
Free/Open Source EDA Tools Application in
Digital IC Design Curricula

Aleksandar Pajkanovic, Member, IEEE

Abstract—This paper represents a report on how free and
open source software EDA tools may be used to organize a
digital integrated circuits design course at the university level,
without any financial investments in licenses. The course is built
around several publicly available processor cores. These are of
different complexity so first intrinsic properties are investigated.
Then, using more complicated designs we examine how to
increase performance through pipeline and cache associativity
configurations. In this way we introduce RISC-V ISA and Chisel
into the curricula. Finally, we provide a short overview of tools
for automated design, from RTL all the way to silicon.

Index Terms—open source, digital design, RISC-V, Chisel

I. INTRODUCTION

Since the first implementation of a transistor was demon-
strated at the Bell Labs back in mid-20th century [1], the
industry has shifted from traditional, as established by the
Industrial Revolution, to an economy based on the information
technology (IT). That event, we understand today, represents
the onset of the Information Age–the age characterized by
rapid growth and development in all areas of life, driven
by the semiconductor industry. Its workhorse, the CMOS
technology process, is characterized by low power consump-
tion, extreme scalability and ease of mass production. The
ability to implement an idea, a solution using this technology,
i.e. the ability to design integrated circuits (IC), or chips,
has been of greatest importance for decades and it will be
even more so in decades to come; namely, even though the
Moore’s Law [2] has ended–i.e. we do not advance our ICs
by scaling anymore, but rather using advanced techniques [3]
in design and verification phases, in order to achieve better
performance–we still fabricate our solutions in silicon CMOS
technology process.

Over the last five years, we have been establishing IC
courses at the Faculty of Electrical Engineering in Banja Luka.
This effort has been reported in [4], [5] and has recently
culminated in fabrication ready circuits [6]. All this has been
achieved using exclusively free and open source EDA software
tools, with the help of many contributors - both students and
tool developers. In those developments, however, main effort
was in the analog domain, whereas in this particular paper we
focus on digital IC design course, the examples it’s built upon
and tools used.

Since materials such as combinatorial and sequential circuits
are covered in other courses, for this particular course we’ve

Aleksandar Pajkanovic is with the Faculty of Electrical
Engineering, University of Banja Luka, Patre 5, 78 000 Banja
Luka, The Serbian Republic, Bosnia and Herzegovina, e-mail:
aleksandar.pajkanovic@etf.unibl.org

decided to learn about more advanced concepts using the free
intellectual property (IP) available in the community. Thus we
study three processor designs, we learn a new approach to
digital design (hardware construction, instead of description)
and we drive the RTL code all the way to GDS, i.e. silicon
ready file, using the free and open source toolchain.

In the next section we present motivation for writing up
this paper, then we provide brief overviews of the RISC-V
Instruction Set Architecture (ISA), Chisel - the hardware
construction language (HCL) and processor cores we learn
about and use to demonstrate theoretical concepts. Finally, in
the sixth section, we present the free/open source digital IC
design toolchain.

II. MOTIVATION

There is no point in living during the Information Age,
unless we are going to use its benefits. While boundaries
are important parts of our lives and some should never be
crossed, there are those boundaries that are not actually natural
- these simply existed due to the fact that we knew not
how to overcome them. This is not the matter of destroying
those boundaries, but rather outgrowing them to improve the
world and general quality of life. Such borders are those
related to knowledge. With the Internet and its omnipresence
- knowledge is omnipresent as well, for those who seek it.
Our idea is to build the IC curricula by standing on the
shoulders of the giants–of those who have had the chance
to grow and develop for decades in this domain, thanks to
another kind of boundaries. Therefore, we bring what’s best
on this planet right in our own court and thus enable our
own students right here in Banja Luka to gain world-class
expertise in the semiconductor industry, which, after all, is the
most sophisticated commercially available technology process.
And we do that without any financial investments - but rather
simply: by reaching out.

Main motivation behind this paper is to contribute to the
open source hardware community by sharing collected expe-
riences and provide feedback on a subset of freely available
tools and IPs, for all those who find themselves struggling to
get started, at no cost, in this extremely interesting and exciting
engineering and science area.

III. RISC-V

Computer architecture is, as most engineering areas nowa-
days are, an incredibly vast discipline. However, for the
purposes of this short article, we will overly simplify and point
out that it can be divided in two subdiciplines: software and

ELI1.6 Page 1 of 4



hardware. ISA is probably the most important interface in the
universe as it serves to connect these two worlds. This has
become clear with the IBM 360 appearance on the market,
when the concept of ISA was first introduced. All ISAs with
significant usage are proprietary, which does make sense when
taking into account that the creators protect their intelectual
property. However, open standards (the correct term would
be open-source - to maintain analogy with software, where it
all started, but there’s no source code nor source files in this
context, so we just call them open standards) like ethernet have
proven successful. Successful, meaning that we have seen free-
market competition through technical improvements, whence
the end-users benefited the most [7]. Therefore, it is a crucial
question to raise: why not create an open standard for the most
important abstraction layer, the ISA?

In an answer, RISC-V (where V is a roman number five,
thus pronounced) ISA has been designed - a completely free
and open ISA, built and improved on the original RISC
architectures. While it was designed originally for research and
teaching, it is on its road to become a standard for industry
implementations, as well. The final result is a simple and
modular ISA, well suited to both high-performance systems
and low-power embedded controllers. This is enabled by
dividing the instructions into the obligatory base subset of ISA,
present in any implementation, plus the optional extensions
(subsets). The base is restricted to contain a minimum number
of instructions sufficient for compilers, assemblers and linkers.
If an operating system is to be used, an additional subset
is required. Therefore, it is possible to look at the RISC-V
as if it is actually a family of related ISAs. There are two
base integer variants, RV32I and RV64I, each providing 32-
bit or 64-bit width, respectively. The subset marked with E
is designed for small microcontrollers, whereas the subset
M enables multiplication and division, F is single-precision
floating-pint, D for double-precision, etc. The most available
RISC-V processors implement the RV64IMAFD flavor, which,
due to its popularity, is marked with G (for general) [8]. Such
is the rocket core, discussed in Section V of this paper.

RISC-V represents a perfect combination of simplicity and
industrial application, and is, therefore, selected as the ISA to
be studied in VLSI courses.

IV. CHISEL

Chisel is a hardware construction language, first introduced
in [9], built as a domain specific language (DSL) embedded
in Scala, with the idea to support advanced hardware design
by providing important concepts established in software engi-
neering. These include object orientation, functional program-
ming, parameterized types and type inference. Such powerful
abstraction features enable high level of code reuse, thus
improving efficiency in constructing new hardware systems.
In this way, while not claiming that Chisel is better in general,
we do point out that Chisel does provide new paradigms in
hardware design, that can increase productivity.

At first glance, looking at simple combinatorial module such
as a multiplexer shown in Listing 1, there are no conceptual

differences to standard Verilog HDL approach, aside from the
syntax [10]:

class Mux2 extends Module {
val io = IO(new Bundle {

val sel = Input(UInt(1.W))
val in0 = Input(UInt(1.W))
val in1 = Input(UInt(1.W))
val out = Input(UInt(1.W))

})
io.out := (io.sel & io.in1) |

(˜io.sel & io.in0)
}

Listing 1. Multiplexer 2/1 in Chisel

While some strangeness is present, due to inheritance and
:= operator, it is quite obvious we have a group of input/output
ports packed in a struct-like piece of code (a Bundle) and
some wiring in the last line. Looking at state elements, Chisel
is still quite comparable to Verilog, as demonstrated by the
4-bit shift register in Listing 2 [10]:

class ShiftRegister extends Module {
val io = IO(new Bundle {

val in = Input(UInt(1.W))
val out = Output(UInt(1.W))

})
val r0 = RegNext(io.in)
val r1 = RegNext(r0)
val r2 = RegNext(r1)
val r3 = RegNext(r2)
io.out := r3

}

Listing 2. 4-bit Shift-register in Chisel

Of course, there are plenty of details to unpack here,
such as the casting to W (bit width) type, wiring implicated
from using RegNext specifically and so forth, but these are
beyond the scope of this paper. For further instructions on
Chisel, the reader is referred to [10], [11]. In [10], Chisel
and dependencies are installed to a local machine and a set of
examples, problems and solutions is provided, while the basics
are explained through an online, github-wiki-based tutorial.
In [11] Chisel is presented through an interactive tutorial
based on a jupyter notebook with assignments and instructions
intervened. There’s an online version of the bootcamp, as well.

Chisel, rather, its toolchain, is capable of emitting Verilog
for three different backends to generate either: (a) a software
simulator that can be fed binaries, (b) a bitstream for an FPGA,
or (c) netlist to be further used by automatized toolchain to
yield GDS mask patterns ready for ASIC production. The
actual advantages of Chisel over today’s HDLs are shown in
the next section, where processor cores used in our course are
presented.

V. PROCESSOR CORES

Students get to learn about computer architecture and VLSI
design by building one simple core, then applying that knowl-
edge and expanding on it by investigating and modifying two
more cores, each of these with several flavors.

ELI1.6 Page 2 of 4



A. Hack

Hack is the name of a computer and that computers pro-
cessor - both developed within the now famous Nand2Tetris
course, taught by Shimon Shocken and Noam Nisan. The
course covers all abstraction levels starting from designing
basic combinatorial modules, starting from NOT and XOR
gates, collecting them into subsystems such as memories and
aritmetic logic units (ALU), all the way through writing as-
sembly code, operating system and even designing a complete
java-like language, writing its compiler and then using the
whole pyramid to design and play games. All tools required
for the course are available free of charge at the course
webpage [12], as well as the companion book [13], and the
course itself, having been taught at several famous universities,
is available at coursera.org.

We use the first half of Nand2Tetris, where students through
six project assignments develop the chipset first, then the ALU,
registers, RAM and program counter and learn about assembly
code. Finally, they put all these together to obtain a fully
functional Harvard architecture-based computer. In this way,
a very sound foundation is created, making each candidate
ready for tackling more complex problems such as memory-
mapped input/output (MMIO) peripheries, pipeline, multicore
processors, SoC design, etc.

B. Sodor

Sodor [14] is a collection of five simple and open-source
cores written in Chisel, developed and published to be used
at university level courses, as the basis for practical examples
based on the theory presented in [3] and taught at UC Berkeley,
CS152/252A courses [15].

After having developed Hack completely using the HDL
provided at [12], and then taking a week to learn Chisel
basics via the bootcamp [11], students learn about a real,
RISC-V compatible processor. We focus on 1- and 5-stage
implementations, as these provide enough to learn about
performance metrics, most important benchmarks, measuring
and comparing thus yielded numbers and introduce pipeline.

C. Rocket-chip

All the cores available in Sodor collection are written in
”plain” Chisel, meaning that no advanced principles such
as core parameterization via diplomatic design patterns [16]
are utilized to fully leverage advantages of Chisel over the
standard HDLs.

Rocket-chip [17] is an open-source SoC generator also
developed at the UC Berkeley, with the difference to Sodor
cores that hardware it generates has actually been fabricated
in silicon; therefore, while useful for research and teaching,
these designs are applicable in industry, as well. As with other
Chisel designs, its output is synthesizable Verilog and in this
codebase the main advantages of Chisel are demonstrated.

It it important to differentiate between the rocket core as one
of the cores that may be used within the SoC generated by
the Rocekt-chip generator, whereas different cores may be used
as well. Furthermore, the actual capabilities and performance

may be fine tuned through the configuration parameters. This
level of flexibility is yielded by the system’s modular design,
built upon HCL approach to hardware design.

To learn about specifics of the following example in detail,
we refer the reader to Chipyard documentation [18], as such
discussion is beyond the scope of this paper. Here, we list
a few lines of code in order to demonstrate the agility of the
SoC generator, Chisel and the approach in general. The default
configuration of a Rocket-chip will yield a single 64-bit core
accompanied by a floating point unit (FPU) and with level 1
cache. However, if it is required to generate core with smaller
cache and without the FPU (lower the energy consumption,
decrease area), by inspecting the Configs.scala file an
appropriate configuration may be found:

class DefaultSmallConfig extends
Config(new WithNSmallCores(1) ++
new WithCoherentBusTopology ++
new BaseConfig)

Listing 3. Configuration to gneerate singlecore system without FPU and with
smaller cache

Next, just by running:

make CONFIG=DefaultSmallConfig

we obtain synthesizable Verilog and a software simulator,
with characteristics defined by the configuration line above.
Similarly, configurations with dual (or more) cores may be
used, at 32- or 128-bit widths, etc.

We do not delve into diplomatic patterns that enable such
level of modularity, but rather follow examples from UC
Berkeley [15], where the students in their first computer
architecture/VLSI course develop understanding of the mutual
dependency between hardware design and its application, i.e.
software that it executes. Hence the projects for this part of
the course are related to the features of the pipeline and cache:
we ask for performance measurement while a specific piece
of code is executed, then we seek ways to optimize hardware
design by, say, changing cache associativity, and, finally, the
benchmarks obtained after the modifications are compared
- number of misses and instruction per cycle (IPC), in this
particular example.

VI. AUTOMATED TOOLCHAIN

Once the design is settled from the computer architecture
point of view, i.e. either we’ve reached the requirements or the
time is simply up, it is time to look for ways to materialize the
idea in a real circuit. While FPGA is a valid destination for
Chisel code, this is not the topic of VLSI courses in general, so
we focus on the ASIC digital synthesis toolchain within this
paper. That is a set of software tools used to transform the
Verilog (emitted by Chisel in this case) netlist into a physical
digital circuit. In semiconductor industry today, these tools
are vast proprietary suites developed and licensed by large
companies such as Cadence or Synopsis. These are expensive
to the point that quite a limited number of long running IC
manufacturers may obtain the licenses on a regular basis.
There are university and start-up programs, but those are also

ELI1.6 Page 3 of 4



Synthesis

Placement

Routing

Display

GDSII conversion

Yosys

Graywolf

Qrouter

Magic

Magic

a) b)

Fig. 1. Digital IC design open source toolchain: a) general approach, and b)
tools applied during this course

far from free of charge for small universities or a team of two
just starting out.

Qflow [19] is a complete, free of charge and open-source
toolchain for synthesizing digital circuits starting from Verilog
source and ending in physical layout for a specific target
fabrication process. While the process is more detailed, we
present a simplification describing only the major steps -
rougly shown in Fig. 1. The first step in the automation process
is to map the netlist onto a standard cells library, colloquially
referred to as PDK (stemming from project design kit). PDKs
are a topic of its own and a complex one, while at that, since
these are also proprietary in general. Recently, there have
been revolutionary development with SkyWater PDK [20],
but not in time to be included in the course edition we are
reporting on with this paper. In previous iterations of the
course scalable CMOS PDK [21] was used. For now, we
keep to the open-source PDK provided by the Oklahoma State
University (OSU). This step is done by yosys [22]. Next, the
design is to be placed and routed. In shortest terms, this when
the standard cells are spread across the available area, while
grouped in blocks and interconnected (routed). Graywolf [23]
is the member of the qflow toolchain that does the placement,
while routing is performed by qrouter [24]. Finally, for layout
inspection, DRC and GDS generation Magic [25] is used.
Qflow, nor the provided PDK are not capable of creating
a microprocessor that may compete with current 3 GHz+
multicore server processors, but these tools will successfully
handle simpler designs that may be found in SoC all over the
market - such as SPI, for example. Firt live demonstration of
a chip fabricated using nothing but qflow is presented in [26].

VII. CONCLUSION

While ISAs and processor cores are not directly a subset of
a VLSI related course, we do live at a revolutionary moment in
technology history - free and open source tools and PDKs are a

reality, hence ASIC design and fabrication are within reach to
individuals, start-ups and small universities with very limited
funds. In future iterations of these courses, we plan to improve
our automated design flow replacing qflow with openLane
and including the open-source RAM compiler, openRAM.
To overcome the steep learning curve of the new hardware
design paradigm introduced with Chisel and rocket-chip, we
are envisioning a Chisel GUI. Finally, we hope to fabricate
students’ designs through SkyWater 130 nm process, an open-
source PDK.

REFERENCES

[1] W. Shockley, “The theory of p-n junctions in semiconductors and
p-n junction transistors,” Bell System Technical Journal. Institute of
Electrical and Electronics Engineers (IEEE), vol. 28, no. 3, pp. 435–
489, 1948.

[2] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, 1965.

[3] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach, 6th. Morgan Kaufmann Publishers Inc., 2019.

[4] A. Pajkanovic, “On the application of free CAD software to electronic
circuit curricula,” in Proc. of 3rd International Conference on Electrical,
Electronic and Computing Engineering IcETRAN 2016, Zlatibor, Serbia,
2016, pp. ELI1.3.1–4.

[5] A. Pajkanovic and Z. Ivanovic, “A report on recent development in
application of free CAD software to IC curricula,” in Proc. of 5th
IcETRAN 2018, Palic, Serbia, 2018, pp. 847–851.

[6] A. Pajkanovic, “CMOS IC from schematic level to silicon within IC
curricula using free CAD software,” in Proc. of INDEL 2020, Banja
Luka, Bosnia and Herzegovina, 2020.

[7] A. Waterman, “Design of the RISC-V instruction set architecture,”
Ph.D. dissertation, University of California at Berkeley, 2016. [Online].
Available: https://people.eecs.berkeley.edu/ krste/papers/EECS-2016-
1.pdf

[8] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The risc-
v instruction set manual, vols. i-ii,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-118, May 2016.

[9] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC2012, San Francisco, USA, 2012.

[10] chisel-tutorial. [Online]. Available: https://github.com/ucb-bar/chisel-
tutorial/wiki

[11] chisel-bootcamp. [Online]. Available:
https://github.com/freechipsproject/chisel-bootcamp

[12] nand2tetris. [Online]. Available: nand2tetris.org
[13] N. Nisan and S. Shocken, The Elemenets of Computing Systems. MIT

Press, 2008.
[14] riscv-sodor. [Online]. Available: https://github.com/ucb-bar/riscv-sodor
[15] Computer Architecture 152/252A, spring 2021. [Online]. Available:

https://inst.eecs.berkeley.edu/ cs152/sp21/
[16] H. Cook, “Diplomatic design patterns: A TileLink case study,” in

CARRV17.
[17] K. Asanović, R. Avižienis, J. Bachrach, S. Beamer, D. Biancolin,

C. Celio, H. Cook, P. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar,
H. Mao, M. Moreto, A. Ou, D. Patterson, B. Richards, C. Schmidt,
S. Twigg, H. Vo, , and A. Waterman, “The rocket chip generator,”
EECS Department, University of California, Berkeley, MA, Tech. Rep.
Technical Report UCB/EECS-2016-17, 2016.

[18] Chipyard. [Online]. Available: https://chipyard.readthedocs.io/
[19] Qflow. [Online]. Available: http://opencircuitdesign.com/qflow/
[20] SkyWater. [Online]. Available: https://www.skywatertechnology.com/
[21] MOSIS. [Online]. Available: https://www.mosis.com/
[22] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
[23] “Graywolf,” https://github.com/rubund/graywolf.
[24] “Qrouter,” http://opencircuitdesign.com/qrouter.
[25] Magic. [Online]. Available: http://opencircuitdesign.com/magic
[26] T. Edwards and M. Kassem, “The Raven Chip: First-time silicon

success with qflow and efabless,” in Free Silicon Conference 2019,
FSiC 2019, Paris, France, 2019. [Online]. Available: https://wiki.f-
si.org/index.php/FSiC2019

ELI1.6 Page 4 of 4




