
Implementation of Smooth Streaming protocol

through a generalized software framework

Miroslav Suša , Ilija Bašičević, Senior Member, IEEE

Abstract—Adaptive streaming is a technology for transmitting

multimedia content over a network such as the Internet. This way

the content is available at any time which has brought big

changes. One of the many streaming technologies is Smooth

Streaming. In addition to the transmission of content via one of

the protocols, it is necessary to ensure its reproduction. In this

paper, the implementation of the Smooth Streaming protocol

within a single media player is presented. The implementation

was performed through a generalized software framework, which

will also be discussed. The role of the framework is to facilitate

the integration of the remaining adaptive streaming protocols

into the media player.

Index Term—adaptive streaming; content playback; Smooth

Streaming;

I. INTRODUCTION

The fourth industrial revolution brought many changes in

terms of consuming multimedia content. When it comes to

content transfer, the most important innovation is Streaming

technology. Streaming makes it easier for users to access

content whenever and at any time they want, which previous

technologies could not provide. In the field of television, new

technology is completely taking over the market from the

traditional way of content broadcasting[1].

As a consequence of the development of a new way of data

transfer, standards have emerged according to which this

transfer will be performed. Some of the best known and most

prevalent today are the MPEG-DASH and Smooth Streaming

standards. In addition to the transmission of the content itself, it is

necessary to ensure its reproduction.

This paper presents an implementation of the Smooth

Streaming protocol, the creation of a generalized software

framework for managing adaptive streaming protocols, as well

as the integration of the software framework with the Smooth

Streaming protocol and a media player for content playback.

The rest of the paper is organized in the following order:

Section II discusses streaming technology and its types. Section

III shows the architecture of the media player on which the work

solution is implemented. Section IV defines a programmatic

framework for managing adaptive streaming protocols. Section

V discusses creating a library for the Smooth Streaming protocol.

Section VI shows the architecture of the media player after

applying the solution. Section VII deals with the validation of

Miroslav Suša – RT-RK Institute for Computer Based Systems, Novi Sad,

Serbia (e-mail: miroslav.susa@ rt-rk.com).

Ilija Bašičević – Faculty of Technical Sciences, University of Novi Sad, Trg
Dositeja Obradovića 6, 21000 Novi Sad, Serbia (e-mail: ilibas@uns.ac.rs).

the solution and the results. Section VIII provides a conclusion

on the work.

II. STREAMING

Streaming is a technique of continuous transmission of video

and audio material via wired or wireless internet connection.

Before the advent of streaming, playback of content from the

Internet was possible in two ways. The first way is to upload

the complete file to the device and only then is playback

possible. Another way is to use a progressive download.

A. Progressive streaming

Progressive download allows you to play content while

downloading it to your device [2]. Downloading is done

regularly, which means that not only the selected part of the file

can be downloaded, but the complete one. Any part of the

downloaded content can be played as desired. The content

transmitted in this way is of fixed quality and resolution. In

other words, only one video file can be uploaded. Since

different content resolutions require better or worse internet

traffic, in a situation where the flow is poor, progressive

downloads will often lead to transmission interruptions. In

addition, the content will be displayed differently on different

devices.

Higher resolution files take up more memory space, and the

file transfer speed depends on the internet flow which tells us

how much data the user can receive in a unit of time. If the flow is

poor and the video has a higher resolution, part of it will not be

able to be transmitted in its entirety and playback will be

delayed. In addition to downtime, progressive downloads also

cause the problem of presenting videos on devices with

different screen resolutions. For example, when playing a video

that is 720p resolution, on a screen with 1080p resolution, the

image will be stretched and pixelated.

B. Adaptive streaming

Adaptive streaming is a streaming technology based on the

HTTP (HyperText Transfer Protocol) protocol. The benefit of

using HTTP technology is the unhindered passage through the

firewall and NAT (Network Address Translation) devices that

remap IP (Internet Protocol) addresses. In addition, the

complete implementation of HTTP logic is on the side of the

content seeker, which reduces the need for a continuous

connection between the provider and the service provider.

Adaptive streaming, instead of a complete file, transmits and

plays its parts for a few seconds [3]. We call such parts of a file

its segments. Since the content is divided into segments, any

part of it can be added as desired. Just before the segment

expires, the next one to be played is delivered. After moving on

to the next segment, the previous one is deleted, and the

RTI1.1 Page 1 of 5

process takes place until the complete content expires. This

gives the impression of continuous playback of content.

Information about all video and audio files and their segments,

as well as details of the need for their transfer and playback can

be found in the manifest file.

Fig. 1. File exchange between client and server during adaptive streaming

Adaptive streaming solves the problems of progressive

download [4]. Files of different resolutions are created for the

same content. Depending on the size of the client's screen, a file

segment of the appropriate resolution is provided.

Fig. 2. Display video resolution selection for different screen resolutions.

In the typical communication scenario between a client and a

server using adaptive streaming the client first sends a request

for a manifest and receives it in response from the server. The

client then sends requests for fragments which the server

delivers.

III. MEDIA PLAYER ARHITECTURE BEFORE PROTOCOL

IMPLEMENTATION

IWedia Player (IWP) is a library written in the C ++

programming language that aims to provide a high-level player

interface. The player allows you to play audio and video

content. It is used as a part of an application written for the

Android platform and provides it with a user interface.

Fig. 3. Display of player architecture before implementing the solution.

In order for the player to enable the MPEG-DASH streaming

protocol, an IWP-DASH library was created. In addition to

defining the elements of this streaming protocol within the

dash library, the logic for adaptive streaming has been

implemented, which is closely related to the dash protocol.

Components shared between other IWedia libraries such as the

player and dash are housed in the IWedia utils library.

IV. SOFTWARE FRAMEWORK FOR MANAGING ADAPTIVE

STREAMING PROTOCOLS

When it became necessary for the media player to support, in

addition to the MPEG-DASH protocol other adaptive

streaming protocols as well, the implementation logic had to be

generalized and displaced from the dash library.

The goal of the adaptive streaming protocol management

framework is to provide the media player with an interface

through which to obtain content for playback. All protocols

aim to transfer content and regardless of their complexity, we

can see numerous similarities between them. Since MPEG-

DASH is an official international standard, it is the most

developed and provides the most opportunities during

implementation [5]. All other standards can be viewed as its

subset.

The software framework can be divided into four logical units

that have a role in downloading manifests, segments, adapting

to network conditions and creating an entrance to the library.

Fig. 4. Generalized software framework solution architecture.

RTI1.1 Page 2 of 5

A. Module for manifest download

Manifest, as mentioned, is the central document for gathering

information on the content to be transmitted. It is available on

the server along with the provided content. The type of

manifest can be dynamic, if we broadcast live content, or static,

if the content is downloaded on demand. To stream live

content, the manifest needs to be delivered periodically because

the content is constantly changing.

To provide a manifest, URI (Uniform Resource Identifier)

from which it can be downloaded is required. The download is

performed with the help of a previously implemented download

class, which needs to be provided with data about the speed,

number of attempts and download time of the manifest. As a

result of successful delivery, a string with the contents of the

manifest is obtained. After it is downloaded, the manifest is

parsed.

At the level of libraries that implement the standard, it is

necessary to implement interfaces that represent the manifest

and the factory for creating the manifest.

B. Module for segment download

Within period elements of the manifest, that contain the

initial time and duration of the content, there are adaptation

elements. Their primary purpose is to provide information

about the type of stream being transmitted. Inside the

adaptation element are elements that represent the stream. They

contain data on the flow rate required to download the stream in

a certain quality as well as information on the segments that

need to be downloaded. At the stream type level, a structure is

created that will download the segments.

Libraries of specific protocols that implement the created

interfaces define the form of stream representation as well as

the form of segments. The representation form creates

segments based on a given start time, carries information about

the number of available segments, as well as the broadcast time

period provided by the representation.

Segment download control is defined in this software

framework. The time period in which the download will be

performed is determined, the representation within which the

segments will be downloaded is selected, the ordinal number of

the next segment to be created is calculated and the creation of

the segment is initiated.

C. Module for adapting to network conditions

The network adaptation module is key to performing

adaptive streaming. Depending on the speed of the user's

Internet flow, it is necessary to correct the representation of the

stream being downloaded. The factor that influences the choice

of representation, in addition to the flow rate, is the type of

content that is downloaded. For the purpose of selecting a

representation, a selector is created that stores all available

representations and, based on the current flow and type of

content, selects one of them to be played. After the download,

the number of bits downloaded, as well as the time period

required for the download, are forwarded to the flow rate meter.

Based on the obtained parameters, the meter calculates the

current flow rate that is available when initializing the next

download.

Middle input layer

As part of the software framework, a manager has been

created to manage the processes. Its presence is necessary in the

media player that uses the library. The task of the manager is to

initiate the loading of the manifest when it comes to streaming

on demand or perform periodic loading of the manifest if a live

broadcast is performed, as well as the interruption of these

operations. In addition, the manager creates a program

representation of the adaptation stream that has the ability to

further manipulate stream representations and segments.

D. Software framework integration with the media player

In order to enable the reproduction of content by adaptive

streaming protocols, it is necessary to integrate the software

framework with media player. The integration is done by

adding a component that has access to the software framework

manager. In this way, the processes realized by the software

framework are initiated, such as taking over the manifest and

adding segments. The ultimate goal of process initiation is to

obtain segments and prepare them for reproduction.

Within the media player, there is also logic for determining

the adaptive streaming protocol that will be used, as well as

factories that will, depending on the selected protocol, create a

component that has access to the software framework.

V. SMOOTH STREAMING LIBRARY

The Smooth Streaming library is a C ++ implementation of

the Microsoft Smooth Streaming protocol used by the IWedia

player to play content. The library consists of "ismc" and "abr"

modules. The Ismc part of the library was named after the

extension of the Smooth Streaming protocol manifest client.

Within this part, the manifest is parsed and elements and

attributes representing the data collected by parsing are

realized. Abr part of the library represents the implementation

of a software framework for managing adaptive streaming

protocols.

Fig. 5. Smooth Streaming Library Components.

A. Library creation

In order to implement the protocol, it is necessary to parse

the protocol manifest and present its elements within the

library. In addition, it is necessary to provide the types of

content exchange messages defined by this transport protocol,

which are: manifest request, manifest response, segment

request and segment response.

1) Manifest request

A manifest request is sent to obtain a manifest containing all

the necessary information to reproduce the content. In order to

send this request, a URI to the manifest is required as well as

information on which extension of the manifest file is

RTI1.1 Page 3 of 5

expected. Manifest extensions differ in whether it is a server

manifest that has an ism extension or a client manifest whose

extension is ismc.

2) Manifest response

The manifest response is obtained in the form of an ismc file

with metadata related to the playback of the content. The file is a

well-formed XML (Extensible Markup Language) and consists

of the following elements: SmoothStreamingMedia, Protection,

StreamIndex, QualityLevel and StreamFragment. All of the

above elements are presented within the library as classes, and

their correlations are clearly visible and described below.

Fig. 6. Smooth Streaming library solution architecture.

a) SmoothStreamingMedia

SmoothStreamingMedia is a root element that contains all

the other elements of the manifest. The direct descendants of

this element are the StreamIndex and Protection elements. Its

attributes carry information about the main and secondary

versions of the manifest as well as whether the manifest

describes live or on-demand content. Within the attribute, the

duration of the content described in the manifest is also defined.

SmoothStreamingMedia is implemented within the library so

that its creation requires URI of manifest as well as xml files in
string format. The string is then parsed using the sub-element

names and attributes listed as constants.

a) Protection

Protection is an xml element that includes the metadata

needed to play protected content. It contains information on the

unique identification of the security system used on the given

content, as well as the encoded data that the system uses to

enable the reproduction of the content to authorized users.

b) StreamIndex

StreamIndex is the most important element within a manifest

because it contains metadata for playing a specific stream. This

means that the element provides information about the type of

content that is transmitted by a particular stream, that is,

whether it is an audio, video or text stream. Based on the stream

type, the availability of attributes within an element changes.

Only in the case of video, there is information about the

maximum available content resolution that is available, as well

as the recommended playback resolution. The number of

qualities, segments, as well as the duration of the stream are

available within this element.

b) QualityLevel

The QualityLevel element carries metadata about the playback

of a specific track within the stream. Depending on the type of

stream in which it is located, its attributes differ. For video

within the video stream, the required resolution attributes as

well as parameters specific to a particular media format are

required. When it comes to audio recording within the audio

stream, in addition to the previously mentioned attributes, we

also have data on the number of channels of the audio tape,

sampling rate, sample size, limits for optimizing audio

decoding and identification of media format used. The

attributes that each record contains are those that carry

information about the unique identification of each record and

the download speed required to retrieve a particular record.

c) StreamFragment

The StreamFragment element contains metadata about a set

of related segments in the stream. Its attributes carry

information about the start time of the segment, its duration, the

order in a series of segments as well as the possibility of

repetition. For a segment to be valid, it must contain either a

duration attribute or a start time attribute. A series of segments

is called adjacent if the start time of any segment, with the

exception of the first, is equal to the sum of the start time and

the duration of its predecessor.

3) Segment request

A segment request is created to retrieve the desired segment

from the server. To create it, it takes URI to the desired

segment, its bitrate, the name of the stream within which the

fragment is located, the start time of the desired stream, as well

as the type of response that the client expects from the server.

4) Segment response

A segment response is a response that is received after

sending a request to obtain a segment. The answer can be

complete or partial. If the answer is complete it contains media

and segment metadata, while partial responses contain only

media or metadata.

B. Framework implementation

In the Smooth streaming library it is necessary to implement

two of the four modules of the framework and they are: Module

for manifest download and Module for segment download.

2) Implementation of the module for manifest download

As mentioned earlier, it is necessary to implement the

manifest factory interface as well as the manifest interface.

a) IManifest interface

IManifest methods gather the necessary information that each

manifest should have, namely: whether the manifest is live or on-

demand, the duration of the manifest, the minimum time required

to load the manifest, as well as adding the manifesto period. All

data can only be obtained by parsing the manifest.

b) IManifest_factory

The manifest creation factory contains only one method that

instantiates a class that implements the IManifest interface. It

forwards manifest uri and the contents of the manifest that is

necessary to parse.

3) Implementation of the module for segment download

Module for segment download defines the necessary logic to

supply the parsed element data, as well as the logic for creating

segments.

a) IRepresentation

Interface methods obtain, from the QualityLevel element, data

described in the part of the paper with the same name. All data is

present in the node and is very easy to obtain.

b) IAdaptation_set

The IAdaptation_set interface is composed from set of

methods that retrieve data from the Stream_index element of the

library. All methods return the present attributes or sub-elements

RTI1.1 Page 4 of 5

of a given element.

c) ISegment

This interface is defined by a set of methods for retrieving the

Stream_fragment element attribute with the exception of the

get_uri method. The get uri method calculates the uri to a given

segment that is different from the manifest uri

d) IRepresentation.

The role of the IRepresentation interface is to create

segments, add the total number of segments, add the duration of

all segments and find the segment with a given index

The number of segments is obtained when initializing the

class of this interface by going through all segments and taking

into account their repeat attribute which tells how many times a

given segment is repeated.

During the process of calculating segments, the total duration

of all segments can be easily obtained. The timestamp of the

first and last segment is taken, or their length and repeat tag if

the timestamp is not available.

A segment with a given index is supplied by going through

all available segments, taking their duration and repeat attribute,

calculating the index of each segment and returning the

resulting one. The limitation of this method is to pass an index

that is not less than zero and that is not greater than the total

number of segments.

VI. MEDIA PLAYER ARHITECTURE AFTER PROTOCOL

IMPLEMENTATION

By removing the definition of adaptive streaming protocol

from the dash library and generalizing it, a software framework

for managing adaptive streaming protocols is obtained. This

makes it easier to use and add new adaptive streaming

protocols such as the Smooth Streaming protocol. In addition,

their integration with the player is facilitated.

Fig. 7. Display of player architecture after solution implementation.

VII. TESTING

A. Description of the test environment

The environment for testing of this solution comprises

Smooth Streaming content that can be accessed via the

network, an application for playing content, as well as an

Android P development board on which the application will be

launched.

The content playback application is written in the Java

programming language for the Android platform. It provides a

simple user interface from which content playback can be

controlled, and uses the IWedia player library interface for

playback itself.

Content preparation, implementation of the Smooth

Streaming library and software framework, as well as their

integration with the media player are described in the previous

chapters. The Android P development board connects to the

same network from which the prepared content is available to it,

and the Android application is installed and launched on it. With

this step, the test environment is ready and testing can begin.

B. Testing procedure

After installing the Android application on the board and

launching it, you get access to the list of all available streams.

Clicking on the desired stream starts playback. Playback can be

interrupted, paused or restarted at any time.

C. Test results

As stated, by clicking on the desired stream, in this case on

the stream belonging to the group of Smooth Streaming streams,

playback starts. The start of content playback always takes place

at a lower resolution until the user's internet flow is determined.

After that, if it is determined that the conditions are met,
playback continues at higher resolutions, which tells us that the

Smooth Streaming protocol has been successfully implemented.

Selecting one of the available streams that are transmitted by

other adaptive streaming protocols results in content playback.

Successful playback start shows that the generalized software

framework has been correctly implemented.

VIII. CONCLUSION

Within this paper, a solution for integration of Smooth

Streaming standards for broadcasting content is described. Also,

a generalized program framework has been implemented, which

enables easier integration of the remaining standards.

The protocol library and software framework are written in

C++. In this way, speed and flexibility are achieved. Like the

media player in which they are implemented, they can be used

on both Android and Linux platforms.

The integration framework in the media player enables easier

integration of existing, as well as the protocols that may arise in

the future which can be seen as a subset of the MPEG-DASH

protocol.

ACKNOWLEDGMENT

On this occasion, I would like to thank my colleague Nikola

Špirić on the provided support.

REFERENCES

[1] Nenad Lovcevic, Jelena Simic, Miroslav Dimitraskovic and Ilija

Basicevic “Modul za prijem i obradu JSON komandi u programskoj

podršci digitalnog TV prijemnika” 61st IcEtran conference in Kladovo,
Serbia, June 5 – 8, 2017.

[2] Stefan Lederer, Christopher Mueller,Christian Timmerer, Hermann

Hellwagner “Adaptive Multimedia Streaming in Information-Centric
Networks” IEEE Network, November 2014.

[3] Ilija Bašičević, Nenad Lovčević, Nenad Šoškić, Milan Ačanski “Internet

as Infrastructure for Digital Television” 62st IcEtran conference in Palić,
Serbia, June 11 – 14, 2018.

[4] Rubem Pereira, Ella Pereira “Dynamic Adaptive Streaming over HTTP

and Progressive Download: Comparative Considerations”, IEEE 28th
International Conference on Advanced Information Networking and

Applications Workshops (WAINA) - Victoria, Canada, May 1 2014
[5] Sunho Seo; Younghwan Shin; Jusik Yun; Wonsik Yang; Jong-Moon

Chung “Adaptive high-resolution image transmission method using

MPEG-DASH” International Conference on Information and
Communication Technology Convergence (ICTC) Jeju, Korea (South),

October 18-20, 2017.

RTI1.1 Page 5 of 5

