

Abstract - This paper aims to examine and compare the file
system capabilities of container virtualization and the native
host. Different virtualization categories are mentioned with a
focus on OS level types. We have described the importance of
container virtualization and its contribution to virtualization
popularization. Also, the paper contains a detailed description of
the Docker container-based virtualization, its mode of operation,
as well as the advantages and disadvantages it possesses. Since
the main purpose of this work is to measure the host and Docker
file system throughput, one of the best open-source benchmarks
is chosen and presented - FileBench, through which all tests were
performed. With a practical example, we have shown the file
system performance comparisons considering Docker containers
and host physical machine.

Keywords - Docker; containers; virtualization; benchmark;
FileBench; file system; performance; comparison.

I. INTRODUCTION

There is rapid development in the IT industry, while
hardware and software are changing daily. Hardware
development is accompanied by software solutions that aim to
make the most efficient use of performance. We strive for
solutions that will meet today's standards, asking ourselves
what the best use is and how to optimize the available
resources so that the requirements and user needs are met.

Some of the most important characteristics in hardware
manufacturing are the development costs and time [1]. The
above brings us to one of the indispensable topics of today in
the IT world - virtualization.

The question is whether virtualization is a better solution
and how cost-effective it is, whether it is possible to achieve
the desired results with virtualization, and what the limitations
are.

There are several varieties of virtualization types, and it can
be said for all of these varieties to be usable, with some being
more simplified, that is, less decomposed than others. One of

Borislav Đorđević – Institute Mihailo Pupin, Volgina 15, 11000 Belgrade,
Serbia, (borislav.djordjevic@pupin.rs)

Darko Gojak – VISER, School of Electrical and Computer Engineering of
Applied Studies, Belgrade, Serbia (darkogojak@gmail.com)

Nikola Davidović – University of East Sarajevo, Faculty of Electrical
Engineering, Vuka Karadzica 30, 71123 East Sarajevo, RS, BiH,
(nikola.davidovic@etf.unssa.rs.ba)

Valentina Timčenko - Institute Mihailo Pupin, School of Electrical
Engineering, Belgrade, Serbia (valentina.timcenko@pupin.rs)

the variations is that virtualization can be divided into eight
types: hardware virtualization, network virtualization, storage
virtualization, memory virtualization, software virtualization,
OS level virtualization, data virtualization, and desktop
virtualization.

The type of virtualization covered in this paper is "OS level
virtualization", whose instances are sometimes called
containers. One of the most common associations when
mentioning container instances is the well-known Docker [2].
In this paper, the Docker container’s file system is examined
and compared with the host file system performance.

As the popularity of container virtualization has been
growing over time, so have questions about the performance
of this type of virtualization. It is hard to talk about container
virtualization without mentioning the increasingly prevalent
Docker. The ease of installation and use, as well as simplicity
of containers management, made Docker a good candidate for
file system testing. Another benefit of using it is that Docker
containers are lightweight, time savers (it takes less than a
minute to build one instance) and besides that, they are
consuming a small amount of disk space, so those instances
will not affect the host significantly.

Thus, in this paper, the response of the file system of the
native operating system and Docker container-based
virtualization was researched, and then a comparison of the
obtained results was made.

II. RELATED WORK, OBJECTIVE, AND MOTIVATION

As hardware is developing fast today, in terms of storage
size, its response speed, as well as processing power, there is
an inevitable question about the efficient use of physical
machines, which are in most cases underused, or their full
potential is not reached [3]. In this regard, scientific research
deals with the consideration of further efficiency
enhancements possibilities and the mentioned issues.

There is a growing debate about whether virtual solutions
are always better and whether they can be expected to largely
compete with physical machines [4], [5]. As a big part of the
hardware resources in many cases remain unused, there is a
lot of room left for the possibility of implementing virtual
instances and consideration of the most optimal use.

As the main goal of this paper is to compare the
performance of the file systems, with equal settings and the
same conditions of the benchmark used for host and Docker

File system performance comparison of native
operating system and Docker container-based

virtualization

Borislav Đorđević, Member, IEEE, Darko Gojak, Nikola Davidović and Valentina Timčenko,
Member, IEEE

RTI2.1 Page 1 of 6

containers, we resorted to the method of comparative analysis
through FileBench workloads, where four were selected,
namely: fileserver, webserver, varmail and randomfileaccess.
In our opinion, these are some of the best options for file
systems workload testing procedures.

After setting the hypothesis, where it was expected that the
physical machine dominates in all fields of given loads
comparing to the containers, we proceeded with the
application of the experimental method and obtained results
that fully justified the assumptions. Based on the comparative
analysis method, the obtained results confirmed the initial
estimates and expectations, which is proved through the given
equations as well as through workloads.

For better understanding and a clearer picture of the
container's service capacity, measurements were also
performed by increasing the number of Docker instances that
worked in parallel, starting from one, until reaching four
instances, where all of those were used simultaneously. The
decrease of their power was observed and examined.

III. HOST OS AND DOCKER

To install the Ubuntu 20.04 operating system on the host, in
this case with hardware characteristics shown in Tables 1 and
2, 1024 MiB of RAM is required at least. With Desktop
image, which is the most common, there is the ability to try
Ubuntu without changing the current computer system. There
is also a Server install image that can be only permanently
installed on the machine, but without a graphical user
interface.

Experienced users are increasingly opting for Ubuntu when
it comes to container operations. We can say that the most
important item for security, performance, and quality is the
Linux kernel, which always has the latest versions of the
kernel accompanied by up-to-date security features. All of the
above-mentioned is the reason why the world's largest cloud
operators opt for Ubuntu operating system to run their
containers [6].

Most users will agree and say that Docker became
synonymous with container technology, as it had the greatest
impact on popularization. But container technology is not a
new term, it has been built into Linux in LXC form for more
than ten years, and similar virtualization at the operational
level systems was offered by: FreeBSD jails, AIX Workload
Partitions, and Solaris Containers [7].

Unlike hypervisor virtualization, container virtualization
does not have a hypervisor that would be used as a layer of
abstraction, isolation of operating systems and applications
from the host operating system. There are two types of
hypervisors: type 1, which is mounted directly on the
hardware, whereas, on the other hand, we can say that the
Docker engine is like type 2, which depends on the host
operating system, where the Docker container would be in the
virtual machine role (Figure 1) [8].

Fig. 1. Docker container-based virtualization

There is a belief that container virtualization is less secure
compared with hypervisor virtualization because if
weaknesses can be found in the host's kernel on which the
containers are located, it could allow intrusion into the
containers. The same can be said for the hypervisor, but since
the hypervisor provides far less functionality than the Linux
kernel (which usually implements file systems, networking,
application process controls, etc.) it leaves much less space for
attack. In recent years, great efforts have been made to
develop software to improve container security. For example,
Docker and other container systems now include a signing
infrastructure that allows administrators to sign container
images to prevent the deployment of unreliable containers [9].

Below is a simple description of docker client-server
architecture. Docker client communicates through REST API,
over network interface or UNIX sockets with Docker daemon
which does building, running and distributing containers
(Figure 2) [10]. It is not mandatory that Docker daemon has to
run on the same operating system as the Docker client, which
can also be connected to a remote daemon [11].

Fig. 2. Docker architecture

RTI2.1 Page 2 of 6

Some Linux distributions are designed for running
containers and Docker such as Project Atomic [12], Photon
OS, RancherOS, etc. [13]. Since 2016, Docker containers
have also been able to run on Windows operating system and
managed from any Docker client or through Microsoft
PowerShell [14].

Docker can also work on popular cloud platforms [15],
including Amazon Web Services, Google Compute Engine,
Microsoft Azure, Rackspace, etc. [16].

IV. HYPOTHESIS OF EXPECTED BEHAVIOUR

To make it easier to understand how the results were
obtained, the following formulas were derived:

SWRWSRRRWKLD TTTTТ (1)

In equation 1, the TWKLD notation stands for the total
processing time for each workload. This is followed by a
random - TRR and a sequential - TSR reading time, while the
TRW notation indicates the random write time, and TSW stands
for sequential write time. The following formula represents
the expected file system access time for each individual
workload:

HKJFBFLMETADIRW TTTTTTТ (2)

The TW notation above represents the total time required to
complete all operations on the ongoing workload. The
following notations represent the time required to complete all
operations related to: directory - TDIR, metadata - TMETA, free
list - TFL, file block - TFB, journaling - TFJ and house-keeping
- THK. There are two candidates for file system performances
that are covered in this paper and they are:

1. native HostOS
2. native HostOS + Docker engine + containers

1. The Ubuntu 20.04 operating system is installed on the
host with its default file system, and since the Docker
containers are running on it, the native host will play a major
role in terms of file system performance. For a better
comparison with the host, Ubuntu image is pulled and run on
all four container instances. Thus, benchmark and the host file
system characteristics depend on the time needed to process
benchmark-generated workload, and are noted in the
following formula as TW:

)_,(FShOSBenchfnHostTW (3)

2. The docker engine has the biggest impact on
performance after the host and its file system where everything
takes place. As mentioned, HostOS, Docker engine, and
containers run on the host file system, except for Docker
volumes and self-storage. The benchmark, the host file system
characteristics, and Docker engine mapping depend on the

time needed to process benchmark-generated workload, in the
following formula noted as TW:

)_,_,(FShOSengineDBenchfDOCKERTW (4)

The obtained performance results of the file system of the host
and Docker container were predicted by the given formulas.
So, as expected, the host was in the lead through all
workloads, which was confirmed by the calculation from
equation 3. There are small differences in throughput in all
segments between the single running container and the host.
This lag in the performance of the container was caused by the
Docker engine, which was also confirmed by equation 4.
After monitoring the throughput of these instances, the
following conclusion was made:

Single Docker container is slightly behind the host
performances by all measurements, while for any increase of
containers running in parallel by one instance, the
deterioration in throughput power should be expected.

V. TEST CONFIGURATION AND BENCHMARK APPLICATION

There are various tools, benchmarks that can measure
performance in order to examine the capabilities of physical
machines as well as the capabilities of virtual solutions. Some
benchmark tools are open-source, while others are
commercial solutions. Depending on the purpose of the tests,
we can opt for one of the most adequate tools. For these
measurements, a FileBench is chosen as one of the most
suitable benchmarks.

FileBench is a storage and file system benchmark. It uses
its own Workload Model Language (WML) that can allow I/O
specification of application behavior. It is one of the best-
known open-source tools, which, unlike most of the tools that
mainly rely on predefined workloads (which cannot be
changed in most cases), allows workload modifications as
well as adaptation to the specificities of the purpose for which
the testing is performed.

Installing a FileBench benchmark is quite simple after
downloading the software package. However, on Ubuntu, it
requires a few more commands than on Centos operating
system, for instance, where it is possible to install it with a
simple "yum install filebench" command. Additionally, there
is a difference in the installation of the benchmark between
two versions covered in this paper. In the first part of the
installation, as the configuration files are not included in the
repo, they have to be created. Therefore, for the last stable
version, it is necessary to run the following commands if they
are not installed, respectively: libtoolize, aclocal, autoheader,
automake, --add-missing, autoconf.

The second part of the installation requires the installed
gcc, flex and bison in order to run FileBench [17]. This part is
the same as in the 1.5-alpha3 version, except that in this
version it is the only step and it involves running the
following commands, respectively: ./configure, make, make
install.

RTI2.1 Page 3 of 6

In order to measure as accurately as possible and to obtain
as better results as possible, Ubuntu 20.04 operating system
was installed on the host (hardware shown in Tables 1 and 2)
only for this file system test purpose, which after the
installation of the benchmark had no other applications that
could disrupt the operation of this tool in any way. Also,
containers had nothing but installed FileBench.

After everything is set, there is still one thing left to do and
that is disabling ASLR (address space layout randomization)
by changing the value of randomize_va_space to “0” (zero),
otherwise, the workloads will be blocked in the stage of
running.

TABLE I
HARDWARE CONFIGURATION OF THE HOST

Component Characteristics
Processor AMD Ryzen 5 3600X, 3.8GHz –

4.4GHz, 6 Core, 12 Thread
Cache L1 Cache 384KB, L2 Cache 3MB, L3

Cache 32MB
Memory 16Gb DDR4, 3200MHz
SSD Kingston A2000 SA2000M8/500GB
Motherboard GIGABYTE B450M DS3H

TABLE II

SSD characteristics

Capacity 500GB
DRAM DDR4
Interface NVMe™ PCIe Gen 3.0 x 4 Lanes
Form factor M.2 2280
NAND 3D TLC
Sequential
Read/Write

up to 2.200/2.000MB/s

Random 4K
Read/Write

up to 180.000/200.000 IOPS

VI. TESTS AND RESULTS

Each measurement was done in three rounds per host and
per each container instance, after which the average value was
taken for results. The obtained measurements of individual
container performances were then compared with the results
obtained while testing the host. The throughput of each
container was observed in cases when only one container
instance was started, when two instances were running in
parallel, and when three and then four containers were
running at the same time.
File system performance tests were conducted on the latest
stable version of FileBench - 1.4.9.1 and 1.5-alpha3 version
where throughput was measured in MB/s. For the purposes of
this experiment, four of the over fifty predefined workloads
were selected. On both versions, the performance of the
filesystem was tested via three workloads that were used to
emulate applications, namely: fileserver, webserver and
varmail. On the last stable version, an additional workload
was included - radnomfileaccess. The following is a brief

description of workloads that were used and covered with
formulas (1) and (2): Fileserver – It mimics the elementary
I/O activity of a file server. It performs a sequence of creating,
deleting, adding, reading, writing, and attribute operations on
a directory tree; Webserver - Mimics elementary I/O activity
of a web server. Produces an open-read-close sequence on
multiple files in a directory tree, plus appends a log file;
Varmail - Imitates elementary I/O activity of a mail server
that saves each e-mail in an isolated file (/var/ mail/server). It
contains a set of multiple threads of the following operations
in a particular directory: create-add-sync, read-add-sync, read,
and delete; Randomfileaccess - Uses random variables that are
user-defined entities, and these entities are formulated by a
random distribution that is used to select a random value that
is returned with each use [18].

It is hard not to mention virtual clusters when Docker
containers are used. Testing could take on a completely
different dimension if any container orchestration platforms
such as Kubernetes were used, where containers would
combine and pool their serving powers [19]. But the purpose
of these tests was to compare the file system performance of
the host and individual container.

The parameters shown in Tables 3 and 5 are set with
default values. The values for the four specified parameters
(number of files - nfiles, average file width, and size -
(meandirwidth, meanfilesize), as well as the number of
threads - nthreads) are the same in both versions of the
benchmark. The time for executing each of the workloads is
set to 60 seconds, which is the default value for most of the
predefined workloads.

TABLE III
PARAMETERS OF THE SOURCE CODE *.F FILES (1.4.9.1 VERSION)

Workload
(runtime 60s)

Fileserver Webserver Varmail RFA

nfiles 10.000 1.000 1.000 10.000
meandirwidth 20 20 1.000.000 20
meanfilesize 128k 16k 16k Random
nthreads 50 100 16 5

TABLE IV
BENCHMARK RESULTS (MB/S), 1.4.9.1 VERSION

Instance Fileserver Webserver Varmail RFA
Host 3866.6 1001.5 187.4 19081.8
1 container 3746.1 962.8 180 18190.1
2 containers 1764.4 695.9 158.3 9438.5
3 containers 1170.5 528.5 137.2 5300.7
4 containers 651.7 458.8 117.2 3809.8

Fig. 3. Fileserver test results from Table 4

RTI2.1 Page 4 of 6

Fig. 4. Webserver test results from Table 4

Fig. 5. Varmail test results from Table 4

Fig. 6. Randomfileaccess test results from Table 4

A. Measurements performed on version 1.4.9.1

The host had better performance in all four categories
which is shown in Table 4. The obtained results were proved
by formulas (3) and (4). Starting with the fileserver
environment, there is a small throughput difference of 3 % in
favor of the host compared to a single container. Then, as
expected, by increasing the number of containers by one, the
serviceability also decreases, so that the performance of the
two running containers drops by more than twice, i.e. 54%.
Performance with three running containers deteriorated by
70% and with four instances the results showed it to be 83%
(Figure 3).

For webserver tests, the results are as follows. The
throughput at the host instance is 4% higher when compared
to a single running container, while for two running containers
that gap is 30%. With three and four containers in running
state, we can see the degradation of 47% and 54%,
respectively (Figure 4).

In the case of varmail environment, the single running
container has lower performances by 4%, two containers by
16%, and three and four containers by 27% and 37%
compared to the host (Figure 5).

The randomfileaccess workload also had poorer container
results, showing performance declines of 5, 51, 72, and 80%
when having 1, 2, 3, and 4 containers in running state,
respectively (Figure 6).

TABLE V
PARAMETERS OF THE SOURCE CODE *.F FILES (1.5-ALPHA3 VERSION)

Workload
(runtime 60s)

Fileserver Webserver Varmail

nfiles 10.000 1.000 1.000
meandirwidth 20 20 1.000.000
meanfilesize 128k 16k 16k
nthreads 50 100 16

TABLE VI
BENCHMARK RESULTS (MB/S), 1.5-ALPHA3 VERSION

Instance Fileserver Webserver Varmail
Host 4072.6 3333.8 163.5
1 container 4007.1 3080.1 133.4
2 containers 1696.7 1563.5 111.2
3 containers 704.6 1160.8 88.5
4 containers 451.4 952.6 76

Fig. 7. Fileserver test results from Table 6

Fig. 8. Webserver test results from Table 6

Fig. 9. Varmail test results from Table 6

RTI2.1 Page 5 of 6

B. Measurements performed on version 1.5-alpha3

Within a FileBench version 1.5-alpha3, the expected results
were obtained, which is verified by formulas (3) and (4). As
well as in the latest stable version the host dominates (Table
6). In the fileserver case, a single container performance does
not significantly differ from the host and it is lower by 2%,
while for two container instances in running state the drop is
much bigger, 58%. For three and four instances it is 83% and
89%, respectively per container (Figure 7).

With webserver workload tests we have a throughput
deterioration comparing to host, namely 8% for a single
container, 53% in the case of two instances, 65% for three
running containers, and 71% per instance in the case of four
containers running (Figure 8).

 As for varmail, the host throughput is higher by 18%
compared to a single container, while for two instances there
is gap of 32% per instance, it is 46% for three instances and
54% for all four containers (Figure 9).

VII. CONCLUSION

According to the shown tests, the host had better
performance in all segments compared to Docker containers
which justifies the hypothesis. During performance
monitoring through all four workloads, a slight differences in
throughput between the host and single container is
noticeable. As we can see in the obtained measurement
results, the increase of the number of container instances
decreases their service power, which also differs from
workload to workload. Those are expected results, and
accordingly, depending on the load, we can determine
whether containers are suitable and if they will meet the
requirements for which container instances were originally
intended.

This is only a small segment in testing the host and Docker
container capabilities, as there are over forty predefined tests
left, as well as many variations of modifying existing and
writing your own workloads that can be processed. Since
FileBench workloads can be easily managed it leaves a lot of
room for future measurements and comparisons with the
results of other benchmarks that are not so flexible in terms of
tests.

Today, it is known that hardware development is
increasingly focusing on multi-core solutions that can process
many instructions in a very short time. That leaves plenty of
room for further processing of power and resources, which is
suitable for the normal and smooth operation of virtual
solutions. Virtualization is not always the answer to
everything, for some purposes virtualization simply does not
achieve the desired results so in that case, the only choice is a
physical machine. But in most cases, security, productivity,
and cost-reducing benefits outweigh all problems, and
therefore Docker virtual solutions and virtualization, in
general, are increasingly gaining in popularity.

ACKNOWLEDGMENT

The work presented in this paper has partially been funded
by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia.

LITERATURE

[1] C. Walls, “Hardware and software development; what’s the cost?,”
2018 [online]:
https://www.embeddedcomputing.com/technology/software-and-
os/hardware-and-software-development-what-s-the-cost

[2] IBM Cloud Team, IBM Cloud. Containers vs. VMs: What’s the
difference? IBM, 2020. [online]:
https://www.ibm.com/cloud/blog/containers-vs-vms

[3] Spiceworks. The 2020 State of Virtualization Technology, 2019.
[online]: https://www.spiceworks.com/marketing/reports/state-of-
virtualization/

[4] K. Thompson, “Hardware vs. Software development: Similarities and
Differences,” Cprime, 2015. [online]:
https://www.cprime.com/resources/blog/hardware-vs-software-
development-similarities-and-differences/

[5] T. Collins, “Virtual servers vs physical servers: Which is best? 10
March,” Atlantech, 2020. [online]:
https://www.atlantech.net/blog/virtual-servers-vs-physical-servers-
which-is-best

[6] Canonical. Why is Ubuntu #1 OS for containers? Ubuntu, 2018.
[online]: https://ubuntu.com/containers

[7] S. Hogg, “Software Containers: Used More Frequently than Most
Realize,”, Networkworkd, 2014 [online]:
https://www.networkworld.com/article/2226996/software-containers--
used-more-frequently-than-most-realize.html

[8] U. Hiwarale, “Anatomy of Docker,” [online]. 2018 Nov [Accessed 24
February 2021]. Available from: https://itnext.io/getting-started-with-
docker-1-b4dc83e64389

[9] P. Rubens, “What are containers and why do we need them?,”, Cio,
2017 [online]: https://www.cio.com/article/2924995/what-are-
containers-and-why-do-you-need-them.html

[10] N. Poulton, Docker Deep Dive, JJNP Consulting Limited, Lean
Publishing. Leanpub book, 2018.

[11] Docker. Docker overview. [online]: https://docs.docker.com/get-
started/overview/#docker-architecture

[12] SP. Kane, K. Matthias, “Atomic hosts,” in Docker: Up and Running.
2nd ed. O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472; 2018.

[13] JM. Scheuermann, “A Comparison of Minimalistic Docker Operating
Systems,” Inovex, 2015. [online]: https://www.inovex.de/blog/docker-a-
comparison-of-minimalistic-operating-systems/

[14] M. Friis, “Build and run your first Docker Windows Server container,”
Docker, 2016. [online]: https://www.docker.com/blog/build-your-first-
docker-windows-server-container/

[15] C. Ward, “The Shortlist of Docker Hosting,” CloudBees, 2016. [online]:
https://www.cloudbees.com/blog/the-shortlist-of-docker-hosting/

[16] J. Turnbull, “Installing Docker,” In The Docker Book. CC BY-NC-ND
3.0; 2018.

[17] G. Amvrosiadis, “FileBench,” GitHub, 2016 [online]:
https://github.com/filebench/filebench

[18] V. Tarasov, “Predefined personalities. [online]. 2016 Jul [Accessed 24
January 2021]. Available from:
https://github.com/filebench/filebench/wiki/Predefined-personalities

[19] IM. Aidan, H. Sayers, “Using a Kubernetes cluster,” in Docker in
Practice. Manning Publications Co. 20 Baldwin Road PO Box 761
Shelter Island, NY 11964; 2016.

RTI2.1 Page 6 of 6

