
 

  

Abstract — Homomorphic Encryption allows third party to 

receive encrypted data and perform arbitrarily computations on 

that data while it remains encrypted, despite not having the 

secret decryption key. This enables many new secure 

applications in cloud environments. For a long time, a key issue 

with the homomorphic encryption was its low performance 

which made it unusable in production environments. Advances 

in the last ten years in the field of homomorphic encryption 

resulted in several new schemes and software libraries which 

implement them. These homomorphic schemes have improved 

performance, but there is still a question whether the 

improvements would justify their use in production 

environments. In this paper we evaluated features and 

performances of several new homomorphic encryption 

mechanisms: BGV, BFV and CKKS. 

 
Keywords — Homomorphic Encryption; Performance; Secure 

Multiparty Computation. 

I. INTRODUCTION 

Homomorphic encryption allows computations on 

ciphertext without the knowledge of the secret key, or more 

precisely it allows performing computations on the encrypted 

data, without decrypting them [1]. Homomorphic encryption 

allows a third party (e.g., cloud, service provider) to perform 

certain computable functions on the encrypted data while 

preserving the features of the function and format of the 

encrypted data and without being able to see its content. 

Homomorphism of the first asymmetric encryption algorithms 

(RSA) over some mathematical operations (e.g. 

multiplication) was known since these algorithms were 

invented almost fifty years ago. Such schemes which support 

partial set of mathematical operations are known as partially 

homomorphic. Cryptographic mechanisms that support 

arbitrary level of computations on ciphertext (multiplication, 

addition, rotation) without the knowledge of the secret keys 

are known as Fully Homomorphic Encryption (FHE) systems. 

The increased popularity of cloud-based services on one side 

and the need to preserve data privacy led to the new interest in 

homomorphic encryption research which would enable secure 

multiparty computation in the cloud environment. One could 

imagine the use of AI or machine learning algorithms on the 

data which is encrypted and invisible to the AI system 

provider, thus preserving data privacy only for the data owner. 

An example of such a scenario where homomorphic 

encryption mechanisms are deployed is given in Figure 1. In 

this example the user sends and stores the data in the 

encrypted form on the cloud server. The data is processed on 

 
 

the server in the encrypted form, and the results which remain 

in the encrypted form are sent back to the user who can 

decrypt the data and use the result.  

 
Fig. 1. An example of client-server HE scenario 

 

The biggest obstacle for the use of homomorphic 

encryption schemes was the fact that there were no FHE 

mechanisms which had reasonable performance. 

Computations were by several orders of magnitude slower 

than the operation on unencrypted data which made any such 

solution too resource expensive. However, in the last ten years 

a breakthrough happened in the area and a set of new 

homomorphic encryption schemes emerged. Modern fully 

homomorphic encryption schemes use complex algorithms on 

lattice structures and Ring-LWE (Ring Learning With Errors) 

mechanism [2]. In addition to the homomorphic property, it is 

believed that these algorithms are resistant to quantum 

computer attacks because nowadays there are no known 

algorithms that would use the properties of quantum 

computers to break these algorithms in polynomial time. 

Following the appearance of new fully homomorphic 

encryption schemes, a set of programming APIs and libraries 

which implement different schemes emerged as well. In this 

paper we are assessing the set of capabilities and performance 

of three homomorphic encryption schemes (BGV, BFV, 

CKKS) and are discussing the suitability and constraints of 

these schemes for use in the cloud-based environments for 

secure multiparty computations. Performance assessment of 

the new FHE schemes has not been explored a lot in the 

literature. We believe that this paper will provide a better 

insight into the current state of the work on FHE and its 

suitability for real use case scenario deployments.  

The paper is organized as follows. Section II gives an 

overview of the related work in the field of the performance 

evaluation of the FHE schemes. The most important 

properties of homomorphic encryption and the classification 
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of the homomorphic encryption schemes are presented in 

Section III. The main features and description of modern HE 

schemes: BGV [3], BVF [4] and CKKS [5] are elaborated in 

Section IV. In Section V is shown results of experimental 

analysis. Conclusions are given in Section VI.  

II. RELATED WORK 

Related work about the FHE schemes is spread across the 

papers in the relevant sections, while this section contains 

only those papers which were dedicated to FHE performance 

evaluation. Experimental results related to BGV scheme with 

value of ciphertext modulus q=130 are given in [1]. Viand et 

al. in [6] compare the features of Palisade, Microsoft SEAL, 

and HELib homomorphic encryption libraries. In addition, 

this paper gives statistical compiler tests of BVF scheme 

implemented in the SEAL library in a graphical form without 

presenting precise numerical values. Melchor et al. [7] 

compared the performance of three libraries HELib, SEAL 

and FV-NFLlib for large plaintext moduli of up to 2048 bits. 

Finally, Lepoint et al. [8] compare the performance of two 

older homomorphic schemes. Unlike the previous work, in 

this paper we give experimental results for BGV with broader 

range of values ciphertext modulus q and results for other 

modern homomorphic schemes: BFV and CKKS that are not 

covered in [1]. 

III. PROPERTIES OF HOMOMORPHIC ENCRYPTION 

There are four main types of homomorphic schemes [1]: 

• Partially Homomorphic Encryption (PHE). The PHE 

scheme enables either any number of addition or any 

number of multiplication operations over encrypted data. 

• Somewhat Homomorphic Encryption (SHE) allows both 

addition and multiplication, but it can perform a limited 

number of operations. “Somewhat” means it works for 

some functions f. 

• Fully Homomorphic Encryption. The scheme allows any 

number of addition or multiplication operations. “Fully” 

means it works for all functions f. An FHE scheme can 

evaluate unbounded depth. 

• Levelled Homomorphic Encryptions (LHE). This scheme 

can evaluate arbitrary polynomial-size circuits.  

Homomorphic Encryption should support two main 

homomorphic operations: 

• Additive Homomorphic Encryption; 

• Multiplicative Homomorphic Encryption. 

Homomorphic encryption is additive, if [9]: 

Enc (m1 + m2) = Enc (m1) + Enc (m2); ∀m1, m2 ∈ M. 

Homomorphic encryption is multiplicative, if [9]: 

Enc (m1 * m2) = Enc (m1) * Enc (m2); ∀m1, m2 ∈ M. 

The most popular classes of homomorphic schemes are 

(given with their main properties): 

• Boolean circuit (Fastest Homomorphic Encryption in the 

West (FHEW) [10] and Fast Fully Homomorphic 

Encryption over the Torus (TFHE) [11]): 

o Plaintext data are coded as bits; 

o Computations are performed by using Boolean 

circuits. 

 

• Modular integer arithmetic (BGV, BFV): 

o Plaintext data are coded as integer modulo a 

plaintext; 

o Computations are expressed as integer modulo 

arithmetic. 

• Approximate number arithmetic (CKKS): 

o Plaintext data are coded as real (or complex) 

numbers; 

o Computations are performed in a way similar to 

floating-point arithmetic but dealing with fixed-

point numbers. 

Modern HE mechanisms are based on usage of lattice 

cryptography with errors LWE [12]. Lattices have an 

important role in modern cryptography, especially in the 

context of the research on post-quantum cryptography. It is 

known that the factoring problem which was discovered to be 

solvable in polynomial time on a quantum computer by Shor 

can be applied to the widely used asymmetric cryptographic 

schemes (RSA, DH). At the moment of writing this paper 

there was no report in the literature which claimed that it can 

break lattice-based cryptographic algorithms using quantum 

computer algorithms. 

The newest HE algorithms are applied structured lattices 

i.e. Ring-LWE mechanism [2]. The Ring-LWE reduces key 

length and computation time. The ring implementation is 

based on power-of-two cyclotomic rings: 

Rq = ℤq / 〈xn + 1〉 
The optimized Residue Number System (RNS) variants of 

algorithms show significant performance gain compared to 

their earlier respective implementations [13]. The RNS works 

with native (machine-word size) integers because it is faster 

than multi-precision integer arithmetic. It breaks rings of large 

bit-width integers into a parallel set of rings (<64-bit residues) 

allowing very efficient computation on 64-bit CPU 

architecture.  

Large modulus 𝑞 is represented as product of integers: 

 
Modulus 𝑞 is a functional parameter that determines how 

many computations are allowed without the appliance 

bootstrapping procedure [14].  

One of the properties of the homomorphic encryption 

schemes is that they add noise to a ciphertext in the 

encryption process. Homomorphic operations (especially 

multiplication) increase the noise. If the noise becomes too 

large, the resultant ciphertext can become undecryptable. 

Noise budget is the total amount of noise that can be added 

until the decryption fails [15]. The bootstrapping is the 

procedure of "refreshing" a ciphertext by running the 

decryption function on it homomorphically, resulting in a 

reduced noise.  

All considered homomorphic encryption schemes support 

the following homomorphic operations: 

• Addition; 

• Multiplication; 

• Rotation. 
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IV. HOMOMORPHIC SCHEMES 

The BGV scheme was proposed [3]. BGV is a levelled HE 

scheme, meaning that the parameters of the scheme depend on 

the multiplicative depth that the scheme is capable to evaluate. 

Multiplicative depth determines how many sequential 

multiplications can be performed. 

The BFV scheme [4] is a homomorphic cryptographic 

scheme based on the Ring-LWE problem in a lattice. 

The CKKS scheme [5] is known as Homomorphic 

Encryption for Arithmetic of Approximate Numbers 

(HEAAN). Supported operations in the scheme are shown in 

Figure 2. The CKKS scheme enables computations on vectors 

of complex values. 

 
Fig. 2. Operations in CKKS 

 

The CKKS is an approximate homomorphic encryption 

scheme with the following features: 

• Dec (Enc(m)) ≈ m; 

• Dec (ct1 * ct2) ≈ Dec (ct1) * Dec (ct2); 

• Noise bounds are determined by the parameter set. 

In the CKKS scheme noise is considered as a part of 

numerical error in approximate computation. It supports 

homomorphic rounding-off. 

In all above-mentioned schemes the following 

homomorphic operations are implemented [16]:  

• Public key encryption: 

PubEncrypt(pk, M) → C 

The public encryption algorithm takes as input the public 

key (pk) of the scheme and any message M from the 

message space. The algorithm outputs a ciphertext C. 

• Decryption: 

Decrypt(sk, C) → M 

The decryption algorithm takes as input the secret key of 

the scheme (sk), and a ciphertext C. It outputs a message 

M from the message space. 

• Homomorphic addition:  

EvalAdd(Params, ek, C1, C2) → C3 

EvalAdd is an algorithm that takes as input the system 

parameters Params, the evaluation key (ek), two 

ciphertexts C1 and C2, and outputs a ciphertext C3. 

• Homomorphic multiplication:  

EvalMult(Params, ek, C1, C2) → C3 

EvalMult is an algorithm that takes as input the system 

parameters Params, the evaluation key ek, two 

ciphertexts C1 and C2, and outputs a ciphertext C3. 

The evaluation key is needed to perform homomorphic 

operations over the ciphertexts. The evaluation key is used in 

in the following homomorphic operations: relinearization 

(multiplication) and rotation. Any entity that has only the 

evaluation key cannot learn anything about the messages from 

the ciphertexts only [16]. 

An example of homomorphic encryption with asymmetric 

key cryptography by using BGV [3], BVF [4], and CKKS [5] 

schemes is shown in Figure 3.  

 
Fig. 3. Homomorphic encryption with asymmetric keys 

V. EXPERIMENTAL ANALYSIS 

In the experimental analysis we evaluated the time needed 

for execution of the following homomorphic operations: 

Public key encryption (Table II), Decryption (Table III), 

Homomorphic addition (Figure 4), and Homomorphic 

multiplication (Figure 5). Homomorphic encryption libraries 

implement the above-mentioned cryptographic operations of a 

scheme and expose a higher-level API. We evaluated the use 

of the following homomorphic schemes: 

• BGV, 

• BVF and 

• CKKS; 

that are implemented in the following open-source libraries 

respectively: 

• Microsoft SEAL [17]; 

• Palisade [14]; 

• HELib [18] [19]. 

HELib is a C++ open source library that implements both 

the BGV [3] and CKKS [5] homomorphic encryption 

schemes. HELib library, published in 2013 by Halevi and 

Shoup, was the first homomorphic encryption library. 

Palisade [14] is multi-threaded library written in C++ 11. It 

uses the NTL library [20] to accelerate underlying 

mathematical operations. Palisade supports more schemes, 

including BFV, BGV, CKKS. It also supports multi-party 

extensions of certain schemes and other cryptographic 

primitives like Proxy Re-Encryption (PRE) and digital 

signatures [6]. 

Microsoft Simple Encrypted Arithmetic Library (SEAL) 

[17] is a homomorphic encryption library that allows 

additions and multiplications to be performed on encrypted 

integers or real numbers. Microsoft SEAL is written in C++11 

and contains a .NET wrapper library for the public API. The 
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latest available version 3.6.2 is developed in C++17. 

Table I gives an overview of the publicly available open-

source libraries with implemented HE algorithms. Palisade 

implements Boolean circuits Fully Homomorphic Encryption 

(FHE) schemes: FHEW and TFHE. In the FHE mechanisms it 

uses bootstrapping procedure [14] (noise refreshing 

procedure) with the application of the appropriate 

bootstrapping keys. The FHEW and TFHE schemes are not 

implemented in the HELib and Microsoft SEAL libraries. 
TABLE I 

 HE ALGORITHMS IN OPEN-SOURCE LIBRARIES 

Library/ 

HE scheme 
Palisade HELib SEAL 

BGV √ √  

BFV √  √ 

CKKS √ √ √ 

FHEW √   

Threshold FHE √   

The homomorphic encryption code was executed on a PC 

with: 

• 2194.84 MHz 8-core CPU; 

• 16 GB RAM; 

• Ubuntu 20.04 LTS. 

Tables II and III and Figures 4 and 5 show the results of 

encryption, decryption, HE addition and HE multiplication 

tests respectively, where: 

• Times in the last three columns (HE Library) are 

expressed in microsecond (µs); 

• Each operation was executed 1000 times and the times 

presented are the times to execute 1000 iterations; 

• We used 128-bit homomorphic encryption security level; 

• Ciphertext dimension is n; 

• Ciphertext modulus is q. 

Ciphertext dimension n shall be chosen on basis of desired 

security level and value of ciphertext modulus q. If ciphertext 

modulus q is bigger than noise budget it enables 

implementation more complex homomorphic evaluation 

function f i.e. implementation the function with bigger depth. 

Palisade library implements modular arithmetic schemes: 

BGV and BVF with 128-bit security level beginning from 

ciphertext dimension n = 2048.  

The public key encryption operation in BFV scheme has 

the best performance when the SEAL library is used. 

Performance difference depends on the ciphertext dimension: 

while the SEAL encryption is three times faster for the 

ciphertext dimension of 2048, when the ciphertext dimension 

is 32768, this factor is 1.3 times. The encryption operation has 

the best performance in BGV scheme when the Palisade 

library is used. Performance difference ratio decreases with 

the increase of the ciphertext dimension. The encryption 

operation in CKKS scheme for ciphertext dimension n ≥ 8192 

has the best performance when the HELib library is used, 

whereas in case of lower dimension n the best results are 

achieved by using SEAL library. 

 

TABLE II 

 PUBLIC KEY ENCRYPTION 

HE scheme 
HE parameters HE library  

n log2 q Palisade HELib SEAL 

BFV 1,024 27 - - 272 

BGV 1,024 27 - 1,783 - 

CKKS 1,024 27 585 482 257 

BFV 2,048 54 1,557 - 506 

BGV 2,048 54 1,560 3,608 - 

CKKS 2,048 54 1,173 997 479 

BFV 4,096 109 3,519 - 1,687 

BGV 4,096 109 3,493 7,833 - 

CKKS 4,096 109 2,753 2,288 1,926 

BFV 8,192 218 7,773 - 4,838 

BGV 8,192 218 8,116 17,817 - 

CKKS 8,192 218 7,538 4,664 5,688 

BFV 16,384 438 24,050 - 16,252 

BGV 16,384 438 25,926 44,796 - 

CKKS 16,384 438 23,183 12,581 19,344 

BFV 32,768 881 77,553 - 59,457 

BGV 32,768 881 78,639 109,340 - 

CKKS 32,768 881 76,406 39,890 71,373 

TABLE III 

 SECRET KEY DECRYPTION  

HE scheme 
HE parameters HE library  

n log2 q Palisade HELib SEAL 

BFV 1,024 27 - - 63 

BGV 1,024 27 - 13,047 - 

CKKS 1,024 27 415 3,159 10 

BFV 2,048 54 159 - 127 

BGV 2,048 54 133 49,096 - 

CKKS 2,048 54 809 5,104 19 

BFV 4,096 109 420 - 416 

BGV 4,096 109 353 192,351 - 

CKKS 4,096 109 1,432 14,279 72 

BFV 8,192 218 940 - 1,484 

BGV 8,192 218 1,012 763,178 - 

CKKS 8,192 218 6,038 48,960 290 

BFV 16,384 438 2,370 - 5,904 

BGV 16,384 438 3,690 3,033,690 - 

CKKS 16,384 438 13,776 183,254 1,166 

BFV 32,768 881 7,330 - 24,919 

BGV 32,768 881 14,941 12,003,497 - 

CKKS 32,768 881 51,960 701,913 4,826 

The decryption operation in CKKS scheme has the best 

performance by using SEAL library. The decryption operation 

in CKKS scheme when using SEAL is approximately 10 

times faster than when Palisade is used and more than 100 

times faster than when HELib is used. 

 The secret key decryption operation in BGV scheme 

performs better by several orders of magnitude in the Palisade 
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than in the HELib library. 

The decryption operation in BFV scheme for ciphertext 

dimension n ≥ 8192 has better performance when Palisade 

library is used, whereas in case of lower dimension n better 

results are achieved by using SEAL library. 

 
Fig. 4. Homomorphic encryption – addition operation time 

The ciphertext addition in CKKS scheme has the best 

performance in the HELib library. The ciphertext addition in 

CKKS scheme has better performance in the Palisade than in 

the SEAL library, but the differences are generally smaller 

than for the decryption operation. 

The ciphertext addition in BFV scheme has significantly 

better performance (more than 2 times faster) in the Palisade 

than in the SEAL library. 

The ciphertext addition in BGV scheme has significantly 

better performance (more than 4 times faster) in the Palisade 

than in the SEAL library. 

 
Fig. 5. Homomorphic encryption – multiplication operation time 

 The ciphertext multiplication is much more complex and 

more time consuming than ciphertext addition. Figure 4 

presents the time needed for performing homomorphic 

multiplication without relinearization procedure. 

 The cyphertext multiplication in CKKS scheme for 

ciphertext dimension n ≥ 8192 has the best performance when 

implemented in the Palisade library whereas in case of lower 

dimension n the better results are achieved using SEAL 

library. 

The cyphertext multiplication in BGV scheme for 

ciphertext dimension n ≥ 8192 has significantly better 

performance (more than 3 times faster) when implemented in 

the Palisade library than in the HELib whereas for lower 

ciphertext dimensions better results are achieved by using 

HELib library. 

The cyphertext multiplication in BFV scheme for ciphertext 

dimension n ≥ 4096 has better performance in the Palisade 
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than in the SEAL whereas for lower ciphertext dimensions 

slightly better results are achieved by using SEAL library. 

In addition, we compared execution time of homomorphic 

operations with no security level versus operations with 128-

bit security level. We have measured execution time of 

homomorphic operations in CKKS (approximate arithmetic) 

and BGV (integer modulo arithmetic) schemes that are 

implemented in the Palisade library. 

In the experiments we have got similar ratio of results for 

both schemes, so we present only results related to CKKS 

scheme. 

In the tests we have performed homomorphic operations by 

using following scenarios: 

1. No security level with ciphertext dimension n=512; 

2. 128-bit security level with ciphertext dimension 

n=32768.  

Each operation was executed 1000 times. In both scenarios 

it is used same value of ciphertext modulus q. 

We have got following results of homomorphic operations 

(CKKS scheme): 

• Public key encryption operation is about 69 times faster 

in scenario 1; 

• Private key decryption operation is about 46 times 

faster in scenario 1; 

• Homomorphic addition operation is about 45 times 

faster in scenario 1; 

• Homomorphic multiplication operation is about 48 

times faster in scenario 1. 

VI. CONCLUSIONS 

Homomorphic encryption allows performing computations 

on the encrypted data, without decrypting them. The paper 

compares the time needed to execute homomorphic 

operations, like, public key encryption, secret key decryption, 

addition and multiplication implemented in the open-source 

libraries: Microsoft SEAL, Palisade, and HELib. The 

operations are compared for BGV, BFV and CKKS 

homomorphic encryption schemes implemented in the 

libraries.  

Homomorphic operations that are performed at client side: 

public key encryption and secret key decryption if it is used 

BGV scheme (integer arithmetic) have the best performance 

when using methods that are implemented Palisade.  

Homomorphic operations that are performed at the server 

side: addition and multiplication are fastest when Palisade 

library is used for all three tested schemes, except for BGV 

addition and higher ciphertext dimensions in which cases 

HELib has slightly better performance.  

Execution time of homomorphic operations with no 

security level versus operations with 128-bit security level 

was performed and showed that all the operations are still by 

two orders of magnitude slower than when no security is used 

which presents an issue when complex machine learning or 

AI calculations are required.  

The performance of current fully homomorphic encryption 

schemes, especially for large parameters, can still be 

improved. Further improvement can be achieved by 

implementation low-level homomorphic operations in an 

assembly language which is executed on a hardware platform. 

Also it can be achieved better performance if homomorphic 

operations are implemented in hardware platforms like 

Graphics Processing Unit (GPU), Application-Specific 

Integrated Circuit (ASIC), and Field-Programmable Gate 

Array (FPGA). 
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