



Abstract — Designing custom-made hardware for special

purposes is a challenging process. During the development, it is

essential to take into consideration the required performance of

the device, component availability on the market as well as the

final price of the developed and assembled product. Almost every

modern hardware consists of various sensors, memories, AD/DA

converters and a microcontroller to control and manage the

interaction off all those devices. Based on the purpose of the

device being developed, the engineer has to make a decision on

the components that will be used in the final product. For this

decision to be justifiable, the engineer needs to have a very high

level of knowledge regarding the intricate world of interfaces

required to establish the intercommunication of the components

inside the device. Modern sensors, memories and AD/DA

converters usually require some form of a high-speed serial

interface, synchronous or asynchronous. In this paper we will

analyze the three most commonly used serial synchronous

communication interfaces: I2C, SPI and SPORT. Also, we will

explain the hardware and software properties and limits of every

mentioned synchronous serial interface. Finally, the benefits and

drawbacks of the chosen communication interfaces will be

considered and conclusions drawn.

Index Terms — computer engineering, embedded systems,

sensors, synchronous serial communication

I. INTRODUCTION

One aspect of designing new hardware is defining its

application and the other aspect is defining a set of features

the final product has to meet. The desired set of features can

be divided into a set of operational and environmental limits,

e.g. thermal resistance or voltage, and a set of desired

performance characteristics, e.g. bandwidth or noise levels.

This set of features limits the number of possible components

that can be used in the design of the hardware. Even when

limited with operational and performance characteristics, the

choice of available hardware components is enormous due to

a large number of manufacturers. Making the correct choice

of hardware in order to meet the desired characteristics

requires extensive knowledge [1-2]. One key decision to make

is the choice of the right communication interface that will be

used for intercommunication of the chosen components.

Predrag Petronijević is with Vlatacom Institute of High Technologies,

Milutina Milankovica 5, 11070 Belgrade, Serbia (e-mail:

predrag.petronijevic@vlatacom.com).

Vladimir Kuzmanović is with the Faculty of Mathematics, University of
Belgrade, Studentski trg 16, 11000 Belgrade, Serbia (e-mail:

vladimir_kuzmanovic@matf.bg.ac.rs).

Modern devices usually consist of various sensors,

memories, AD/DA converters and many other components

controlled by a microcontroller. This control is achieved by

establishing intercommunication between the microcontroller

and every component inside the device. In modern devices,

this communication is digital and standardized to conform to

one or more of the standard communication interfaces in use

today [3-4].

Interfaces used today can be divided into categories based

on the way the data is transferred between the devices. Two

criteria can be used for this division. The first criterion is

defined by the number of channels used in the transmission of

the data. If the data is transmitted bit by bit in a specific order

over a single channel, such transmission is called serial. If the

data is sent as multiple bits at the same time over multiple

channels, such transmission is called parallel. The other

criterion is defined by the way the data is sent. If the data is

sent in the form of a byte or a single character with start and

stop bits added to the data, such transmission is called

asynchronous because it does not require synchronization. If

the data is sent in the form of groups or frames, such

transmission is called synchronous because it requires

synchronization between sender and receiver. Synchronous

transmission is more reliable and full-duplex, while

asynchronous transmission is half-duplex [5].

Inter-Integrated Circuit (I2C) was discussed by Patel et al.

[6], Lynch et al. [7] and Blum [8]. Wootton in [9] described

the use of Serial Peripheral Interface (SPI) as a means of

communication between the CPU and various peripheral

devices. Gay in [10] described the properties of SPI and its

operation was described by Dogan in [11]. SPI and I2C were

compared in [12-13]. SPI, I2C and UART were analyzed in

[14-15].

In this paper we will address and compare the three most

commonly used synchronous serial communication interfaces

for intercommunication between various devices. Besides the

well-known and widely used I2C and SPI protocols, we will

also introduce Analog Devices proprietary SPORT protocol

and perform comparative analyses of the three serial

protocols. Section 2 of the paper introduces all three interfaces

with their hardware and software properties and requirements.

The next section analyses the benefits and drawbacks of these

serial interfaces. Finally, section 4 draws conclusions on serial

interfaces described in the paper.

Comparative analysis of intra-board

synchronous serial communication interfaces

Predrag Petronijević, Vlatacom Institute of High Technologies, Milutina Milankovica 5, 11070

Belgrade, Serbia

Vladimir Kuzmanović, Faculty of Mathematics, University of Belgrade

RTI3.4 Page 1 of 5

II. SYNCHRONOUS SERIAL COMMUNICATION

A serial communication protocol in which data is sent as a

continuous stream at a constant rate is described as

synchronous serial communication. For communication to be

called synchronous it is required that the clocks are

synchronized in both the transmitting and receiving devices.

The term synchronized refers to the clocks running at the

same rate, which enables the receiver to sample the signal at

the same intervals used by the transmitter. Synchronization of

clocks permits the omission of start and stop bits. As a

consequence, more information can be passed over a circuit

per unit of time than with asynchronous serial

communication.

Serial communication can be established via a

communication channel or a computer bus. It is mostly used

for long-distance communication and computer networks

where parallel communication is impractical. The

development of technology has made serial computer buses

more common at shorter distances, mostly as a basis for cheap

and simple intra-board communication between two or more

integrated circuits on the same printed circuit board connected

by signal traces and not external cables.

The three most commonly used synchronous serial

communication protocols for intra-board communication are

inter-integrated circuit (I2C), serial peripheral interface (SPI)

and Analog Devices synchronous serial peripheral port

(SPORT).

A. Inter-Integrated Circuit (I2C)

Inter-Integrated Circuit (I2C) is a synchronous, multi-

master, multi-slave, packet-switched and single-ended serial

communication bus invented in 1982 by Philips

Semiconductors. Today it is widely used for interfacing with

lower speed peripheral integrated circuits from a

microcontroller in short distance intra-board communication.

I2C emphasizes design simplicity and low manufacturing

costs over speed. It is usually used for accessing low-speed

AD/DA converters, controlling small displays, reading

diagnostic sensors, etc. I2C enables the microcontroller to

control a network of devices with just two general-purpose

input-output pins and software. Many other serial protocols

offer similar functionality but require more pins and signals to

interconnect multiple devices [16].

Hardware requirements for establishing I2C communication

are rather simple. Two bidirectional open collector or open

drain lines with typical voltages of +5V or +3.3V are required

for connecting the devices. These two lines are called Serial

Data Line (SDA) and Serial Clock Line (SCL). I2C bus speed

can range from 10 kbit/s to 5 Mbit/s depending on the revision

of the protocol. The bit rate is defined for transfer between

master and slave without taking into consideration any

protocol overhead. The overhead includes a slave address and

usually a register within the slave device and finally per byte

acknowledge (ACK/NACK) bits. This makes the actual

bitrate lower than the bitrate used would imply. High-speed

I2C is widely used in embedded systems, while lower speed

version is used in personal computers.

The reference design is a bus with clock (SCL) and data

(SDA) lines with 7-bit addressing to which the devices are

connected. Devices connected to the bus are referred to as

nodes. The number of nodes is limited by the address space

and by the total bus capacitance of 400pF. This restricts

communication distances to a few meters. In practice, I2C is

restricted to intra-board communication due to its relatively

high impedance and low noise immunity which requires a

common ground potential.

There exist two roles for the node on the bus: master and

slave. The device is referred to as the master if it generates the

clock and initiates communication with the slaves. The device

is referred to as the slave if it receives the clock and responds

when addressed by the master. The protocol supports multiple

masters and multiple slaves on the same bus. Also, the roles

of the device can be changed during its operation.

The protocol defines four modes of operation for a given

device on the bus: master transmits, master receives, slave

transmits and slave receives. Usually, each device on the bus

will use a single role with two predefined modes of operation.

Besides 0 and 1 data bits, the I2C defines special signals

which represent message delimiters. These signals are called

START and STOP signals which are distinct from data bits.

The communication between devices is as follows:

 The master is in master transmit mode and initiates the

transmission by sending the START signal followed by a 7-

bit address of the slave it wants to communicate with which

is followed by a single bit designating whether the master

wants to write to or to read from the slave.

 If the slave with the given address exists on the bus it

responds with the ACK bit for that address. Then, the

master continues to transmit either in transmit or receive

mode according to the bit set while the slave continues in

complementary mode.

The address and the data over the I2C bus are sent in MSB

mode. The START signal is a high-to-low transition of the

data line (SDA) with the clock (SCL) line high. The stop

signal is a low-to-high transition of SDA with SCL high. All

other transitions of SDA take place with SCL low. The device

which is in transmitting mode writes the data byte by byte to

the SDA line. The device in receive mode sends the ACK bit

after every byte. I2C transmission may consist of multiple

messages. The master terminates a message with a STOP

signal if it is the end of the transaction. If the master wants to

retain control of the bus for another message it sends another

START signal.

I2C physical layer is shown in Figure 1.

Figure 1. I2C physical layer

RTI3.4 Page 2 of 5

B. Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is a synchronous serial

communication interface developed by Motorola in the mid-

1980s [17]. It is used for short-distance communication in

embedded systems. It is typically used for interfacing with

memories, liquid crystal displays, sensors and AD/DA

converters.

Devices communicating over SPI are organized as a

master-slave architecture with a single master. The

communication is achieved in full-duplex mode. The master

device creates the frames for reading and writing. SPI

supports multiple slave devices through selection with

individual slave select lines. Sometimes, these lines are called

chip select (CS) lines. The SPI bus specifies four logic

signals:

 Serial clock (SCLK) – output from the master.

 Master Out Slave In (MOSI) – data output from the

master.

 Master In Slave Out (MISO) – data output from the

slave.

 Slave/Chip Select (SS/CS) – output from the master,

active low.

For the communication to be established between devices,

MOSI on a master device connects to MOSI on a slave

device. Slave/Chip Select line is used instead of software

addressing concept. Sometimes, MOSI on a slave device is

labeled as Serial Data In (SDI) and MISO is labeled as Serial

Data Out (SDO). This signal naming convention is used as an

unambiguous way of labelling the pins of master and slave

devices.

The SPI bus can operate with a single master device and

one or more slave devices. Most slave devices have tri-state

outputs so their MISO becomes high impedance when the

device is not selected. This allows multiple slave devices to

share common bus segments with each other.

For the communication to start, the master device has to

configure the clock signal using a frequency supported by the

slave. Then the master has to select the desired slave device

with the logic level 0 on the appropriate SS/CS line. If the

slave device requires a waiting period, the master device has

to wait for at least that period of time before it starts issuing

clock cycles on the SCLK line. During each cycle on the

SCLK line, a full-duplex transmission occurs. The master

sends a bit on the MOSI line and the slave reads it, while the

slave sends a bit on the MISO line and the master reads it.

This form of operation is maintained even when one-

directional data transfer is intended.

Besides configuring the clock frequency, the master also

needs to configure the clock polarity (CPOL) and clock phase

(CPHA) with respect to the data. CPOL determines the clock

polarity. CPOL value 0 defines a clock signal which idles at

logic level 0 and each cycle consists of a pulse of 1. This

translates to the leading edge being rising and the trailing edge

is falling. CPOL value 1 defines the opposite. The clock idles

at logic level 1 and each cycle consists of a pulse of 0. CPHA

determines the timing of the data bits relative to the clock

pulses. CPHA value 0 defines that the “out” side changes the

data on the trailing edge of the preceding clock cycle, while

the “in” side captures the data on the leading edge in the clock

cycle. CPHA value 1 defines the opposite. The “out” side

changes the data on the leading edge of the current clock cycle

while the “in” side captures the data on the trailing edge of the

clock cycle.

Finally, SPI supports word sizes that are not limited to 8-bit

words but can range up to 32-bit words. Also, message size is

arbitrary, as is its contents and purpose. The signal lines are

shared between multiple devices, except for the slave select

line which is unique per slave.

Its versatility, high speed and easy implementation coupled

with board real estate savings compared to parallel buses have

made it popular in many applications today. SPI interface is

widely used in embedded systems for interfacing various

sensors, control devices, memories and liquid crystal displays.

SPI physical layer is shown in Figure 2.

Figure 2. SPI physical layer

C. Synchronous Serial Peripheral Port (SPORT)

Synchronous Serial Peripheral Port (SPORT) is Analog

Devices proprietary synchronous serial communication

interface that supports a variety of serial data communication

protocols. Key features of SPORT are continuously running

clock and serial data words from 3 to 32 bits in length either

most- or least-significant bit first. The protocol also supports

two synchronous transmit and two synchronous receive data

signals which double the total supported data stream. Finally,

frames are synchronized with configurable synchronization

signals [18].

For the SPORT interface to be established between two

devices, the standard defines the following eight signals:

 Transmit Data Primary (DT0)

 Transmit Data Secondary (DT1)

 Transmit Clock (TSCLK)

 Transmit Frame Sync (TFS)

 Receive Data Primary (DR0)

 Receive Data Secondary (DR1)

 Receive Clock (RSCLK)

 Receive Frame Sync (RFS)

The values for clocks are independent and can be calculated

by dividing the SCLK of the microcontroller with the correct

value. The SPORT clocks are calculated with the following

formula:

))1(2(


VSPORTCLKDI

SCLK
CLKSPORT

The smallest value the divisor SPORTCLKDIV can have is

zero and the greatest value is 65535. TSCLK and RSCLK are

RTI3.4 Page 3 of 5

independent and thus can have different values of

SPORTCLKDIV. Depending on the value of SCLK and

SPORTCLKDIV, the clock values for SPORT can be as high

as 60 MHz or as low as 1 kHz. By default, the primary

transmit and receive channels are enabled while the secondary

transmit and receive channels are disabled.

Frame sync signal can be divided into early frame sync and

late frame sync. Early frame sync is active for one clock pulse

and then deactivates. Once the signal has been deactivated,

valid data will be available. Late frame sync signal frames

valid data and is active for the length of time that valid data is

available. The signal is deactivated once the word to transmit

or receive is fully sent.

SPORT protocol is proprietary and is supported by a

majority of Analog Device microcontrollers and various types

of integrated circuits for numerous applications. Such

applications range from AD/DA converters, sensors,

memories, health applications, smart industries, etc. Also,

with a range of clock and frame synchronization options, the

SPORT interface allows a variety of serial communication

protocols and provides a glueless hardware interface to many

industry-standard data converters and CODECs [19-20].

SPORT physical layer is shown in Figure 3.

Figure 3. SPORT physical layer

III. COMPARATIVE ANALYSIS

I2C, SPI and SPORT all are synchronous bidirectional

serial interfaces with considerable differences. The first

obvious difference is the number of signals needed to

establish communication between devices. The signals and

number of lines required for establishing communication with

each interface are displayed in table 1.

Table 1. Signals required for establishing communication

I2C SPI SPORT
SDA

Serial Data

MOSI

Master Out Slave In

DT

Serial Data Transmit

SCL

 Serial Clock

MISO

Master In Slave Out

DR

Serial Data Receive

 SCLK

Serial clock

TFS

Transmit Frame Sync

 SS

Slave select

RFS

Receive Frame Sync

 TCLK

Transmit Clock

 RCLK

Receive Clock

Considering the number of signals it is obvious that SPI and

SPORT are full-duplex, while I2C is half-duplex. Also, one

other property to note is that I2C is a multi-master multi-slave

interface, while SPI and SPORT are single-master multi-slave

interfaces.

 Data transfer should also be considered when choosing the

protocol to be used in the final product. The limits for data

transfer are displayed in table 2.

Table 2. Data transfer limits

I2C SPI SPORT
100 kbit/s – 5 Mbit/s

Predefined values
depending on version

Depending on the

implementation
Usually in range

n x MHz to 10n x MHz

n – number of devices
connected to a single

master

SCLK/2 Mbit/s

SCLK – processor
clock frequency

The advantages of I2C over SPI and SPORT are the ease of

linking multiple devices and the fact that cost and complexity

do not scale up with the number of devices. The limitation of

I2C is numerous. The first is its slave addressing scheme and

its relatively low number of possible addresses which may

lead to address collisions. One other limitation is the number

of supported speeds which need to conform to a certain

standard. Since I2C is a shared bus there exists a possibility

that a single device could hang the entire bus. This happens if

any device holds the SDA or SCL lines low, which prevents

the master from sending START and STOP signals and reset

the bus. Also, starvation is possible where a slower device

starves the bandwidth needed by faster devices and thus

increases latencies when other devices are addressed. Taking

all this into consideration it is advisable to use I2C for

communication with on-board devices that are accessed only

occasionally with no need for low latencies and high-speed

bidirectional communication.

The advantages of SPI over I2C and SPORT are complete

protocol flexibility with variable size words and arbitrary

choice of message size, contents and purpose. Also, hardware

interfacing is easy. Slaves do not need a unique address since

they are addressed with a per slave chip select line and slave

devices do not need precision oscillators since they use the

master's clock. Disadvantages compared to I2C are the

increased number of pins required for communication and the

lack of slave ACK which enables the master to transmit data

to nowhere without knowing it. Also, SPI protocol supports

only one master, does not have a formal standard so validating

conformance is impossible and does not support dynamically

adding nodes. Taking all this into consideration, SPI is

applicable in situations where the data transfer is organized in

packets of arbitrary size and full-duplex. Also, it is applicable

when there are a number of slaves communicating with the

same SPI modes, because frequent changes of SPI mode

severely impact the performance of communication.

Compared to the other two protocols, the main advantage of

SPORT protocol is the support for multichannel transmits and

receives of up to 128 channels. Also, a wide selection of data

sizes is also a benefit as is the programmable polarity of both

frame sync signals and data receive and transmit clocks.

Finally, significantly higher data rates and double-buffered

data registers that allow continuous data stream are a big

advantage compared to both SPI and I2C. The main

RTI3.4 Page 4 of 5

disadvantages of SPORT are the fact that it is proprietary and

supported only by Analog Devices products and that the

complexity of supporting software components can be higher

than that of competing schemes.

IV. CONCLUSION

In this paper we presented the three most commonly used

synchronous serial protocols. The introduction showed that

the engineer needs to have a broad knowledge regarding

communication protocols to be able to make the right choice

on the protocol to be used with respect to the desired

operational and performance limits as well as to justify the

proposed design. I2C, SPI and SPORT are presented in detail

and their properties, requirements and applications are

discussed. Finally, the benefits and drawbacks of all three

mentioned protocols are compared and analyzed which led to

the conclusion on the suitability of the protocols in various

scenarios. In the future, we intend to further research

asynchronous communication protocols and their properties as

well as inter-board communication protocols. We will focus

on Controller Area Network (CAN) and Universal

Asynchronous Receive Transmit (UART).

ACKNOWLEDGMENT

The research is founded by the Vlatacom Institute of High

Technologies under project #161 V155MM.

REFERENCES

[1] J. Staunstrup, W. Wolf, “Hardware/Software Co-Design: Principles and

Practices,” Springer Science & Business Media, 1997.

[2] P. Horowitz, W. Hill, “The Art of Electronics, 3rd edition,” Cambridge
University Press, 2015.

[3] J. Cowley, “Communications and Networking: An Introduction,”

Springer, 2007.
[4] IBM Corporation, “Data Communications Primer,” Form C20-1668-0.

[5] J. Patrick, “Serial Protocols Compared,” Embedded Staff, May 31,

2002, available at: https://www.embedded.com/serial-protocols-

compared/.

[6] S. Patel, P. Talati, S. Gandhi, “Design of I2C Protocol,” International

Journal of technical innovation in Modern Engineering & Science, Vol

5, no. 3, pp. 741-744, 2019.
[7] K. M. Lynch, N. Marchuk, M. L. Elwin, “I2C communication,”

Embedded Computing and Mechatronics with the PIC32, Newnes,

2016.
[8] J. Blum, “The I2C Bus,” Exploring Arduino; Tools and Techniques for

Engineering Wizardry, 2nd Edition, 2019.

[9] C. Wootton, “Serial Peripheral Interface (SPI),” Samsung Artik
Reference, Apress, Berkeley, 2016.

[10] W. W. Gay, “SPI Bus,” Mastering the Raspberry Pi, Apress, Berkeley,

2014.
[11] I. Dogan, “Serial Peripheral Interface Bus Operation,” SD Card Projects

Using the PIC Microcontroller, Newnes, 2010.

[12] F. Leens, “An introduction to I2C and SPI protocols,” IEEE
Instrumentation & Measurement Magazine, vol. 12, no.1, pp. 8-13,

2009.

[13] D. V. Gadre, S. Gupta, “Serial Communication: SPI and I2C,” Getting
Started with Tiva ARM Cortex M4 Microcontroller, Springer, 2017.

[14] A. Subero, “USART, SPI and I2C: Serial Communication Protocols,”

Programming PIC Microcontrollers with XC8, Apress, Berkeley, 2017.
[15] S. Shanthipriya, S. Lakshmi, “Design and verification of low speed

peripheral subsystem supporting protocols like SPI, I2C and UART,”

ARPN Journal of Engineering and Applied Sciences, vol. 12, pp. 7368-
7391, 2017.

[16] A.K. Oudjida, M.L. Berrandjia, R. Tiar, A. Liacha, K. Tahraoui, “FPGA

Implementation of I2C & SPI Protocols: a Comparative Study,” DOI:
10.1109/ICECS.2009.5410881, 2009 16th IEEE International

Conference on Electronics, Circuits and Systems - (ICECS 2009),

Yasmine Hammamet, Tunisia, 13-16. December, 2009.
[17] Motorola, Freescale, NXP, “SPI Block Guide v3.06,” 2003.

[18] B. Prabhalika, M. Kiran Kumar, “Fpga implementation of Design and

verification Synchronous serial port(S-PORT),” ISSN: 2321-9939,
International Journal of Engineering Development and Research IJEDR,

India, 2013.

[19] A. Vasudev Prabhugaonkar, J. Rayala, “Interfacing AD7676 ADCs to
ADSP-21365 SHARC® Processors,” Engineer-to-Engineer Note EE-

248, Analog Devices, Rev 1, October 7, 2004.

[20] “Implementing UART Using the ADuCM3027/ADuCM3029 Serial

Ports,” Application Note AN-1435, Analog Devices, Norwood, MA,

2017.

RTI3.4 Page 5 of 5

https://www.embedded.com/serial-protocols-compared/
https://www.embedded.com/serial-protocols-compared/

