

Abstract— Development and improvement of efficient

techniques for parallel task scheduling on multiple cores

processors is one of the key issues encountered in parallel and

distributed computer systems. The purpose of process

distribution improvement in parallel applications is in increased

system performance, reduced application execution time,

reduced losses and increased resource utilization.

This paper presents combined adaptive load balancing

algorithm based on domain decomposition and master-slave

algorithms and its core scheduling adaptive mechanism that

handles load redistribution according obtained and analyzed

data. Selection of distribution algorithm, based on collected

parameters and previously defined conditions, proved to deliver

increased performances and reduced imbalance. Results of

simulations confirm better performance of proposed algorithms

compared to the standard algorithms reviewed in this paper.

Index Terms— parallel programming, load balancing

algorithm, tash scheduling, adaptive algorithm.

I. INTRODUCTION

Distributed computer systems enables the delivery of

computing resources necessary to solve complex problems

with requirements that exceed the capabilities of the most

powerful personal computers. High-performance computers,

as one of the powerful elements of distributed computer

systems, lead to complex solutions by using computer

simulations enabling progress in all scientific fields. Parallel

processing supports execution of several processes and

instructions simultaneously, with a goal to save time and

execute faster and more efficient complex applications in

scientific and industrial applications. [1] [2].

The focus of many researches in the parallel processing

field is process of finding optimal distribution of tasks in

order to increase efficiency, reduce execution time of parallel

applications and reduce communication time of computer

resources. In order to achieve the highest parallel application

efficiency, it is crucial to optimize the assignment of tasks to

parts of the distributed computer system (cluster nodes and

its CPU cores) and monitor their execution.

The subject of this research was combined adaptive

algorithm (CAA) [3][4], which uses combination the static

and dynamic load balancing algorithms to improve the

performance of independent parallel tasks scheduling without

significantly complicating the whole process. It uses an

adaptive innovative mechanism for choosing load balancing

algorithm for distribution of unexecuted autonomous tasks

Luka Filipović is with the University Donja Gorica, Oktoih 2, Podgorica,

Montenegro (e-mail: luka.filipovic@udg.edu.me).

Božo Krstajić is with the Faculty of electrical engineering, University of

Montenegro, Džordža Vašingtona bb, Podgorica, Montenegro (e-mail:

bozok@ucg.ac.me).

Tomo Popović is with the Faculty of Information Systems and

Technologies, University Donja Gorica, Oktoih 2, Podgorica, Montenegro

(e-mail: tomo.popovic@udg.edu.me).

depending on the segments in which losses are the least and

by limiting the algorithm at times when it causes losses.

II. LOAD BALANCING ALGORITHMS

Load balancing in parallel processing is defined as process

of achieving parallelism by redistributing the load of parallel

segments during the execution of a parallel program [5] [6].

The primary goal of load balancing algorithms is to find the

optimal execution schedule that defines the initial execution

time and the execution order of all tasks that run on a

particular resource. Load balancing of parallel applications is

process of reducing computation time achieved by reducing

communication time, synchronization time between

processes and waiting time due to uneven process distribution

[7].

The imbalance of parallel applications most often occurs

due to uneven load between cores, excessive communication

between cores or waiting of group of cores for others to finish

assigned jobs [8]. In a real distributed environment, resource

load varies over time and it is not always possible to improve

the use of resources that are completely free or equally

loaded. It is not possible to determine or predict the length of

processes that run on separate computers or delays due to

communication between computers. Therefore, there is a

longer execution of the parallel application and a decrease in

resource utilization. The end of the execution of a parallel

application or the beginning of the postprocessing phase

directly depends on the execution time of the part of the

application on the core that is assigned the most process or

the processor with the lowest frequency.

Load balancing algorithms are divided as static and

dynamic, depending on the type of job scheduling. Static load

balancing algorithms have good usability and efficiency on

homogeneous clusters while they execute tasks on all cores

which have similar duration. Performance of programs using

these algorithms is reduced at the end of the runtime without

possibility of rescheduling. One of widely used static

algorithms is domain decomposition algorithm. On the other

side, dynamic algorithms can give better efficiency on

heterogeneous system, but make unnecessary communication

during executing time. The master slave algorithm is a one of

the typical representatives of dynamic algorithms. Domain

decomposition and master-slave algorithms have their

advantages and disadvantages depending on the

characteristics of the resource, the specific parallel

application for which load balancing is performed and the

duration of processes that are executed in parallel [9-11].

Combined adaptive load balancing algorithm

for parallel applications
Luka Filipović, Božo Krstajić, Member IEEE, Tomo Popović, Senior Member IEEE

RTI1.3 Page 1 of 5

mailto:luka.filipovic@udg.edu.me
mailto:bozok@ucg.ac.me
mailto:tomo.popovic@udg.edu.me

Adaptive algorithms are advanced dynamic algorithms

with adaptive strategy for task distribution scheme that is

activated depending on the load change of the distributed

system during operation.

III. COMBINED ADAPTIVE LOAD BALANCING ALGORITHM

The combined adaptive algorithm (CAA) is successor an

improved version of combined algorithm (CA) [12]. It

presents an adaptive decision model that selects an adequate

algorithm based on data on the state of the resource on which

the parallel application is running and the duration of finished

tasks.

In the preprocessing phase, as in the CA algorithm, the

input data is divided and tasks are prepared for execution.

Before starting parallel simulations, the analysis of the

distributed resource configuration is performed and the

obtained data are used in the later analysis.

In the parallel processing of the combined adaptive load

balancing algorithm, three execution phases stand out (Figure

1):

Fig 1. Execution phases of the proposed CAA algorithm

In the first phase of the combined adaptive algorithm, the

domain decomposition algorithm is executed. It has the

highest efficiency and the lowest losses in the initial phase of

program execution. The algorithm stops working when the

first (“fastest”) core completes the assigned job (Tmin) and

sends instructions to the other cores to stop working after

completing the task they are processing at that point. The

described procedure reduces the losses of the first execution

phase to a minimum.

In the second phase of the algorithm, based on the amount

and duration of performed tasks, cluster configuration and its

load, an adaptive approach is used to select the algorithm for

the scheduling of the remaining tasks in third phase. Upon

initiating an interrupt at the end of the first phase, each CPU

core sends to a predefined core a data containing the duration

of the performed tasks. The predefined core receives the sent

data and processes them, making an array with the number of

executed tasks for each core and through executed and

unexecuted tasks and selects the algorithm to be executed in

the third phase according to the defined decision algorithm.

The decision on the algorithm in third phase is made on the

basis of the following parameters:

 the homogeneity of allocated resources,

 the total number of assigned cores,

 the numbers of completed tasks for each core

individually and

 the execution time of each task individually.

The homogeneity of the allocated resources (the

examination of whether they can be considered homogeneous

or heterogeneous) is performed by comparing the

performance values of the allocated nodes of the distributed

resources. A measure of the performance of an individual

resource can be core frequency, node memory or node

network speed. Depending on the architecture of the

distributed system and the type of tasks, one or more node

performance measures can be taken. In the presented

research, the core frequency (Hz) was used as a measure of

the node performance of the distributed system.

The total number of assigned cores is defined when the

application is started.

The number of completed tasks per core represents the part

of the total number of tasks performed up to the moment Tmin,

when the first core performed the assigned tasks and initiated

the interrupt, for each core separately. The data is expressed

as a sequence whose number of elements is equal to the

number of assigned cores, and the elements are the numbers

of completed tasks for each core individually. The total

number and type of tasks depends on the parallel application

being executed and the input data, and the division is done

before the parallel processing.

The execution time of each individual task is a matrix that

contains the data on which core the task was executed and the

duration of each task (ms) that was completed.

Based on the above parameters, the conditions for selection

of an adequate distribution algorithm in the third phase can

be defined. These conditions are defined by variables Ui that

have binary values. Thus, the variable Ui takes the value 1 if

the i-th condition is met, and otherwise Ui takes the value 0.

The first and eliminatory condition (Ue) for the selection of

the distribution algorithm is the condition that the remaining

number of tasks is less than or equal to the number of

available cores. If the conditions Ue (Ue = 1) are met, the DD

algorithm is selected for execution in the third phase, ie each

of the remaining tasks is assigned one core for execution.

If the eliminator condition is not met (Ue = 0), the choice

of algorithm is made based on a combination of the following

conditions:

 U1 - cluster homogeneity condition: this condition is

fulfilled (U1=1) if CPU cores of the same or

approximate operating clock are assigned, ie. if the

standard deviation of the operating clock of all cores

is less than the set value;

 U2 - number of cores condition: this condition is

fulfilled (U2 = 1) if the number of cores is less than a

predefined number of cores, ie if the losses of the

master core in the MS algorithm cannot be ignored;

 U3 - condition of uniformity of the number of

performed tasks: this condition is fulfilled (U3 = 1) if

the number of performed tasks for each core is

approximate, ie. if the value of the standard deviation

of the number of completed tasks per core is less than

the predetermined value;

 U4 - condition of uniformity of duration of performed

tasks: this condition is fulfilled (U4 = 1) if the duration

of performed tasks per core is approximate, ie. the

Domain decomposition

P
re

ra
sp

o
d

je
la

Domain decomposition

Master-slave

Tmin

Domain decomposition

A
lg

o
ri

th
m

 s
e

le
ct

io
n

Domain decomposition

Master-slave

Tmin

I phase III phase

II
phase

RTI1.3 Page 2 of 5

value of the standard deviation of the execution time

of each task per core is less than the predefined value.

The decision algorithm checks the fulfillment of conditions

that depend on the values of the parameters. Choice of the

algorithm itself adapts to the current performance of the

allocated resources and the state of the performed tasks in the

first phase. Thus, the proposed adaptive algorithm determines

whether the domain decomposition or master-slave algorithm

will be executed in the next phase based on the fulfillment of

the defined conditions according to the principle: the more

conditions are met, it determines the choice of DD algorithm

in the third phase and vice versa.

In order to enable additional adaptation of the decision

algorithm to a specific application and distributed system,

each of the conditions can be weighted with real coefficients

Ki, Ki∈ [0,1] which enables the exclusion of some conditions

or assigning greater or lesser importance to some of the

conditions. This does not apply to an eliminatory condition

that is considered independently of the other conditions. The

coefficients Ki are assigned a maximum value of 1 if this

condition is fully taken into account, while Ki = 0 excludes

the influence of this condition from the influence on the

choice of algorithm. Coefficients should be defined

separately for each application and distributed resource

depending on previously obtained results and experiences.

Finally, based on the above conditions, we can define the

decision function on the basis of which we select the

algorithm in the third phase:

 𝑈 = ∑ 𝐾𝑖 ∗ 𝑈𝑖4
𝑖=1 . (1)

The threshold value of the decision function U should also

be defined, on the basis of which one or another algorithm is

selected for the third phase (DD or MS). Since the maximum

of the function U is achieved by the fulfillment of the

conditions Ki*Ui and that determines the choice of the DD

algorithm, then half of the maximum value of the function U

is taken as the threshold value, ie

P =
∑ Ki4
𝑖=1

2
 . (2)

Therefore, if it’s satisfied

 𝑈 ≥ 𝑃 (3)

it is necessary to select the DD algorithm in the third phase

or the MS algorithm if condition is not satisfied.

Figure 2. shows a schema of the decision making process

for the selection of algorithm in second phase. As already

mentioned, based on the presented parameters, defined

conditions and coefficients, the algorithm for the distribution

of tasks in the third phase is selected.

Fig 2. Scheme of the decision making process for the selection of algorithm

in Phase II

The selected algorithm (DD or MS) is executed in the

third phase.

If the DD algorithm is selected, each core receives a

portion of the list of unfinished tasks. Each core gets assigned

one of the remaining tasks to solve if the remaining number

of tasks is less than or equal to the available number of cores

(condition Ue). Otherwise, the number of assigned tasks for

each core is determined in proportion to the number of tasks

completed in the first phase on each core separately.

In the case of selecting the MS algorithm, the core that

performed the analysis in the second phase is determined as

the master core. It contains information with a list of all

unfinished tasks that are assigned to slave cores for execution

in the third phase of the algorithm.

The proposed CAA algorithm will increase efficiency and

shorten the execution time of parts of a parallel application in

the third phase according to the interruption of the execution

of the first phase, the analysis of the state of resources, the

adaptation from the second phase and the redistribution of

tasks.

The efficiency of the CAA algorithm has been improved

due to process reallocation, reduced kernel latency for new

instructions, and improved resource utilization by adapting

the allocation to the distributed system architecture and

application-specific. Therefore, the execution time of the

proposed algorithm will be shorter than the execution time of

the standard DD algorithm if measured under the same

conditions. The CAA algorithm is similar to the CA

algorithm in the case of deciding that a dynamic process

START

Input parameters for decision

making, coefficients Ki

Ue

Ue

no

U1, U2, U3, U4

U PDD in III yes no MS in III

END

yes

U = Ki ∗ Ui

4

i=1

P =
∑ Ki4
𝑖=1

2

RTI1.3 Page 3 of 5

allocation along with the MS algorithm is required in the third

stage.

The disadvantages of the proposed CAA algorithm are the

interruption of task execution at the end of the first phase and

the duration of adaptation in the second phase. Interrupting

the execution of tasks in the first phase may increase the

duration of this phase if there are one or more tasks whose

duration is significantly longer than the duration of other

tasks. This phenomenon would cause an increase in the

duration of the first phase, which may affect the performance

of the entire algorithm. In that case, the efficiency would be

the same as with the classical DD algorithm. The second

phase, due to its short duration, cannot significantly affect the

overall efficiency of the parallel application.

The proposed CAA works as a DD algorithm during the

period of its maximum efficiency and stops working when its

efficiency starts to decline. The proposed adaptive algorithm

will have a significantly better performance than the domain

decomposition algorithm in the case when the basic algorithm

has low efficiency due to interruptions and redistribution of

tasks.

The CAA algorithm will have better performance than the

MS algorithm because the MS algorithm does not execute

tasks on the master core and generates more communication

losses than the proposed CAA algorithm. The MS algorithm

will have lower efficiency than the proposed algorithm

because it starts as a DD algorithm and redistributes and

selects the algorithm for execution based on parameters in

order to achieve better use of resources and efficiency.

In case of large losses during third phase, it is possible to

re-initiate the interruption and repetition of the decision

algorithm, ie adaptation based on new parameters, re-

selection of the algorithm and its start to get the best use of

resources.

IV. THE ANALYSIS OF SIMULATION RESULTS

For the purposes of research and testing of the subject

algorithms, a parallel version of the crossbar commutator

performance simulator (CQ) [13] was used, as a numerically

demanding example of a parallel application with several

independent processes. The algorithms were tested on

different distributed computing environments and run under

different resource loads. Each simulation was performed ten

or more times and the averaged results of the execution time

are presented here. The performance of the combined

adaptive algorithm was verified on the example of a 16-port

CQ simulator with 1,000,000 requests and 3072 generated

tasks. Simulations performed on the Paradox HPC cluster of

the Institute of Physics in Belgrade. At the time of the

simulation, the cluster consisted of 106 computing nodes

based on two octa-core Xeon 2.6GHz processors with 32GB

of RAM and NVIDIA® Tesla ™ M2090 cards. The

performance of the combined adaptive algorithm is compared

with the performance of the algorithms that make it up.

Simulations were performed on 16, 32, 64 and 128 cores. The

input files were copied to the nodes on which the simulations

were run in the preprocessing phase, thus reducing the impact

of communication between the nodes.

In the presented simulations, the value of standard

deviation 10% of the average value of the core operating

clock was used for condition U1. A threshold of 32 cores is

defined for condition U2. For conditions U3 and U4, the value

of the standard deviation is 25%. The coefficients used in

these simulations are K1 = 0, K2 = 1, K3 = 1 and K4 = 0.5.

Priority in decision making is given to the number of cores on

which the simulation is performed and the number of

performed tasks per core. A lower priority was given to the

duration of the tasks, and due to the coefficient K1 = 0, the

influence of cluster homogeneity was not taken into account.

The average results of parallel application execution with

DD, MS and CAA algorithm for different number of used

cores are shown in Figure 3.

Figure 3. Average execution time of simulations using DD, MS and CAA

algorithms on 16-128 cores

The combined adaptive algorithm completed simulations

faster than the domain decomposition and master-slave

algorithms in all conditions. The best results and the greatest

benefits due to the redistribution of tasks were determined in

cases of performing simulations on a number of cores. The

simulations showed the longest execution time with the

master-slave algorithm, especially on a small number of cores

due to its previously described shortcomings.

The domain decomposition algorithm performed

simulations faster than the master-slave algorithm. The input

data was transferred before the simulations and most tasks

were performed at approximately the same time, as shown in

Figure 3. Therefore, the static distribution proved to be

sufficient and the domain decomposition algorithm showed

better performance than the master-slave algorithm.

Figure 4. Savings during algorithm execution and comparison between

combined algorithm and domain decomposition and master slave

RTI1.3 Page 4 of 5

Figure 4 shows the execution time savings between the

combined adaptive algorithm and the algorithms that make it

up. The domain decomposition algorithm required more time

than the combined adaptive algorithm due to the static

distribution throughout the execution process. The difference

between the combined adaptive and domain decomposition

algorithms ranges from 1.7% to 8.2%. The biggest difference

was recorded when executing the application on 128 cores.

The differences between the combined adaptive algorithm

and the master-slave algorithms are due to the loss of the

master-slave algorithm due to the distribution of tasks and

communication between cores during the entire program

execution process. The execution time difference between the

combined adaptive and master-slave algorithms ranges from

15.5% to 21.9%. The inability to execute tasks on the master

core produced losses during execution on a smaller number

of cores. Increased communication between cores throughout

the execution of the simulation caused the largest difference

between the results listed on 128 cores.

Figure 5. Selected algorithm in the third phase of CAA

Figure 5. shows the results of the selection of the algorithm

in the second phase according to the received and analyzed

data and the decisions made at the end of the second phase.

The domain decomposition algorithm was chosen in most

cases when the simulation was performed on 16 cores,

because the execution was detected on less than 32 cores and

an even number of tasks that needed to be redistributed. On

the other hand, master-slave was chosen in cases of

simulations on 32 or more cores because the decision

algorithm from the second phase based on parameters

discovered the number of available cores, different number

and duration of performed tasks and selected this dynamic

algorithm for the third phase.

V. CONCLUSION

The paper presents an original adaptive load balancing

algorithm for parallel applications that combines the

operation of static and dynamic algorithms. Domain

decomposition and master slave algorithms were used on the

basis for the proposed algorithm, as one of the most common

algorithms in practice. As none of the algorithms provides

good results in a wide range of applications and types of

distributed systems, the following research was based on the

idea of combining the mentioned algorithms in order to

improve the parallelization performance without

complication of the algorithm. Based on the identified

advantages and disadvantages of standard algorithms, a

combined adaptive algorithm is proposed. The idea of

combined algorithms is to work in the phases when composite

algorithms have the best performance. The advantages of the

proposed solution are following:

 improved parallel application efficiency and cluster

utilization in relation to basic algorithms due to task

redistribution and reduced execution time;

 parameters and conditions for the selection of

algorithms have been identified according to the

status of resources and the point of execution of the

application and determine a more adequate static or

dynamic distribution of the process by an adaptive

strategy

 weighting coefficients (Ki) adjust the adaptive load

balancing algorithm and parallel application to the

infrastructure

 applicability of the proposed adaptive part of the

decision algorithm is possible in any load balancing

algorithm and

 the proposed algorithm is applicable to all parallel

applications consisting of several independent tasks.

The paper presents the results of executing domain

decomposition, master-slave, combined and combined

adaptive algorithm on different computer resources with the

help of numerically demanding parallel application of CQ

simulator. Comparison of the results of simulations with

different loads and configurations of distributed resources

confirms the better performance of the proposed algorithm in

relation to the basic algorithms considered in the paper.

ACKNOWLEDGMENT

This research is supported in part by the EuroCC project,

grant agreement grant agreement 951732 EuroCC-H2020-

JTI-EuroHPC-2019-2.

REFERENCES

[1] S. Tanenbaum and M. van Steen, Distributed Systems: Principles and

Paradigms, 2nd Edition, Pearson Education. Inc., 2007.

[2] B. Barney, Introduction to Parallel Computing, Lawrence Livermore

National, 2012.

[3] L. Filipovic, “Combined adaptive load balancing algorithm for

parallelization of applications”, PhD thesis, University of Montenegro,

Faculty of Electrical engineering, 2019.

[4] L. Filipovic and B. Krstajic, "Combined load balancing algorithm in

distributed computing environment," Information Technology and

Control, vol. 45, no. 3, pp. 261-266, 2016.

[5] H. D. Karatza and R. C. Hilzer, "Parallel Job Scheduling in

Homogeneous Distributed Systems," Simulation, vol. 79, 2003.

[6] J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan and C.-W. Tseng,

"Dynamic Load Balancing of Unbalanced Computations Using

Message Passing," in Parallel and Distributed Processing Symposium,

2007, IPDPS 2007, IEEE International, Long Beach, CA, USA, 2007.

[7] T. Rauber and G. Rünger, Parallel Programming for Multicore and

Cluster Systems, Springer, 2010.

[8] D. Thiébaut, Parallel Programming in C for the Transputer, 1995.

[9] V. Sarkar. Partitioning and Scheduling Parallel Programs for

Multiprocessors. MIT Press, 1989.

[10] W. D. Gropp. Parallel Computing and Domain Decom-position. In:

Fifth Conference on Domain Decompo-sition Methods for Partial

Differential Equations, 1990, pp. 249-361.

[11] S. Sahni. Scheduling Master-Slave Multiprocessor Systems. IEEE

Transactions on Computers, 1996, Vol. 45, No. 10, 1195-1199.

[12] L. Filipovic, B. Krstajic. Modified master-slave algorithm for load

balancing in parallel applications. ETF Journal of Electrical

Engineering, 2014, Vol. 20, No. 1, 74-83.

[13] M. Radonjic and I. Radusinovic, "CQ Switch Performance Analysis

from the Point of Buffer Size and Scheduling Algorithms," in Proc. of

20th Telecommunication Forum TELFOR 2012, 2012

RTI1.3 Page 5 of 5

