. 2.  ANN architectures for all 28 input features. 

 
The relatively low number of neurons and layers was chosen 

to avoid overfitting considering the dataset size. Adam 
optimizer was used for the training of the networks with the 

initial learning rate of 0.00005, batch size of 8, 350 epochs and 
leaky ReLU activation functions for all hidden layers [17], 
[18]. 

III. RESULTS 

In Table I, the test classification accuracies are listed per 
architecture for each subject. 

 
TABLE I  

CLASSIFICATION ACCURACY [%] FOR EACH SUBJECT. 

 
Logistic regression ANN1 
Number of features Number of features 

ID 28 14 7 28 14 7 

1 82.9 78.7 78.4 85.8 81.0 79.7 
2 74.5 73.3 65.1 75.2 74.2 67.4 
3 81.1 75.1 68.4 84.7 76.2 69.5 
4 75.6 72.5 69.5 77.6 73.9 70.1 
5 74.3 73.4 71.7 74.9 74.3 72.3 

 
The obtained results show that a higher number of input 

features corresponds to the higher accuracy regardless of the 
subject and algorithm (which stands in line with the results 
from [8]). Furthermore, for a given subject and number of input 
features, ANN1 consistently achieves a higher accuracy 
compared to the logistic regression. It is important to note that 
each subject has their specific features that are consistently 
selected throughout the cross-validation folds and that these 
features vary between the subjects (Table II). This is expected 
due to the natural variation of EEG responses between 
individuals [19]. 

 
TABLE II 

THE SELECTED FEATURES FOR EACH PARTICIPANT SHOWN FOR THE TWO FOLDS 

THAT EXHIBIT THE BIGGEST DIFFERENCE IN FEATURE SELECTION [GROUP 

NUMBER FOLLOWED BY BRAINWAVE SYMBOL]. 

ID fold 14 selected features 7 selected features 

1 
1 

1α, 1β, 2α, 2β, 3α, 4α, 4β, 
4γ, 5α, 5β, 5γ, 7α, 7β, 7γ 

1α, 3α, 5α, 5γ, 7α, 
7β, 7γ 

2 
1α, 1β, 2β, 3α, 4α, 4β, 4γ, 
5α, 5β, 5γ, 6α, 7α, 7β, 7γ 

3α, 4γ, 5α, 5γ, 7α, 
7β, 7γ 

2 
1 

2α, 2γ, 3θ, 3α, 3β, 4θ, 5β, 
5γ, 6θ, 6α, 6β, 6γ, 7θ, 7γ 

2γ, 3θ, 3α, 3β, 5β, 
6α, 7γ 

2 
1β, 2γ, 3θ, 3α, 3β, 3γ, 5β, 
5γ, 6α, 6β, 6γ, 7θ, 7α, 7γ 

3θ, 3α, 3β, 4θ, 5β, 
6α, 7γ 

3 
1 

1θ, 1β, 2θ, 2α, 2β, 3θ, 3α, 
3β, 4β, 4γ, 5α, 5β, 5γ, 6β 

3α, 3β, 4β, 4γ, 5β, 
5γ, 6β 

2 
2θ, 2α, 2β, 3θ, 3α, 3β, 4β, 
4γ, 5α, 5β, 5γ, 6θ, 6β, 7α 

2θ, 3θ, 3α, 3β, 4γ, 
5β, 5γ 

4 
1 

1β, 1γ, 2θ, 2β, 2γ, 3γ, 4α, 
4γ, 5α, 5β, 5γ, 6α, 6γ, 7α 

1γ, 2γ, 3γ, 4α, 4γ, 
5γ, 6α 

2 
1β, 1γ, 2θ, 2β, 2γ, 3α, 3γ, 
4α, 4γ, 5α, 5γ, 6α, 6γ, 7α 

1γ, 2γ, 3γ, 4γ, 5γ, 
6α, 6γ 

5 
1 

1θ, 1α, 1γ, 2θ, 2α, 2γ, 3β, 
4θ, 4β, 5β, 5γ, 6β, 6γ, 7γ 

1θ, 1γ, 2θ, 2γ, 4β, 
5γ, 6β 

2 
1θ, 1α, 1γ, 2θ, 2α, 2γ, 4θ, 
4β, 4γ, 5β, 5γ, 6β, 6γ, 7γ 

1θ, 1γ, 4β, 5β, 5γ, 
6β, 6γ 
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 In Table III, the test classification accuracies are listed for 

each model deployed on the set containing the data from all the 
subjects. 

 
TABLE III  

CLASSIFICATION ACCURACY [%] FOR ALL SUBJECTS. 

 Number of features 

Architecture 28 14 7 
Logistic regression 61.4 59.1 58.3 

ANN1 64.8 63.3 62.1 
ANN2 65.6 64.2 63.0 
ANN3 67.1 64.8 63.9 

 
The overall accuracies shown in Table III are lower than the 

accuracies obtained when the individual subjects were 
considered. With respect to the diversity of individual EEG 
responses and the number of participants it was more difficult 
for the algorithms to pick up on the complex input-output 
dependencies.  

IV. CONCLUSION 

In this paper, the classification of audio stimuli (speech and 
music) based on spectral EEG features was performed. Firstly, 
the classification was performed per subject, using the logistic 
regression and ANN. ANN has shown a slight but consistent 
improvement (ANN accuracy ranging from 67.4% to 85.8%) 
over the baseline logistic regression which is to be expected 
considering the dataset size. Furthermore, a larger number of 
input features implies a small but consistent increase in 
accuracy. The deployed models achieved an accuracy above 
65% on the test set even when 7 features were selected from the 
observed dataset. This implies that although a higher number of 
input features does improve the overall accuracy, certain 
features do carry more useful information than others. On the 
other hand, having all collected data in one dataset, resulted in 
having the maximum accuracy of 67.1%. This is due to the 
difficulty of achieving higher accuracies when there is an 
undeniable diversity in the dataset compared to the number of 
instances and a varying importance of a single feature between 
subjects.  

The directions for the future work include expanding the 
dataset with significantly more subjects, thus enabling the 
development of more complex algorithms, alongside the 
implementation of other EEG processing and feature selection 
methods. By expanding the database and expanding the EEG 
feature set, a higher distinction accuracy between speech and 
music response could be expected. This would open up a 
possibility to estimate the focus of a given subject when 
exposed to these stimuli simultaneously, which is often the 
case in day-to-day life. Further research will also include 
emotional aspects based on the consideration of heart rate 
variability (HRV) parameters and the GSR.  
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