

Abstract — Homomorphic Encryption allows third party to

receive encrypted data and perform arbitrarily computations on

that data while it remains encrypted, despite not having the

secret decryption key. This enables many new secure

applications in cloud environments. For a long time, a key issue

with the homomorphic encryption was its low performance

which made it unusable in production environments. Advances

in the last ten years in the field of homomorphic encryption

resulted in several new schemes and software libraries which

implement them. These homomorphic schemes have improved

performance, but there is still a question whether the

improvements would justify their use in production

environments. In this paper we evaluated features and

performances of several new homomorphic encryption

mechanisms: BGV, BFV and CKKS.

Keywords — Homomorphic Encryption; Performance; Secure

Multiparty Computation.

I. INTRODUCTION

Homomorphic encryption allows computations on

ciphertext without the knowledge of the secret key, or more

precisely it allows performing computations on the encrypted

data, without decrypting them [1]. Homomorphic encryption

allows a third party (e.g., cloud, service provider) to perform

certain computable functions on the encrypted data while

preserving the features of the function and format of the

encrypted data and without being able to see its content.

Homomorphism of the first asymmetric encryption algorithms

(RSA) over some mathematical operations (e.g.

multiplication) was known since these algorithms were

invented almost fifty years ago. Such schemes which support

partial set of mathematical operations are known as partially

homomorphic. Cryptographic mechanisms that support

arbitrary level of computations on ciphertext (multiplication,

addition, rotation) without the knowledge of the secret keys

are known as Fully Homomorphic Encryption (FHE) systems.

The increased popularity of cloud-based services on one side

and the need to preserve data privacy led to the new interest in

homomorphic encryption research which would enable secure

multiparty computation in the cloud environment. One could

imagine the use of AI or machine learning algorithms on the

data which is encrypted and invisible to the AI system

provider, thus preserving data privacy only for the data owner.

An example of such a scenario where homomorphic

encryption mechanisms are deployed is given in Figure 1. In

this example the user sends and stores the data in the

encrypted form on the cloud server. The data is processed on

the server in the encrypted form, and the results which remain

in the encrypted form are sent back to the user who can

decrypt the data and use the result.

Fig. 1. An example of client-server HE scenario

The biggest obstacle for the use of homomorphic

encryption schemes was the fact that there were no FHE

mechanisms which had reasonable performance.

Computations were by several orders of magnitude slower

than the operation on unencrypted data which made any such

solution too resource expensive. However, in the last ten years

a breakthrough happened in the area and a set of new

homomorphic encryption schemes emerged. Modern fully

homomorphic encryption schemes use complex algorithms on

lattice structures and Ring-LWE (Ring Learning With Errors)

mechanism [2]. In addition to the homomorphic property, it is

believed that these algorithms are resistant to quantum

computer attacks because nowadays there are no known

algorithms that would use the properties of quantum

computers to break these algorithms in polynomial time.

Following the appearance of new fully homomorphic

encryption schemes, a set of programming APIs and libraries

which implement different schemes emerged as well. In this

paper we are assessing the set of capabilities and performance

of three homomorphic encryption schemes (BGV, BFV,

CKKS) and are discussing the suitability and constraints of

these schemes for use in the cloud-based environments for

secure multiparty computations. Performance assessment of

the new FHE schemes has not been explored a lot in the

literature. We believe that this paper will provide a better

insight into the current state of the work on FHE and its

suitability for real use case scenario deployments.

The paper is organized as follows. Section II gives an

overview of the related work in the field of the performance

evaluation of the FHE schemes. The most important

properties of homomorphic encryption and the classification

Performance comparison of homomorphic

encryption scheme implementations

Goran Đorđević, AET Europe The Netherlands, ETF Beograd, Milan Marković, Panevropski

Univerzitet Apeiron Banja Luka, Pavle V. Vuletić, ETF Beograd

RTI2.5 Page 1 of 6

of the homomorphic encryption schemes are presented in

Section III. The main features and description of modern HE

schemes: BGV [3], BVF [4] and CKKS [5] are elaborated in

Section IV. In Section V is shown results of experimental

analysis. Conclusions are given in Section VI.

II. RELATED WORK

Related work about the FHE schemes is spread across the

papers in the relevant sections, while this section contains

only those papers which were dedicated to FHE performance

evaluation. Experimental results related to BGV scheme with

value of ciphertext modulus q=130 are given in [1]. Viand et

al. in [6] compare the features of Palisade, Microsoft SEAL,

and HELib homomorphic encryption libraries. In addition,

this paper gives statistical compiler tests of BVF scheme

implemented in the SEAL library in a graphical form without

presenting precise numerical values. Melchor et al. [7]

compared the performance of three libraries HELib, SEAL

and FV-NFLlib for large plaintext moduli of up to 2048 bits.

Finally, Lepoint et al. [8] compare the performance of two

older homomorphic schemes. Unlike the previous work, in

this paper we give experimental results for BGV with broader

range of values ciphertext modulus q and results for other

modern homomorphic schemes: BFV and CKKS that are not

covered in [1].

III. PROPERTIES OF HOMOMORPHIC ENCRYPTION

There are four main types of homomorphic schemes [1]:

• Partially Homomorphic Encryption (PHE). The PHE

scheme enables either any number of addition or any

number of multiplication operations over encrypted data.

• Somewhat Homomorphic Encryption (SHE) allows both

addition and multiplication, but it can perform a limited

number of operations. “Somewhat” means it works for

some functions f.

• Fully Homomorphic Encryption. The scheme allows any

number of addition or multiplication operations. “Fully”

means it works for all functions f. An FHE scheme can

evaluate unbounded depth.

• Levelled Homomorphic Encryptions (LHE). This scheme

can evaluate arbitrary polynomial-size circuits.

Homomorphic Encryption should support two main

homomorphic operations:

• Additive Homomorphic Encryption;

• Multiplicative Homomorphic Encryption.

Homomorphic encryption is additive, if [9]:

Enc (m1 + m2) = Enc (m1) + Enc (m2); ∀m1, m2 ∈ M.

Homomorphic encryption is multiplicative, if [9]:

Enc (m1 * m2) = Enc (m1) * Enc (m2); ∀m1, m2 ∈ M.

The most popular classes of homomorphic schemes are

(given with their main properties):

• Boolean circuit (Fastest Homomorphic Encryption in the

West (FHEW) [10] and Fast Fully Homomorphic

Encryption over the Torus (TFHE) [11]):

o Plaintext data are coded as bits;

o Computations are performed by using Boolean

circuits.

• Modular integer arithmetic (BGV, BFV):

o Plaintext data are coded as integer modulo a

plaintext;

o Computations are expressed as integer modulo

arithmetic.

• Approximate number arithmetic (CKKS):

o Plaintext data are coded as real (or complex)

numbers;

o Computations are performed in a way similar to

floating-point arithmetic but dealing with fixed-

point numbers.

Modern HE mechanisms are based on usage of lattice

cryptography with errors LWE [12]. Lattices have an

important role in modern cryptography, especially in the

context of the research on post-quantum cryptography. It is

known that the factoring problem which was discovered to be

solvable in polynomial time on a quantum computer by Shor

can be applied to the widely used asymmetric cryptographic

schemes (RSA, DH). At the moment of writing this paper

there was no report in the literature which claimed that it can

break lattice-based cryptographic algorithms using quantum

computer algorithms.

The newest HE algorithms are applied structured lattices

i.e. Ring-LWE mechanism [2]. The Ring-LWE reduces key

length and computation time. The ring implementation is

based on power-of-two cyclotomic rings:

Rq = ℤq / 〈xn + 1〉
The optimized Residue Number System (RNS) variants of

algorithms show significant performance gain compared to

their earlier respective implementations [13]. The RNS works

with native (machine-word size) integers because it is faster

than multi-precision integer arithmetic. It breaks rings of large

bit-width integers into a parallel set of rings (<64-bit residues)

allowing very efficient computation on 64-bit CPU

architecture.

Large modulus 𝑞 is represented as product of integers:

Modulus 𝑞 is a functional parameter that determines how

many computations are allowed without the appliance

bootstrapping procedure [14].

One of the properties of the homomorphic encryption

schemes is that they add noise to a ciphertext in the

encryption process. Homomorphic operations (especially

multiplication) increase the noise. If the noise becomes too

large, the resultant ciphertext can become undecryptable.

Noise budget is the total amount of noise that can be added

until the decryption fails [15]. The bootstrapping is the

procedure of "refreshing" a ciphertext by running the

decryption function on it homomorphically, resulting in a

reduced noise.

All considered homomorphic encryption schemes support

the following homomorphic operations:

• Addition;

• Multiplication;

• Rotation.

RTI2.5 Page 2 of 6

IV. HOMOMORPHIC SCHEMES

The BGV scheme was proposed [3]. BGV is a levelled HE

scheme, meaning that the parameters of the scheme depend on

the multiplicative depth that the scheme is capable to evaluate.

Multiplicative depth determines how many sequential

multiplications can be performed.

The BFV scheme [4] is a homomorphic cryptographic

scheme based on the Ring-LWE problem in a lattice.

The CKKS scheme [5] is known as Homomorphic

Encryption for Arithmetic of Approximate Numbers

(HEAAN). Supported operations in the scheme are shown in

Figure 2. The CKKS scheme enables computations on vectors

of complex values.

Fig. 2. Operations in CKKS

The CKKS is an approximate homomorphic encryption

scheme with the following features:

• Dec (Enc(m)) ≈ m;

• Dec (ct1 * ct2) ≈ Dec (ct1) * Dec (ct2);

• Noise bounds are determined by the parameter set.

In the CKKS scheme noise is considered as a part of

numerical error in approximate computation. It supports

homomorphic rounding-off.

In all above-mentioned schemes the following

homomorphic operations are implemented [16]:

• Public key encryption:

PubEncrypt(pk, M) → C

The public encryption algorithm takes as input the public

key (pk) of the scheme and any message M from the

message space. The algorithm outputs a ciphertext C.

• Decryption:

Decrypt(sk, C) → M

The decryption algorithm takes as input the secret key of

the scheme (sk), and a ciphertext C. It outputs a message

M from the message space.

• Homomorphic addition:

EvalAdd(Params, ek, C1, C2) → C3

EvalAdd is an algorithm that takes as input the system

parameters Params, the evaluation key (ek), two

ciphertexts C1 and C2, and outputs a ciphertext C3.

• Homomorphic multiplication:

EvalMult(Params, ek, C1, C2) → C3

EvalMult is an algorithm that takes as input the system

parameters Params, the evaluation key ek, two

ciphertexts C1 and C2, and outputs a ciphertext C3.

The evaluation key is needed to perform homomorphic

operations over the ciphertexts. The evaluation key is used in

in the following homomorphic operations: relinearization

(multiplication) and rotation. Any entity that has only the

evaluation key cannot learn anything about the messages from

the ciphertexts only [16].

An example of homomorphic encryption with asymmetric

key cryptography by using BGV [3], BVF [4], and CKKS [5]

schemes is shown in Figure 3.

Fig. 3. Homomorphic encryption with asymmetric keys

V. EXPERIMENTAL ANALYSIS

In the experimental analysis we evaluated the time needed

for execution of the following homomorphic operations:

Public key encryption (Table II), Decryption (Table III),

Homomorphic addition (Figure 4), and Homomorphic

multiplication (Figure 5). Homomorphic encryption libraries

implement the above-mentioned cryptographic operations of a

scheme and expose a higher-level API. We evaluated the use

of the following homomorphic schemes:

• BGV,

• BVF and

• CKKS;

that are implemented in the following open-source libraries

respectively:

• Microsoft SEAL [17];

• Palisade [14];

• HELib [18] [19].

HELib is a C++ open source library that implements both

the BGV [3] and CKKS [5] homomorphic encryption

schemes. HELib library, published in 2013 by Halevi and

Shoup, was the first homomorphic encryption library.

Palisade [14] is multi-threaded library written in C++ 11. It

uses the NTL library [20] to accelerate underlying

mathematical operations. Palisade supports more schemes,

including BFV, BGV, CKKS. It also supports multi-party

extensions of certain schemes and other cryptographic

primitives like Proxy Re-Encryption (PRE) and digital

signatures [6].

Microsoft Simple Encrypted Arithmetic Library (SEAL)

[17] is a homomorphic encryption library that allows

additions and multiplications to be performed on encrypted

integers or real numbers. Microsoft SEAL is written in C++11

and contains a .NET wrapper library for the public API. The

RTI2.5 Page 3 of 6

latest available version 3.6.2 is developed in C++17.

Table I gives an overview of the publicly available open-

source libraries with implemented HE algorithms. Palisade

implements Boolean circuits Fully Homomorphic Encryption

(FHE) schemes: FHEW and TFHE. In the FHE mechanisms it

uses bootstrapping procedure [14] (noise refreshing

procedure) with the application of the appropriate

bootstrapping keys. The FHEW and TFHE schemes are not

implemented in the HELib and Microsoft SEAL libraries.
TABLE I

 HE ALGORITHMS IN OPEN-SOURCE LIBRARIES

Library/

HE scheme
Palisade HELib SEAL

BGV √ √

BFV √ √

CKKS √ √ √

FHEW √

Threshold FHE √

The homomorphic encryption code was executed on a PC

with:

• 2194.84 MHz 8-core CPU;

• 16 GB RAM;

• Ubuntu 20.04 LTS.

Tables II and III and Figures 4 and 5 show the results of

encryption, decryption, HE addition and HE multiplication

tests respectively, where:

• Times in the last three columns (HE Library) are

expressed in microsecond (µs);

• Each operation was executed 1000 times and the times

presented are the times to execute 1000 iterations;

• We used 128-bit homomorphic encryption security level;

• Ciphertext dimension is n;

• Ciphertext modulus is q.

Ciphertext dimension n shall be chosen on basis of desired

security level and value of ciphertext modulus q. If ciphertext

modulus q is bigger than noise budget it enables

implementation more complex homomorphic evaluation

function f i.e. implementation the function with bigger depth.

Palisade library implements modular arithmetic schemes:

BGV and BVF with 128-bit security level beginning from

ciphertext dimension n = 2048.

The public key encryption operation in BFV scheme has

the best performance when the SEAL library is used.

Performance difference depends on the ciphertext dimension:

while the SEAL encryption is three times faster for the

ciphertext dimension of 2048, when the ciphertext dimension

is 32768, this factor is 1.3 times. The encryption operation has

the best performance in BGV scheme when the Palisade

library is used. Performance difference ratio decreases with

the increase of the ciphertext dimension. The encryption

operation in CKKS scheme for ciphertext dimension n ≥ 8192

has the best performance when the HELib library is used,

whereas in case of lower dimension n the best results are

achieved by using SEAL library.

TABLE II

 PUBLIC KEY ENCRYPTION

HE scheme
HE parameters HE library

n log2 q Palisade HELib SEAL

BFV 1,024 27 - - 272

BGV 1,024 27 - 1,783 -

CKKS 1,024 27 585 482 257

BFV 2,048 54 1,557 - 506

BGV 2,048 54 1,560 3,608 -

CKKS 2,048 54 1,173 997 479

BFV 4,096 109 3,519 - 1,687

BGV 4,096 109 3,493 7,833 -

CKKS 4,096 109 2,753 2,288 1,926

BFV 8,192 218 7,773 - 4,838

BGV 8,192 218 8,116 17,817 -

CKKS 8,192 218 7,538 4,664 5,688

BFV 16,384 438 24,050 - 16,252

BGV 16,384 438 25,926 44,796 -

CKKS 16,384 438 23,183 12,581 19,344

BFV 32,768 881 77,553 - 59,457

BGV 32,768 881 78,639 109,340 -

CKKS 32,768 881 76,406 39,890 71,373

TABLE III

 SECRET KEY DECRYPTION

HE scheme
HE parameters HE library

n log2 q Palisade HELib SEAL

BFV 1,024 27 - - 63

BGV 1,024 27 - 13,047 -

CKKS 1,024 27 415 3,159 10

BFV 2,048 54 159 - 127

BGV 2,048 54 133 49,096 -

CKKS 2,048 54 809 5,104 19

BFV 4,096 109 420 - 416

BGV 4,096 109 353 192,351 -

CKKS 4,096 109 1,432 14,279 72

BFV 8,192 218 940 - 1,484

BGV 8,192 218 1,012 763,178 -

CKKS 8,192 218 6,038 48,960 290

BFV 16,384 438 2,370 - 5,904

BGV 16,384 438 3,690 3,033,690 -

CKKS 16,384 438 13,776 183,254 1,166

BFV 32,768 881 7,330 - 24,919

BGV 32,768 881 14,941 12,003,497 -

CKKS 32,768 881 51,960 701,913 4,826

The decryption operation in CKKS scheme has the best

performance by using SEAL library. The decryption operation

in CKKS scheme when using SEAL is approximately 10

times faster than when Palisade is used and more than 100

times faster than when HELib is used.

 The secret key decryption operation in BGV scheme

performs better by several orders of magnitude in the Palisade

RTI2.5 Page 4 of 6

than in the HELib library.

The decryption operation in BFV scheme for ciphertext

dimension n ≥ 8192 has better performance when Palisade

library is used, whereas in case of lower dimension n better

results are achieved by using SEAL library.

Fig. 4. Homomorphic encryption – addition operation time

The ciphertext addition in CKKS scheme has the best

performance in the HELib library. The ciphertext addition in

CKKS scheme has better performance in the Palisade than in

the SEAL library, but the differences are generally smaller

than for the decryption operation.

The ciphertext addition in BFV scheme has significantly

better performance (more than 2 times faster) in the Palisade

than in the SEAL library.

The ciphertext addition in BGV scheme has significantly

better performance (more than 4 times faster) in the Palisade

than in the SEAL library.

Fig. 5. Homomorphic encryption – multiplication operation time

 The ciphertext multiplication is much more complex and

more time consuming than ciphertext addition. Figure 4

presents the time needed for performing homomorphic

multiplication without relinearization procedure.

 The cyphertext multiplication in CKKS scheme for

ciphertext dimension n ≥ 8192 has the best performance when

implemented in the Palisade library whereas in case of lower

dimension n the better results are achieved using SEAL

library.

The cyphertext multiplication in BGV scheme for

ciphertext dimension n ≥ 8192 has significantly better

performance (more than 3 times faster) when implemented in

the Palisade library than in the HELib whereas for lower

ciphertext dimensions better results are achieved by using

HELib library.

The cyphertext multiplication in BFV scheme for ciphertext

dimension n ≥ 4096 has better performance in the Palisade

RTI2.5 Page 5 of 6

than in the SEAL whereas for lower ciphertext dimensions

slightly better results are achieved by using SEAL library.

In addition, we compared execution time of homomorphic

operations with no security level versus operations with 128-

bit security level. We have measured execution time of

homomorphic operations in CKKS (approximate arithmetic)

and BGV (integer modulo arithmetic) schemes that are

implemented in the Palisade library.

In the experiments we have got similar ratio of results for

both schemes, so we present only results related to CKKS

scheme.

In the tests we have performed homomorphic operations by

using following scenarios:

1. No security level with ciphertext dimension n=512;

2. 128-bit security level with ciphertext dimension

n=32768.

Each operation was executed 1000 times. In both scenarios

it is used same value of ciphertext modulus q.

We have got following results of homomorphic operations

(CKKS scheme):

• Public key encryption operation is about 69 times faster

in scenario 1;

• Private key decryption operation is about 46 times

faster in scenario 1;

• Homomorphic addition operation is about 45 times

faster in scenario 1;

• Homomorphic multiplication operation is about 48

times faster in scenario 1.

VI. CONCLUSIONS

Homomorphic encryption allows performing computations

on the encrypted data, without decrypting them. The paper

compares the time needed to execute homomorphic

operations, like, public key encryption, secret key decryption,

addition and multiplication implemented in the open-source

libraries: Microsoft SEAL, Palisade, and HELib. The

operations are compared for BGV, BFV and CKKS

homomorphic encryption schemes implemented in the

libraries.

Homomorphic operations that are performed at client side:

public key encryption and secret key decryption if it is used

BGV scheme (integer arithmetic) have the best performance

when using methods that are implemented Palisade.

Homomorphic operations that are performed at the server

side: addition and multiplication are fastest when Palisade

library is used for all three tested schemes, except for BGV

addition and higher ciphertext dimensions in which cases

HELib has slightly better performance.

Execution time of homomorphic operations with no

security level versus operations with 128-bit security level

was performed and showed that all the operations are still by

two orders of magnitude slower than when no security is used

which presents an issue when complex machine learning or

AI calculations are required.

The performance of current fully homomorphic encryption

schemes, especially for large parameters, can still be

improved. Further improvement can be achieved by

implementation low-level homomorphic operations in an

assembly language which is executed on a hardware platform.

Also it can be achieved better performance if homomorphic

operations are implemented in hardware platforms like

Graphics Processing Unit (GPU), Application-Specific

Integrated Circuit (ASIC), and Field-Programmable Gate

Array (FPGA).

LITERATURE

[1] A. Acar, H. Aksu, A. Selcuk, and M. Conti, "A Survey on

Homomorphic Encryption Schemes: Theory and Implementation,"
ACM Comput. Surv. 1, 1, Article 1, http://dx.doi.org/10.1145/3214303,

2018.

[2] V. Lyubashevsky, C. Peikert, and O. Regev, "On ideal lattices and
learning with errors over rings," Journal of the ACM (JACM) 60, no. 6,

2013.

[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, "Fully Homomorphic
Encryption without Bootstrapping," Cryptology ePrint Archive, Report

2011/277. https://eprint.iacr.org/2011/277, 2011.

[4] J. Fan and F. Vercauteren, "Somewhat practical fully homomorphic
encryption," IACR Cryptology ePrint Archive, 2012:144, 2012.

[5] J.H. Cheon, A. Kim, M. Kim, and Y. Song, "Homomorphic encryption

for arithmetic of approximate numbers," Cryptology ePrint Archive,
Report 2016/421, https://eprint.iacr.org/2016/421, 2016.

[6] A. Viand, P. Jattke, A. Hithnawi, "SoK: Fully Homomorphic
Encryption Compilers", IEEE Symposium on Security and Privacy

2021.

[7] C. Aguilar Melchor, M. Kilijian, C. Lefebvre, T. Ricosset, "A
Comparison of the Homomorphic Encryption Libraries HElib, SEAL

and FV-NFLlib," in: Lanet JL., Toma C. (eds) Innovative Security

Solutions for Information Technology and Communications. SECITC
2018. Lecture Notes in Computer Science, vol 11359. Springer, Cham.

https://doi.org/10.1007/978-3-030-12942-2_32, 2019.

[8] T. Lepoint, M. Naehrig, "A Comparison of the Homomorphic
Encryption Schemes FV and YASHE," in: Pointcheval D., Vergnaud D.

(eds) Progress in Cryptology – AFRICACRYPT 2014. AFRICACRYPT

2014. Lecture Notes in Computer Science, vol 8469. Springer, Cham.
https://doi.org/10.1007/978-3-319-06734-6_20, 2014.

[9] T. Maha, S. Hajji, and A. Ghazi, "Homomorphic encryption applied to

the cloud computing security," in Proceedings of the World Congress
Engineering, vol. 1, pp. 4-6, 2012.

[10] L. Ducas and D. Micciancio, "FHEW: bootstrapping homomorphic

encryption in less than a second," in E. Oswald and M. Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015 - 34th Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, So_a, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of Lecture Notes in Computer

Science, pages 617-640. Springer, 2015.

[11] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, "Faster packed
homomorphic operations and e_cient circuit bootstrapping for tfhe," in

Advances in Cryptology-ASIACRYPT 2017: 23rd International

Conference on the Theory and Application of Cryptology and
Information Security, pages 377-408. Springer, 2017.

[12] O. Regev, "The learning with errors problem," in Blavatnik School of

Computer Science, Tel Aviv University Invited survey in CCC, 2010.
[13] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, "A full rns variant

of approximate homomorphic encryption," Cryptology ePrint

Archive,Report 2018/931, https://eprint.iacr.org/2018/931, 2018.
[14] Y. Polyakov, K. Rohloff, G.W. Ryan, and D. Cousins, "PALISADE

Lattice Cryptography Library User Manual (v1.10.6)", 2020.

[15] S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, and S.
Bhattacharya, "A Review of Homomorphic Encryption Libraries for

Secure Computation," http://arxiv.org/abs/1812.024, 2018.

[16] M. Albrecht, M. Chase, H. Chen and others, "Homomorphic encryption
standardization," homomorphicencryption.org, 2018.

[17] K. Laine, "Simple Encrypted Arithmetic Library 2.3.1," 2017.

[18] S. Halevi and V. Shoup, "Algorithms in Helib," in Advances in
Cryptology – CRYPTO 2014, J. A. Garay and R. Gennaro, Eds, Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 554–571, 2014.

[19] S.Halevi, V. Shoup, "HElib design principles," 2020.
[20] V. Shoup and others, "NTL: A library for doing number theory,"

http://www.shoup.net/ntl.

RTI2.5 Page 6 of 6

