
Performance comparison of native host vs. ESXi 
hypervisor-based virtualization 

Borislav Đorđević, Member, IEEE, Srđan Milenković, Nikola Davidović and Valentina Timčenko, Member, 
IEEE 

 
1  

Abstract – The main objective of this paper is performance 
comparison of hypervisor-based virtualization with VMware 
ESXi virtual machines and native host machine. From all 
performance classes, for the needs of this research we have chosen 
the evaluation of the file system performance. The measurements 
are carried out under equivalent conditions and by a unique test 
method, using the Filebench software, which guarantees equality 
and independence from the impact of hardware and operating 
system characteristics. As the base operating system we have used 
CentOS 7.7 with the latest updates, while ESXi 6.7 was used as the 
hypervisor. Performances are compared for the native host 
machine and ESXi server with one, two and three virtual 
machines (VM) running simultaneously. We have also analysed 
the expected behaviours, verified the assumption with Filebench 
testing software, and provided the concluding remarks for this 
papers research topic. 

 
Key words – Virtualization; Filebench; Hypervisors; ESXi; 

VMware; CentOS; Virtual Machines 

 

I.INTRODUCTION 
2 

In IT world, the term virtualization refers to the act of 
creating a virtual version of something, or it is the process of 
creating and running a virtual instance of a computer resource 
in a layer abstracted from the actual hardware. It is used to 
describe virtual computer hardware platforms, storage devices, 
network resources, server infrastructure, etc. We can 
experience virtualization in almost all segments of today’s 
computer technology. The main idea behind virtualization is a 
very simple and came from the corporative approach:  the need 
to satisfy the increase in the utilization of available hardware 
resources, while at the same time reducing the costs of the 
infrastructure. Virtualization did exist as a technology even 
some 30 years ago, but the hardware of those days could not 
exploit the full usage that virtualization brought, so it was 
disregarded until progress was made in computer technology 
giving to virtualization a new meaning, shaping it to what it 
looks today. Nowadays, thanks to this technology it is possible 
to run multiple independent operating systems on one physical 
server. Some of the benefits that virtualization provides are 
primarily related to saving the necessary physical space that 
would be needed for the accommodation of the devices and also 

                                                             
1Borislav Đorđević – Institute Mihailo Pupin, Volgina 15, 11000 Belgrade, 

Serbia, (borislav.djordjevic@pupin.rs) 
Srđan Milenković - School of Electrical and Computer Engineering of 

Applied Studies, Vojvode Stepe 283, 11000 Belgrade, Serbia, 
(smilenkovic1992@gmail.com) 

the electrical energy consumption that would inevitably be used 
for powering such devices. Today, the use of virtualization in a 
simple way increases server availability and isolation, making 
it one of main reasons why these technologies are so popular 
[1]. When using these technologies it is important to mention 
that the level of hardware utilization of servers without 
virtualization is in the range of 15% of its maximum capacity, 
while with the use of virtualization technologies the utilization 
raises to more than 70%. These technologies however come 
with a price, or to be exact, with the retention or even increasing 
availability of resources, while it is realistic to expect a 
somewhat lower performance of virtualized systems when 
compared to the non-virtualized systems, which is the main 
topic of this paper. 

There are several virtualization types: virtualization of 
hardware, software, desktop, data, network, memory, storage, 
etc. We are focused on hardware virtualization. Hardware 
virtualization implies the use of a hypervisor, a layer that acts 
as a mediator between the host and virtual machine, which is 
nothing more than a simulated computing environment that 
can, but does not have to be equal to the physical environment 
that it simulates. In addition to the classification by the location 
of the hypervisor layer, the hardware virtualization also 
depends on what type of virtualization is provided, and can be 
categorized as: full, hardware-assisted, and paravirtualization. 

Full (native) virtualization is a virtualization technique that 
completely simulates the underlying hardware. Hardware-
assisted virtualization (Intel VT-x or AMD-V) is platform 
virtualization approach that enables efficient full virtualization 
using help from hardware capabilities, primarily from host 
processors. In this situation, the processor simulates hardware 
that does not have to be the same as physical.  Paravirtualization 
is an enhancement of virtualization technology in which a guest 
operating system is modified prior to the installation inside a 
virtual machine in order to allow all guest OS within the system 
to share resources and successfully collaborate, rather than 
attempt to emulate an entire hardware environment [2]. 

The remainder of this paper will be structured as follows. 
Section II provides a brief description of the technologies that 
are mentioned in the paper and a short review of related work 
for this project. Section III provides the description of the 

Nikola Davidović – University of East Sarajevo, Faculty of Electrical 
Engineering, Vuka Karadzica 30, 71123 East Sarajevo, RS, Bosnia and 
Herzegovina, (nikola.davidovic@etf.ues.rs.ba) 

Valentina Timčenko - Institute Mihailo Pupin, School of Electrical 
Engineering, Belgrade, Serbia, (valentina.timcenko@pupin.rs) 

 

RTI2.2 Page 1 of 6



performance-measuring tool that we have used for this 
experiment. In Section IV, we present a short description of the 
architecture of the used hypervisor. Section V presents the 
hypothesis and methodology used to achieve performance 
comparison. In Section VI, we present the test environment and 
configuration for the experiment. Test results for our 
benchmarks’ tests are presented in Section VII. In Section VIII, 
we draw conclusions to the work made in this paper. 

II. RELATED WORK AND OBJECTIVE  

This paper is primarily devoted to analysis of the 
performances of hypervisor-based virtualization with one of the 
most commonly used hypervisors. The hypervisor serves as a 
layer between the virtual machine’s operating system and the 
host’s physical memory, providing data integrity and isolation 
of VMs. Thanks to hardware-assisted virtualization which is 
accomplished via EPTS (extended page tables, for Intel 
chipsets) or RVI (rapid virtualization indexing, for AMD) we 
have a large increase of speed compared to software memory 
virtualization [3]. The paper considers advantages of using 
virtual machines while creating modern network infrastructure; 
as well as describes an experiment using common test 
environments and programs for measuring and analysis of 
hypervisors and their performances. Benchmarking is a popular 
approach nowadays for many devices and general I/O 
performance analysis, whereas the special attention is put on 
the problem of fast input/output support [4-6]. 

Main contribution of this paper is the examination of the 
performances of the native host operating system and 
hypervisor-based virtualization of VMware ESXi [7] [8]. As 
the technology that was used for this research is relatively new, 
there are not many references in literature that research with 
similar environments, tools, and test characteristics. The goal 
of this paper is to examine the file system performance of the 
generated workload through Filebench software tool for: (1) 
mail server scenario which is dominated by random read and 
random write components; (2) web server scenario where 
random read components dominate; (3) file server scenario in 
which both random and sequential components are equally 
represented; and (4) random file access scenario dominated by 
random read component [9].We have set up a model for the file 
system performance analysis of the native host and ESXi based 
virtual machines. The results of this experiment should give us 
a full picture of how the performance of a native machine 
compares to the performance of a hypervisor-based virtual 
machine. 

III. FILEBENCH 

Filebench is a software test environment (usually called a 
benchmark) used to measure the performance of various parts 
of an operating system. What sets Filebench apart from other 
benchmarks is the fact that it is equipped with several 
predefined workloads, which allows users to easily test their 
systems in various forms (most popular forms being a mail 
server or a file server) [10]. Presently many benchmarks hard 
code the workloads they generate quite rigidly, meaning that a 

user can specify some of the basic workload parameters, but 
cannot really control the execution flow of the workload in 
detail. Filebench gives its users freedom to define workloads 
using a Workload Model Language (WML). WML is mainly 
composed of four main parts: fileset, process, thread, and 
flowop.  

A standard Filebench test is executed in two stages: fileset 
pre-allocation and a workload execution. First part of any 
workload execution is defining a fileset that it uses. A fileset is 
a named collection of files and to define it a user must specify 
its name, path, number of files, and a few other optional 
attributes that can be included in a filesets creation. After 
defining a fileset the next step are the processes in WML that 
represent real UNIX processes which are created by Filebench 
during the test. Every process is made of one or more threads 
representing an actual POSIX threads and every thread 
executes a loop of flowops. A single flowop is a representation 
of a file system operation that is translated to a system call by 
Filebench.  

The ending of a WML file usually contains one of two “run” 
commands (run and psrun) that tell Filebench to allocate the 
defined filesets, prepare the required number of UNIX 
processes and threads, and start a cycled flowops execution. 
After completing a run, Filebench gives a number of different 
metrics, where the most important one for the user is operations 
per second. This is the total number of executed flowop 
instances (in all processes and threads) divided by the time it 
took for a full run of the workload. To generate a workload and 
start the measurement of a particular part of the system, one 
must execute the filebench -f workload.f command. 

IV. ESXi HYPERVISOR 

VMware ESXi (Elastic Sky X “integrated”) is a type-1 
hypervisor developed by VMware for deploying and serving 
virtual machines that was made from its predecessor ESX. 
Type-1 hypervisors run directly on the host's hardware to 
control the given hardware and to manage guest operating 
systems, and for this reason they are mainly called bare 
metal hypervisors (Figure 1). A guest operating system runs on 
another level above the hypervisor. 

 

 
 

Fig. 1.Type-1 (bare metal) hypervisor 

 
VMware ESXi is a hypervisor that runs on the host server 

hardware without the underlying operating system. ESXi 
provides a virtualization layer that abstracts the CPU, storage, 

RTI2.2 Page 2 of 6



memory and networking resources of the physical host into 
multiple virtual machines. That means that applications 
running in virtual machines can access these resources without 
direct access to the underlying hardware. VMware refers to the 
hypervisor used by VMware ESXi as VMkernel and it receives 
requests from virtual machines (as processes that run on top of 
it) for resources and presents the requests to the physical 
hardware [12-14]. The kernel also provides means for running 
all processes on the system, including management 
applications and agents as well as virtual machines. It has 
control of all hardware devices on the server, and manages 
resources for the applications as shown in Figure 2 [15]. The 
main processes that run on top of VMkernel are: 

 Direct Console User Interface (DCUI) — the low-
level configuration and management interface, accessible 
through the console of the server, used primarily for initial 
basic configuration. 
 The VMM, virtual machine monitor, which is the 

process that provides the execution environment for a virtual 
machine, as well as a helper process known as VMX. Each 
running virtual machine has its own VMM and VMX process. 
 Various agents are used to run and enable high-level 

VMware Infrastructure management from remote applications. 
 The Common Information Model (CIM) system is the 

interface that enables hardware-level management from remote 
applications via a set of standard APIs. 

 
 

Fig.2.VMware ESXi architecture 

V. HYPOTHESIS OF EXPECTED BEHAVIOUR 

Since we are using a Type-1 hypervisor that works directly 
on hardware, the total processing time for each workload TW  can 
be described by the following equation: 

 

TW = TRR + TRS + TWR + TWS                         (1) 

    
where TRS and TRR represent sequential and random read time 

respectively, while TWR and TWS represent random and 
sequential write time respectively. For every specific workload 
we have an expected access time for the file system which 
includes five components as shown in following equation: 
 

TWORKLOAD = TD+TM + TFL+TFB+TJ +THK                  (2) 
where TWORKLOAD represents the overall time for finishing all 

operations on the current workload, and TD, TM, TFL, TFB, TJ, 

THK represent time needed for completing all operations related 
to directory, metadata, free list, file block, journaling and 
house-keeping operations in the file system, respectively.  

In this study we have a specific situation where there are two 
sides which have identical settings of the operating system 
(CentOS) and the file system (XFS), used in the performance 
testing: (1) Native machine (hostOS) and (2) ESXi + 
VMs(guestOS). 

 
1. Native hostOS: The time to process the generated 

workload depends on the benchmark interaction with the 
hostOS file system and also the characteristic of the file system. 

Total time to process the workload, TW(native) is defined as: 
 

TW (native) =f (benchmark, hostOS_FS)                   (3) 

 

2. ESXi + VMs(guestOS): The time to process the 

generated workload (TW(ESXi)) in this case depends on the 
benchmark interaction with guestOS file system, the 
characteristic of the file system and the virtualization 
processing component of the ESXi hypervisor (ESXi_proc) is 
as in the following formula: 

 

TW (ESXi) =f (benchmark, guestOS_FS, ESXi_proc)        (4)
    

Since we use the same settings as the native machine for our 
virtual machines, the benchmark interaction and characteristics 
of the file system on the guest will be the same as the ones on 
the native machine. The virtualization processing component 
depends on the virtualization type and hypervisor processing as 
in the following formula:  

 

ESXi_proc = f (virt_type, hyp_proc)                     (5) 

 
In the context of virtualization type, ESXi uses full 

virtualization, which is further enhanced with one of the 
technologies (depending on hosts’ CPU) for hardware assisted 
virtualization. In the context of the hypervisor processing it is 
important to consider the delay, which represents the time 
required for the hypervisor to receive requests from virtual 
hardware of a guest OS and forward them to the hosts' hardware 
for proccessing. The delay can be explained as following: 
virtual machines generate workload, which passes from a VM 
through the hypervisor onto the hosts’ hardware. First the 
benchmark application generates the workload which is passed 
on for further processing to the hypervisor. The second part 
happens inside the hypervisor and is defined as the interaction 
between guest workload and VM image file. Generated 
workload is passed on the hypervisor, which maps it into 
requests for VM large image files. Lastly the hypervisor's 
mapping process generates input files as requests for real disk 
drivers on the hosts’ hardware. The time needed for generating 
those requests depends on the hypervisor’s file system and 
caching capabilities. 

The expected outcome according to formula (3) is that the 
native host will perform better than ours ESXi virtual 
machines. Virtual machines have a complex data path, formula 
(5), where data must pass through guest OS file system and the 
hypervisor onto machine hardware. Therefore, it is expected 

RTI2.2 Page 3 of 6



that a degradation of the ESXi VM performance will happen 
compared to the native host machine, formula (4). 

We have investigated a few cases for the this paper: firstly, 
the performace of a native host machine, then the performance 
of a single ESXi VM running and lastly the performance of 
several virtual machine running at the same time. In general, 
we expect: 

- Native host to perform better when compared to ESXi with one 
virtual machine running. 

- Running several instances of the ESXi virtual machines,  
n*ESXi VMs (n=1,2,3…), should have a significant 
performance degradation compared to the native host. 

VI. TEST ENVIRONMENT CONFIGURATION 

The assumption of an adequate testing is the application of a 
single hardware configuration, the same operating system, and 
measurement methodology for all test procedures as mentioned 
before. The hardware configuration contains all the 
components necessary for a modern-day computer, and in this 
case, it is a home-based system of the newer generation (Table 
1). CentOS version 7.7 is selected as the operating system, 
which is currently one of the most popular Linux distribution. 

During the installation process we opted for Gnome 
graphical interface installation option with essential packages 
and programs for a graphical environment. The XFS file system 
characteristics and layouts are shown in Table 2. Filebench is a 
program designed to measure the performance of file systems 
and storages, and it is capable of generating multiple workload 
types that simulate environments when using certain 
servers/services such as mail, web, file, database, etc. Before 
starting tests, we made sure that all available updates were 
installed. Each virtual machine was given 4 GB of RAM. 

 
TABLE I 

HARDWARE CONFIGURATION OF THE TEST PC 
 

MB Gigabyte B75M-D2V 

RAM DDR3 1330 MHz, 16 GB 

CPU Intel 

Model Pentium G860 

Cores 2 /2 threads 

Speed 3.00 GHz 

Cache(L1,L2,L3) 2x32kB; 2x256kB, 3MB 

SSD Samsung SSD 860 EVO 

Interface SATA 6Gbps 

Capacity 250 GB 

OS CentOS 7.7.1908.el7 

 

This benchmark behaviour is controlled using files with the 
extension *.f that are written in Workload Model Language, 
that can be edited in any text editor. The use for individual 
measurements involves putting a command from a terminal 
with root privileges using the name of the *.f file as an 
argument. 

TABLE II 
FS LAYOUT 

 

FILE SYSTEM SIZE MOUNT 

/DEV/MAPPER/DATA-ROOT 35 GB / 

/DEV/SDA1 4 GB SWAP 

/DEV/SDA2 1024 MB / BOOT 

VII.TESTS AND RESULTS 

The focus of this paper was to measure the performance of 
hard disks and data-flow in one of the more popular 
virtualization systems, especially in cases where several 
instances of virtual machines are being used. The main idea 
was: as the number of instances increases, there is a significant 
drop in performance and this drop is constant on any hardware-
software configuration. Benchmark of the host computer 
without virtualization was taken as a reference point for file 
system performance in these tests. 

A number of modified files of the source code fileserver.f, 
webserver. f, randomfileaccess.f and varmail.f were used 
during the tests, which are thus testing the files, web and the 
mail server environments, respectively. The changes were 
taken into consideration when setting the benchmark 
parameters in a way to provide as realistic as possible 
exploitation conditions. And while the location (/ bench), the 
I/O block size (iosize = 1M) and the average size of the add-on 
(meanappendsize = 16k) are common denominator for all tests, 
the parameters such as the number of files (nfiles), the average 
depth of the directory (meandirwidth) the average file size 
(meanfilesize), cache and the number of threads (nthreads) are 
changed on a case-by-case basis (with * .f files). The defined 
settings are retained throughout the entire benchmark test and 
are displayed in Table 3. For an easier view in the following 
table the name of each benchmark workload has been 
abbreviated with their initials (file server (FS), web server 
(WS), mail server (VMail) and random file access (RFA). 

 
TABLE III 

SETTINGS OF THE SOURCE CODE IN THE *.F FILES 

 

 FS WS VMail RFA 

nfiles 10.000 1.000 1.000 10.000 

meandirwidth 20 20 1.000.000 20 

meanfilesize 16k 16k 16k  

nthreads 50 100 16 5 

cached    false 

 
The duration of each test was 120 seconds, which is also 

stated in the *.f files, with the goal of acquiring the most 
realistic results. Special attention was paid to keep the OS clean 
and the impact of any external subject on system components 
was reduced to the minimum. After performing a reference 
measurement of the host computer without virtualization, ESXi 

RTI2.2 Page 4 of 6



was installed and three virtual machines were generated. Tests 
were conducted in a way that one virtual machine was first 
started and measured, then two and three machines 
simultaneously. From the generated data, the final conclusions 
were made by calculating the average values of the results. 

 
TABLE IV 

BENCHMARK RESULTS (MB/S) 
 

 FS WS VMail RFA 

Host 401.6 127.9 51.4 7379.5 

1VM 230.4 67.6 45.7 3646.0 

2VM 122.3 42.8 24.4 2126.9 

3VM 78.2 24.9 14.8 1498.6 

 
Table 4 shows the data we collected from workloads running 

in the test environment (again we used the same abbreviations 
like in Table 3). Data from Table 4 are shown on the next few 
figures, with remarks on the performance displayed in each. All 

of the measures shown in the following figures are displayed in 
megabytes per second (MB/s). 

 

 
 

Fig. 3.  Webserver.f workload test results 

 

The characteristics of the webserver.f workload with our 
specification (100 threads) is that random reads dominate, there 
are some random write components, while the sequential 
components are not present. Here we observe that native host 
OS performs much better than in the case with one instance of 
the ESXi virtual machine (Figure 3). In the case of this 
workload, instantiation of more than one ESXi virtual machine 
brings some performance degradation but not significant.  

 

 

 
Fig. 4.  Fileserver.f workload test results 

 
The characteristics of the fileserver.f workload with fifty 
threads, are that both random and the sequential components 
dominate, but there is also a large number of I/O requests and 
much heavier data flow. A general notion is that, in the case 
for one virtual machine instance, the ESXi is significantly 
weaker than in the case of the native host OS. In the case of 
fileserver.f workload, when two virtual machines are 
instanced, the performance is further degraded by 
approximately the same amount as in the previous case (with 
one virtual machine). Instancing a third virtual machine brings 
very little performance degradation (Figure 4). 
 

 
 

Fig. 5.  Varmail.f workload test results 
 
The characteristics of the varmail.f workload with our 
specification (16 threads) are that the components of random 
read and write are dominating, while the sequential components 
are not present, as it is shown in Figure 5. The special 
characteristic is that the components of the random write are 
synchronous, so each write will end up on the disk. The general 
notion for one instance is that performances of ESXi virtual 
machine are close to the native host OS. However, synchronous 
entries cancel the effects of cashing, so there are minor 
differences between native host OS and one instance of ESXi 
virtual machine. In the case of varmail.f workload, the 
instantiation of more than one ESXi virtual machines does not 
bring significant performance degradation. 

 

0

40

80

120

160

  native   1vm   2vm   3vm

127.9

67.6
42.8

24.9M
B

/s

0

100

200

300

400

500

  native   1vm   2vm   3vm

401.6

230.4

122.3
78.2M

B
/s

0

20

40

60

    native      1vm      2vm      3vm

51.4
45.7

24.4

14.8

M
B

/s

RTI2.2 Page 5 of 6



 
 

Fig. 6.  Randomfileaccess.f workload test results 

 
The characteristics of the randomfileaccess.f workload with 

five threads are that random reads dominate, while the 
sequential components are not present as shown on figure 6. 
We set up this workload so that cache would not be used.  As 
we observe, the native host OS performs significantly better 
compared to one instance of ESXi virtual machine running. 
After starting second and third instances of ESXi virtual 
machines, we were able to observe that performance 
degradation is still present but it is not too significant. 

The acquired benchmark results are fully expected and in 
line with the theoretical assumptions. The ESXi hypervisor and 
the hardware assisted full virtualization model show clear 
limitations on the data flow, in particular with the increase in 
the number of active virtual machines that cause even greater 
sharing of processors’ resources and its increased use for 
hardware simulation. The addition of new instances of virtual 
machines is even more decreasing the achieved data flow, 
which means that new virtual machines cannot be added to the 
indefinite, as the performance of the whole system degrades per 
virtual machine added. 

VIII. CONCLUSION 

The introduction of virtualization has led to major changes 
in the use and deployment of information technology. 
Virtualization technology has a significant impact on reducing 
hardware investment as well as reducing operating costs, while 
also providing many additional benefits other than server 
consolidation. The great expansion of cloud computing in 
recent years has also contributed to the accelerated 
development of virtualization technologies and in the 
foreseeable future virtualization will always have an increased 
application in information technologies. It is also reasonable to 
expect, given the development of information technology 
today, that virtualization techniques will continue to improve 
and that the performance gap between virtualized systems and 
native systems will narrow in the future. 

The results of our measurements showed that a native 
machine works convincingly better in most cases than a virtual 
machine based on ESXi hypervisor and full virtualization, as 
we assumed in our hypothesis of expected behaviour. Virtual 
machines running on the ESXi hypervisor have lower 
performance than a native machine, and in three of the four tests 
the performance degradation is approximately 50% when we 

have only one instance of a virtual machine running. The 
performance degradation is even greater with the introduction 
of more virtual machines. In one of the tests (mail server), the 
performance degradation between a native and a single virtual 
machine is not large, but with the introduction of new virtual 
machines into the test environment, the performance 
degradation of virtual machines becomes extremely 
pronounced. Future research may include a different approach 
where instead of comparing native machine vs. virtualized one, 
we compare different types of similarly structured virtualized 
machines or systems. With this research, we have proven that 
virtual systems still cannot reach the performance of non-
virtualized systems, but as technologies evolve at an 
accelerated pace, we hope that in the future the performance of 
virtual machines will reach or be equal to regular non-
virtualized machines. 

ACKNOWLEDGEMENT 

The work presented in this paper has partially been funded by 
the Ministry of Education, Science and Technological 
Development of the Republic of Serbia. 

LITERATURE 

[1] C. Jiang, B. Luo, J. Wang, J. Zhang, Y. Wang, W. Shi, “Energy efficiency 
comparison of hypervisor,” Proc. 2016 Seventh International Green and 
Sustainable Computing Conference (IGSC), pp. 1-8, 2016.  

[2] Correia, "Hypervisor based server virtualization" in Encyclopaedia of 
information Science and Technology, IGI Global, 2015, pp. 1182-1187.  

[3] W. Huang, J. Liu, B. Abali, D. K. Panda, “A case for high performance 
computing with virtual machines,” Proc. of the International Conference 
on Supercomputing. ACM, pp. 125-134, 2006. 

[4] G. Casale, S. Kraft, D. Krishnamurthy, ”A model of storage I/O 
performance interference in virtualized systems,” Proc. of 31st 
International Conference on Distributed Computing Systems Workshops, 
pp. 34-39, 2011. 

[5] J. Che, Q. He, Q. Gao, D. Huang, “Performance Measuring and 
Comparing of Virtual Machine Monitors,” Proc. of 5th International 
Conf. Embedded and Ubiquitous Computing. EUC2008, Vol. 2, 
Piscataway, NJ, USA, pp. 381–386, 2008. 

[6]  A. Bhatia and G. Bhattal, "A comparative study of various hypervisors 
performance," International Journal of Scientific and Engineering 
Research, vol. 7, no. 12, pp. 65-71, 2016. 

[7] J. Hwang, S. Zeng, F. Y. Wu, and T. Wood, “A component-based 
performance comparison of four hypervisors,” Proc. of 2013 IFIP/IEEE 
International Symposium. IEEE, pp. 269-276, 2013. 

[8] Pousa, Duarte; Rufino, José, “Evaluation of type-1 hypervisors on 
desktop-class virtualization hosts,” IADIS International Journal on 
Computer Science and Information Systems. ISSN 1646-3692. 12:2, p. 
86-101, 2017. 

[9] H. Kazan, L. Perneel, M. Timmermann, “Benchmarking the performance 
of Microsoft Hyper-V server, VMWare ESXi and Xen hypervisors,” 
Journal of Emerging Trends in Computing and Information Sciences, vol. 
4, no. 12, pp. 922-933, 2013. 

[10] Filebench project, Available:  https://github.com/filebench/filebench/wiki 
[11] VMware vSphere Documentation: https://docs.vmware.com/en/VMware-

vSphere/index.html 
[12] VMware ESXi 6.7 project: https://docs.vmware.com/en/VMware-

vSphere/6.7/vsphere-esxi-vcenter-server-67-storage-guide.pdf.pdf 
[13] VMware, Inc. white paper. “Virtualization Overview”. 

https://www.vmware.com/pdf/virtualization_considerations.pdf 
[14] VMware, Inc. white paper. “The Architecture of VMware ESXi,” 

p. 3, 2020. 
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/t
echpaper/ESXi_architecture.pdf 

0

2000

4000

6000

8000

    native      1vm      2vm      3vm

7379.5

3646
2126.9

1498.6M
B

/s

RTI2.2 Page 6 of 6




