
A Chisel Generator of JTAG to Memory-Mapped
Bus Master Bridge for Agile Slave Peripherals

Configuration, Testing and Validation
Vukan D. Damnjanović, Student Member, IEEE, and Vladimir M. Milovanović, Senior Member, IEEE

Abstract—This paper presents a design of a JTAG to memory-
mapped bus master bridge generator implemented using Chisel
hardware design language. This type of digital module can
provide convenient and practical means of configuring a wide
range of peripheral circuitry with a memory-mapped slave
interface attached to a bus interconnection, as well as of their
testing and debugging. The peripherals can be configured by
driving the input signals of the JTAG interface with the values
that represent the previously defined instruction codes, thus
initiating write or read data transactions on the interconnect bus
through the master interface to their memory-mapped registers.
The master interface can be either AXI4 or TileLink, depending
on the characteristics of the whole system which the depicted
bridge is a part of. The proposed generator offers the ability of
creating slightly different modules by using different parameter
selections. The implemented design has been extensively tested
using various software simulations with a number of different
slave peripherals and mapped and tested onto a commercial
FPGA platform. These actions experimentally confirmed the
previously made assumption of the utility and convenience of
the proposed generator.

Index Terms—JTAG to memory-mapped bus master bridge,
AXI4 and TileLink protocols, memory-mapped interface, periph-
erals testing and debugging, Chisel hardware design language,
design generator.

I. INTRODUCTION

From the very beginnings of the integrated circuits and the
emergence of the first microprocessors, memories and data
storing were emphasized as one of the most important and
vital parts of its structure because of a vast number of possi-
bilities and numerous functions it provided. Almost all digital
applications and devices were able to develop and operate
on its basis. As the time passed by, with the improvement
of the existing technologies and the emergence of the new
ones, along with the development of microprocessors, those
applications and devices started to become more and more
complex and sophisticated as well. Therefore, not only that
the limited capacities of the devices’ memories appeared to
be the major problem, but the ways of accessing their data
were too, usually due to a need for the standardized methods
or high performance criteria of the systems. Several ways of
a microprocessor data access were developed over the years,

Vukan D. Damnjanović is with NOVELIC d.o.o., Veljka Dugoševića 54/B5,
11060 Belgrade, Serbia (e-mail: vukan.damnjanovic@novelic.com).

Vladimir M. Milovanović is with the Department of Electrical Engineering,
Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000
Kragujevac, Serbia (e-mail: vlada@kg.ac.rs).

with the usage of the port-mapped input/output (PMIO) and
the memory-mapped input/output (MMIO) interfaces [1] being
the most common ones.

The main characteristic of the port-mapped input/output
data access interface is the presence of special address space
outside the common system memory for every included
peripheral. Usually, that implied the existence of special,
dedicated instruction set for data access, such as ”IN” and
”OUT” instructions in x86 architectures [2]. The PMIO was
more extensively utilized in earlier digital systems with less
developed microprocessors with small address spaces, since
the valuable resources were not consumed by the input/output
(IO) devices. However, sometimes it is not convenient to use
this kind of data access because of the possible frequent
context switching or the need for the manipulation of IO
devices using only standardized memory access instructions.
Those features are delivered by using the memory-mapped
input/output interface.

As mentioned before, systems with the MMIO have a shared
virtual address space, along with the program memory or
user memory, with the same instruction set for accessing it.
All the devices are attached to an interconnect bus and from
the perspective of the microprocessor, there is no difference
whether it manipulates with the peripheral I/O device, or some
internal data. Therefore, a wide range of different peripherals
with the memory-mapped registers can be integrated in the
system without almost any additional logic, thus allowing it
to grow plentifully in terms of its functionality. Having this
in mind, it is no wonder that modern-day systems more and
more rely on this version of peripheral device’s data access.

In the previous couple of paragraphs, the characteris-
tics and the importance of the MMIO interface within the
microprocessor-based systems were elaborated. For each one
of those systems, manipulating the peripheral devices by
accessing their data should be well-explained and straight-
forward. However, sometimes there is a need to manipulate
or test those devices without implicating the microprocessor.
In those cases, accessing the interconnect bus and initiating
data transactions could be very challenging and complex.
For that particular reason, the JTAG to memory-mapped bus
master bridge generator from this paper’s topic was designed
and created. It allows a user to access the peripheral device
connected to either AXI4 [3] or TileLink [4] bus without the
engagement of any kind of processing unit, but by using the
standardized and quite popular JTAG interface [5], [6].

ELI1.4 Page 1 of 6



This paper, along with the quick overview of the used
protocols and detailed description of the design of the JTAG
to memory-mapped master bus bridge and its implementation
with the used Chisel libraries, also serves as the user manual
of the module and depicts the obtained results through simu-
lations and hardware implementation.

II. A JTAG TO MEMORY-MAPPED BUS MASTER BRIDGE,
ITS INTERFACES AND INSTRUCTIONS

A JTAG to memory-mapped bus master bridge [7], [8]
is a digital component which initiates data transactions with
the peripheral devices possessing the memory-mapped in-
put/output interface, attached to an interconnect bus. This
module communicates with the outer world through two ends
and three possible different interfaces. The user sends the
desired instruction by driving the signals on the user-end JTAG
interface, present in all the variants of the module. The in-
struction, if performed correctly, then initiates the appropriate
transaction on the bus-end interface, which can be either AXI4
or TileLink, depending on the user’s preferences or the system
requirements. In the next few paragraphs, a brief overview of
these interfaces is provided.

A. JTAG Interface

The Joint Test Action Group (JTAG) is a standardized four-
wire serial protocol usually used for testing and debugging
integrated circuits through a JTAG port. It consists of three
input signals and an output signal: Test Clock (TCK), which is
used as a clock signal for a JTAG controller and is independent
of system clock signal; Test Mode Select (TMS), an input
signal which serves as a control signal for a JTAG finite state
machine (FSM), which will be discussed later; Test Data Input
(TDI), an input signal that represents the input serial data for
JTAG instruction and data registers; Test Data Output (TDO),
the serial output data for JTAG instruction and data registers
(an additional output signal exists to express the validity of the
output data on the TDO pin). The on-chip JTAG Test Access
Port (TAP) implements the mentioned FSM, which is used for
the realization of the JTAG subpart of the module.

The JTAG FSM is used to correctly accept the JTAG
interface signals and to recognize whether the arrived data
values are the instruction values or the data values itself. It
is driven by the rising edge of the TCK signal and the state
changing is controlled by the TMS signal. In certain FSM
states, data from the TDI port is captured. From the idle state,
by driving the TMS signal in the appropriate way, the user
chooses to enter either the select data or the select instruction
state and then the data/instruction capture state. From that
point on, the procedure is identical for both instruction and
data capturing. The only difference is that the captured values
are stored in different registers. In the data/instruction shift
state, values from the TDI port are stored in a shift register
as long as the FSM stays in that state. Afterwards, the FSM
enters the update data/instruction state and then returns to the
idle state, with the complete data/instruction value stored in the
appropriate register. A block diagram of the complete JTAG

TestLogicReset

RunTestIdle SelectDRScan

CaptureDR

ShiftDR

Exit1DR

PauseDR

Exit2DR

UpdateDR

SelectIRScan

CaptureIR

ShiftIR

Exit1IR

PauseIR

Exit2IR

UpdateIR

1

0

0

0

0

0

0

1 1 1

0

0

1

0

1

11

1

0

0

0

1

1

1

0

1

0

11

1 0 1 0

Fig. 1. A block diagram of the complete JTAG finite-state machine with all
the state transitions and the TMS signal values.

FSM with all the state changes and the TMS signal values is
shown in Fig. 1.

B. AXI4 and TileLink Interfaces

Advanced eXtensible Interface 4 (AXI4) protocol is a
parallel, synchronous, high-frequency multi-master and multi-
slave communication interface. It is tailored mainly for the on-
chip communication, which makes it suitable for the systems
mentioned above. AXI4 interfaces consists of a vast number
of different signals, with many of them optional, making it
a versatile interface applicable to various different systems
and applications. Even though it is described as multi-master
and multi-slave interface, in every transaction only a single
master and single slave communicate with each other. All
the masters and the slaves are mutually connected through
an interconnect bus. In the JTAG to memory-mapped bus
master bridge module, this interface is used as a master
interface and in most applications that include it, because of
its sole purpose, the only active master is the module itself,
whereas one or more slaves could exist. A simplified block
diagram of an example of such a system is shown in Fig. 2.
AXI4 interface protocol consists of 5 different channels: write
address (AW), read address (AR), write data (W), read data
(R) and response (B). Every one of those channels work on the
handshaking principles and thus contain the pair of ready/valid
signals. All the channels except the response channel have data
signal among the various others signal whose function is to
additionally describe and secure successful data transactions.
Apart from the single read and single write data transactions,
AXI4 interface supports the burst read and burst write data

ELI1.4 Page 2 of 6



AXI4 Interconnect Bus

JTAG to
Memory-

Mapped AXI4
Bus Master

Bridge

JTAG

Slave 0 Slave 2Slave 1

Fig. 2. A simplified block diagram of a system with a JTAG to memory-
mapped bus master bridge and three slave peripherals attached to an AXI4
interconnect bus.

transactions.
TileLink is a parallel, synchronous, high-frequency multi-

master and multi-slave communication protocol, in some ex-
tent similar to the AXI4 protocol. It is also designed mostly
for the on-chip communication, with a special emphasis on the
cache coherence transactions. The communication between a
master and a slave (sometimes called a client and a manager
in terms of this interface) is also performed based on the
handshaking protocol. Overall, five communication channels
can exist, with only two mandatory: channels A and D are
mandatory, while channels B, C and E are optional. Each of
the channels consists of several signals, including a data signal,
a couple of ready/valid signals and some other signals used to
describe and control transactions. The mandatory channel A
flows from master interface to slave interface, carrying request
messages sent to a particular address. Then, the slave responds
to the master’s request through the mandatory channel D.
Other channels B, C and E are optional, and they are utilized
for complete TileLink cached protocol, where channels B and
C have similar functions as channels A and D respectively,
whereas channel E is used as a final acknowledgment channel.
In the module from the topic of this paper, however, only
mandatory channels are used, and therefore, not much atten-
tion is provided to other three channels. TileLink protocol
interface can be used as the master interface of the module
instead of the AXI4 interface.

C. Defined Instructions

As it can be concluded from the previous paragraphs and
sections, the JTAG to memory-mapped bus master bridge
is a module that integrates two different interfaces with its
dedicated controllers: JTAG and AXI4/TileLink. Those two
controllers operate independently, they are even driven by
different clock signals (TCK for JTAG controller and system
clock signal for the AXI4/TileLink controller), but they are
mutually synchronized through the internal signals. The JTAG
controller works on the basis of the previously described JTAG

TCK

TMS

TDI D0 D1 DN

TCK

TMS

TDI I0 I1 I2 I3

Fig. 3. JTAG input signal diagrams for correctly sending an instruction code
(upper diagram) or a data value (bottom diagram) when the JTAG finite-state
machine is in the idle state.

FSM, while AXI4/TileLink has its own FSM. The whole
module has the following, rather simple, signal flow. User calls
an instruction by driving the serial JTAG input signals. The
JTAG controller accepts the data, converts it to the parallel
form and sends it to the AXI4/TileLink controller who, if it
is recognized as a write instructions or a read instruction or
any subvariant of them, initiates the transaction between the
module and the appropriate slave. JTAG input signal values
for correctly sending an instruction code or a data value when
the JTAG FSM is in the idle state are shown on the timing
diagrams in Fig. 3. In order to send the data value to the serial
TDI input correctly, the least significant bit of the data should
be sent first. It is strongly recommended that, prior to using
the module, the user ensures that the JTAG FSM enters the
reset state. It is achieved by driving the TMS signal with the
active high value for five straight TCK cycles. By doing so,
no matter what state was the JTAG FSM in, it will enter the
desired reset state.

Total of four types of data transactions can be initiated by
the AXI4/TileLink master interface on the interconnect bus:
write, read, burst write and burst read. Also, nine instructions
that the user can call through the JTAG interface are defined.
The purpose of them is to enable the data transactions to be
performed and to pass all the information needed for it. Each
instruction can require either both instruction code and data
itself to be provided, or just the instruction code. Both of them
are captured in their dedicated JTAG FSM state. After the input
serial data arrived entirely to the JTAG controller, it sends
both the instruction code and the data to the AXI4/TileLink
controller. A list of defined instructions, along with their codes
and descriptions, is the following:

• 0x01 - Write instruction, initiates the AXI4/TL controller
to begin writing the acquired data to the acquired address.

• 0x02 - Address acquire instruction, accepts the serial data
as the address for the read/write instruction.

• 0x03 - Data acquire instruction, accepts the serial data as
the data for the read/write instruction.

• 0x04 - Read instruction, initiates the AXI4/TL controller

ELI1.4 Page 3 of 6



to begin reading data from the acquired address.
• 0x08 - Number of burst transactions acquire instruction,

accepts the serial data as the number of the read/write
instructions during one burst transfer cycle.

• 0x09 - Burst write instruction, initiates the AXI4/TL
controller to begin performing acquired number of the
write transactions. Data is written to the consecutive
addresses.

• 0x0A - Data index number acquire instruction, accepts
the serial data as the index number of data to be acquired
using the following instruction for the burst read/write
transfer.

• 0x0B - Indexed data acquire instruction, accepts the serial
data as the data at the acquired index number for the burst
read/write transfer.

• 0x0C - Burst read instruction, initiates the AXI4/TL
controller to begin performing acquired number of the
read transactions. Data is read from the consecutive
addresses.

Before the write instruction, both the address acquire and
the data acquire instructions must be performed. Before the
read instruction, the address acquire instruction must be per-
formed. For the burst write instruction, the data for every
single transaction must be acquired beforehand, as well as
the total number of burst transactions for both the burst write
and the burst read instructions. Two read/write/burst read/burst
write instructions of the same type cannot appear sequentially
one right after another, there must be at least one other
instruction between the two. After performing the read or burst
read instruction, read data appear on the serial output JTAG
TDO data port, with the TDO driven signal having the active
high value. All the instruction codes that are not mentioned
in this paper can be assumed to be the no-operation (NOP)
instructions.

III. A DESIGN GENERATOR AND ITS IMPLEMENTATION

Previously depicted JTAG to memory-mapped bus master
bridge have been captured inside Chisel 3 hardware design
generator. Both solely and in a combination with numerous
slave peripheral modules, the generator has been thoroughly
tested using standard Chisel verification and implementation
paths for FPGA design flow. The design generator is made
available [9] for public use as a free and open-source hardware
library.

The generated module itself consists of two main subparts:
JTAG controller and AXI4/TileLink controller, with their in-
terfaces and internal communication signals. A block diagram
of the JTAG to memory-mapped bus master bridge with all its
interfaces and two main submodules is depicted in Fig. 4.

The JTAG controller is the submodule that communicates
with the user. Its main purpose is to accept the serial data from
the JTAG user interface, pack it in the appropriate format and
send it to the AXI4/TileLink controller, as well as to accept
the parallel data read from the slave peripherals and to put it
on the JTAG serial data output. The JTAG controller is based
on the previously depicted, standard JTAG FSM. Besides the

TCK

TMS

TDI

TDO_data

TDO_driven

async_reset
JTAG Controller AXI4/TL Controller

dataOut

instruction

dataIn

receivedIn

validIn

AX
I4

 / 
TL

receivedEnd

Fig. 4. A block diagram of the JTAG to memory-mapped bus master bridge
with all its interfaces and the two main submodules.

common JTAG interface signals TCK, TMS, TDI and TDO,
several more I/O signals exist. To begin with, TDO signal is
divided into the one-bit-wide output signals: TDO data, which
represents the serial output data, and TDO driven, which serves
as the data valid signal. Those two signals are active at the
falling edge of the TCK clock. There is also an asynchronous
reset input signal which transits the JTAG FSM current state
to the reset state.

Through the TDI JTAG serial input pin, the user can send
either an instruction code or the data value itself. The JTAG
can distinguish between those two thanks to the TMS control
signals. Arrived data is translated from serial to parallel data
format by using two shift registers, one for both instruction
and data values. Data from the shift registers are stored into
the two data registers, one at a time, when the JTAG FSM en-
ters the appropriate data/instruction capture states. Data from
those two registers are sent separately to the AXI4/TileLink
controller.

A. The AXI4 and TileLink Controllers

The AXI4 and TileLink controllers are similar to one
another, with the obvious difference in the master interface
signals. They accept the instruction and data values from
the JTAG controller, recognize the instruction code and take
the action correspondingly. If the instruction code suits the
either read or write instruction code, the controller initiates the
communication with the appropriate slave peripheral through
the AXI4/TileLink interconnect bus. The instruction code and
data values are stored into the two separate registers. The
value from the instruction register is constantly checked and
compared to the instruction code of each of the four data
transfer instructions (write, read, burst write, burst read). When
those two values match, the appropriate flag value is set
to the active high (a flag exist for every one of those four
instructions) and that signifies that the appropriate instruction
is set to be executed. Apart from signalizing that the instruction
should be performed, the flag signals are used to prevent
other instructions to be executed until the end of the current
instruction. For the purpose of the burst transfers, a counter
that counts the number of performed transfers is implemented
inside the controller. Both controllers rely on their own FSMs

ELI1.4 Page 4 of 6



which secures the correctness of the communication with the
peripherals.

The AXI4 and TileLink controllers also send the data read
from the peripherals to the JTAG controller. For that purpose,
several more internal signals exist. Apart from the one that
carries data values to the JTAG controller, there are signal
that marks the validity of the arrived data and two signals that
mark that the JTAG controller has received the data and that
the all bits of the data were sent to the output TDO pin.

The AXI4 controller FSM has the task to control the
communication with the slave peripherals. State transitions are
realized thanks to either flag values mentioned above, or the
AXI4 signal values from the slave, such as ready signal for
the handshaking protocol. Following states exist:

• sIdle - The idle state, the FSM stays in this state until
the write instruction or the read instruction flag is set.

• sSetDataAndAddress - The state in which address is
set on the AW channel, data is set on the W channel and
valid signals are set on both the AW and W channels. The
FSM stays in this state until the ready signals are not set
on both the W and AW channels or until a counter which
ensures that the FSM isn’t stuck in this state counts out.

• sResetCounterW - The state in which the mentioned
counter is reset. Stays in this state for exactly one clock
cycle.

• sSetReadyB - The state in which the ready signal is
set on the acknowledgement B channel. The FSM stays
in this state until the B channel valid signal is not set or
until the counter which ensures that the FSM is not stuck
in this state counts out. The write instruction flag is reset
in this state.

• sSetReadAddress - The state in which the address
and the valid signals are set on the AR channel. The
FSM stays in this state until the AR channel ready signal
is not set or until the counter which ensures that the FSM
is not stuck in this state counts out.

• sResetCounterR - The state in which the mentioned
counter is reset. The FSM stays in this state for exactly
one clock cycle.

• sSetReadyR - The state in which the ready signal is
set on the R channel and data is read from the same
channel. The FSM stays in this state until the R channel
valid signal is not set or until the counter which ensures
that the FSM is not stuck in this state counts out.

• sDataForward - The state in which the read data is
forwarded to the JTAG controller, along with the active
valid signal. The FSM stays in this state until the JTAG
controller does not confirm that the data is received. The
read instruction flag is reset in this state.

A state transition diagram for the AXI4 FSM is depicted in
Fig. 5. Note that the states for the write and the read instruc-
tions only are shown. The reason for the deficiency of the other
two is simply the similarity to the depicted ones. The only nov-
elty for the burst transfers is the fact that after the completed
single data transfer, FSM enters sIdle state only if the burst

sIdle

sSetReadyB

sResetCounterW

sSetReadAddress

sResetCounterR

sSetData
AndAdress

sSetReadyR

sDataForward

reset

Fig. 5. A state transition diagram for the read and the write instructions of
the AXI4 FSM.

transfers counter has counted out. Otherwise, the AXI4 FSM
enters sSetDataAndAddress/sSetReadAddress state
to perform another transfer.

The TileLink controller FSM has the same task as the AXI4
FSM. Its state transitions are also realized thanks to either
the flag values or the signal values received from the slave
peripheral. Although the states themselves are not identical
to the ones from the AXI4 FSM, mostly because of the
differences between the interfaces, the overall principles are
the same. Therefore, they will not be elaborated in this paper.

B. The Chisel Generator

The Chisel generator of the JTAG to memory-mapped bus
master bridge has few parameters that can impact the char-
acteristics of the generated instances. Data and address buses
widths for all the AXI4/TileLink channels can differ between
32 and 64. The instruction code width is also changeable.
As the current number of instructions is nine, the width of
four bits is sufficient for all the instruction codes. Another
parameter represents the code for the initial instruction. It is
strongly recommended that any code of the NOP instruction
is provided as this parameter. Maximum number of transfers
in a burst cycle can also take different values, as well as the
set of the addresses that the module’s master interface can
access. Even though the Chisel language is extremely suitable
for parameterization of the modules, this capability is not
exploited a lot in this case due to the nature of the proposed
module itself.

For the implementation of the generator, several exploited
open-source Chisel libraries worth mentioning exist. Chip-

ELI1.4 Page 5 of 6



salliance’s Rocketchip library [10] is extensively used. It
provided the extremely valuable classes for the implementation
of both AXI4 and TileLink master interfaces, as well as of
the interconnect bus and memory-mapped address space. Also,
the Ucb-art’s Chisel-JTAG library [11] was beneficial for the
realization of the module. Its JTAG FSM design with some
other modules, such as shift registers and I/O bundles, were
utilized. The generator itself was integrated into the Ucb-bar’s
Dsptools library [12].

IV. IMPLEMENTATION AND VERIFICATION RESULTS

There are several stages of the JTAG to memory-mapped
bus master bridge testing. The first one represents the usage of
the software simulations. For the performance of these tests,
Chisel testers are utilized to drive the JTAG input signals.
Apart from testing the module solely, it was also verified
experimentally using various other modules with memory-
mapped control and status registers, from the simple ones, such
as a streaming multiplexer, to more complicated ones, such as
a parameterizable numerically-controlled oscillator or run-time
configurable fast Fourier transformation module. The tested
module was also verified within the simulation environments
with multiple slave modules.

Another stage of the proposed generator’s verification is
implementing and testing the generated instances on an FPGA-
based development board. A Digilent’s Arty A7 board with
Xilinx Artix-7 FPGA family is used for it. All the generator’s
instances are synthesized for 100 MHz system clock frequency.
The JTAG input signals were driven from the PC using the
FTDI’s C232HM-DDHSL-0 cable [13]. That cable contains
the FT232H integrated circuit [14] and represents the USB 2.0
hi-speed to multi-protocol synchronous serial engine (MPSSE)
cable. For the utilization of the FT232H chip and the cable
itself, Pyftdi open-source library [15] is used. The JTAG
input signals are generated as the general purpose input/output
(GPIO) signals. JTAG clock frequency was set to 15 MHz
(GPIO pins can work with the frequency up to 30 MHz)
which is the convenient speed having in mind that the JTAG
clock frequency is obligated to be lower than the system
clock frequency in order for the module to work properly.
Similar to the verification using software simulations, several
additional modules with the memory-mapped registers were
used to validate the functional correctness of the proposed
generator’s module.

The FPGA resource utilization for the JTAG to memory-
mapped bus master bridge is not significant due to the lack
of the complex arithmetic or logic operations and few used
registers. Moreover, it is expected for the peripheral’s utilized
resources to be drastically more numerous.

V. CONCLUSION

In this paper, a generator of the JTAG to memory-mapped
bus master bridge implemented using Chisel hardware design
language is proposed. Mainly, it is used for configuring,
testing and debugging the peripheral modules with memory-
mapped input/output interface in the systems without the

processing core or where the processing core is set to remain
inactive in terms of communication with the slave peripherals
through the interconnection bus. Even tough it seems to be
a complete product right now, theoretically speaking a lot
of space was saved for the further upgrade, primarily to the
Chisel’s parameterizable characteristics.

The generated instances of the JTAG to memory-mapped
bus master bridge were tested and verified by both using
software simulations and mapping onto a commercial FPGA
development board. Numerous additional modules with the
memory-mapped slave interface are utilized in the testing
process. The module from the topic of this paper proved to be
trustworthy regarding its functionality and performance.

ACKNOWLEDGEMENTS

The authors would like to thank NOVELIC d.o.o. for
financially and logistically supporting the work on this project.

REFERENCES

[1] N. Y. Song, Y. J. Yu, W. Shin, H. Eom, and H. Y. Yeom, “Low-
latency memory-mapped I/O for data-intensive applications on fast
storage devices,” in 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, 2012, pp. 766–770.

[2] Intel 64 and IA-32 Architectures Software Developer’s Manual, Order
number: 325383-060us ed., Intel, September 2016.

[3] AMBA AXI and ACE Protocol Specification, Arm ihi 0022e
(id033013) ed., ARM, February 2013.

[4] SiFive TileLink Specification, Tilelink specification, version 1.8.0 ed.,
SiFive, Inc, August 2019.

[5] B. V. Ngo, P. Law, and A. Sparks, “Use of JTAG boundary-scan for
testing electronic circuit boards and systems,” in 2008 IEEE AUTOTEST-
CON, 2008, pp. 17–22.

[6] L. Ungar, H. Bleeker, J. McDermid, and H. Hulvershorn, “IEEE-1149.x
standards: achievements vs. expectations,” in 2001 IEEE Autotestcon
Proceedings. IEEE Systems Readiness Technology Conference. (Cat.
No.01CH37237), 2001, pp. 188–205.

[7] JTAG to AXI Master v1.2, Pg174 ed., Xilinx, February 2021.
[8] Embedded Peripherals IP User Guide, UG-01085 ed., Intel, March 2021,

pages 56-60.
[9] V. D. Damnjanović and V. M. Milovanović, “JTAG to memory master

(JTAG2MM) chisel generator,” www.github.com/milovanovic/jtag2mm,
accessed: 2021/06/21.

[10] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-17.html

[11] C. M. Richard Lin, Paul Rigge, “chisel-jtag,” www.github.com/ucb-
art/chisel-jtag, accessed: 2021/06/21.

[12] P. R. Chick Markley, Angie Wang, “dsptools,” www.github.com/ucb-
bar/dsptools, accessed: 2021/06/21.

[13] C232HM, version 1.3 ed., FTDI, document No.: FT000401 Clearance
No.: FTDI 214.

[14] FT232H, version 2.0 ed., FTDI, document No.: FT000288 Clearance
No.: FTDI 199.

[15] E. Blot, “PyFTDI,” www.eblot.github.io/pyftdi/, accessed: 2021/06/21.

ELI1.4 Page 6 of 6




