
 

 
 

 
 
 
 

Abstract—This article covers the development of the interface 
dedicated to converting CAD models into some universal 
computer readable form – Excel spreadsheet. Main intention is 
transcription of complex models’ geometry and coloring to 
numerical database. First the article will describe the process of 
saving CAD models in compatible form and its conversion to 
Microsoft Excel spreadsheets via a set of MATLAB’s designated 
scripts and functions. Main focus is forming a set of significant 
points meant to guide the industrial robot’s end effector to 
outline (with a laser pointer) the surface of the object that’s in 
contact with the work desk. At the end, the given trajectory will 
be shown in MATLAB’s plotter and correspondent Excel table.  

 
Index Terms—CAD; MATLAB; Microsoft Excel; Path 

planning; Industrial robots 
 

I. INTRODUCTION 

MASS production as a leading example of XX century 
rapid development is slowly but consistently being replaced 
by mass customization. Its elementary feature is the use of 
flexible computer-aided manufacturing systems to produce 
custom output. Such systems combine the low unit costs of 
mass production processes with the flexibility of individual 
customization. 

Even though integrating robots to manufacturing and 
assembly processes started long time ago, new problem 
opposes: How to program the robot in such way so production 
lines become more flexible in terms of fulfilling customer 
demands? For example, if it happens that there is a specific 
requirement on only one product, it is necessary to program 
the entire workstation in accordance with the requirement. 
After performing the task, it needs to be reprogrammed for the 
prior purpose. All this work is forming expenses, both the 
financial ones and also in form of human resources, i.e., the 

 
Uroš Ilić is with the Faculty of Mechanical Engineering, University of 

Belgrade, 16 Kraljice Marije, 11020 Belgrade, Serbia (e-mail: 
ilicuros01@gmail.com) 

Jovan Šumarac is with the Institute Mihajlo Pupin, University of Belgrade, 
15 Volgina, 11020 Belgrade, Serbia (e-mail: jovan.sumarac@pupin.rs) 

Ilija Stevanović is with the Institute Mihajlo Pupin, University of 
Belgrade, 15 Volgina, 11020 Belgrade, Serbia (e-mail: 
ilija.stevanovic@pupin.rs 

Aleksandar Rodić is with the Institute Mihajlo Pupin, University of 
Belgrade, 15 Volgina, 11020 Belgrade, Serbia (e-mail: 
aleksandar.rodic@pupin.rs) 

 

engagement of engineers and/or programmers. 
With the advent of factory digitalization and Industry 4.0, 

the whole world is moving towards factories with no or 
minimal number of workers. For this purpose, we strive for 
remote control of production systems, i.e., robots, both on 
production tasks and on assembly lines. With that in mind, it 
is necessary to develop such system where it is possible to 
control individual robots (manipulators). One of the 
conceptual solutions is forming a database within the cloud, 
which could be accessed simultaneously by the robot, which 
performs the assembly, and a programmer, who would work 
on updating the database itself. 

II. OBJECTIVES OF CAD SYSTEMS AND ROBOTIC 

CONTROLLER INTEGRATION 

Each of the designed parts will, firstly, be modeled in 
Solidworks® environment, and then exported with the 
appropriate extension. Such files are imported into MATLAB 
and, afterwards, exported to Microsoft Excel spreadsheets. 
This type of data storing is found convenient for later use by 
numerous programming languages such as C, C++, Python or 
MATLAB itself once again. For each of the imported models 
in MATLAB, a set of designated points in space with TCP’s 
approach vector will be formed.  

The final goal is to generate the trajectory of TCP with the 
given information, and thus solve the inverse kinematic 
problem of the manipulator. In other words, it is necessary to 
form a sequence of matrices of significant points’ coordinates 
along with approach vector’s x-y-z components, which will 
unambiguously determine the position of the robot's segments 
when moving, i.e., performing a certain technological 
operation. 

All gathered information will be integrated into the 
database and the robot will, based on the data it receives from 
the camera, with the help of artificial intelligence, define 
which parts are in front of it, and in which position and 
orientation. Based on all of that, the robotic system will 
choose the appropriate technological operation of assembly or 
manufacturing process. Finally, with the given information, 
the robot can initialize, first the formation of the trajectory, 
and afterwards its realization. 

Interface development dedicated to connecting 
CAD tools for 3D modeling of complex objects 

and industrial robot’s controller 

Uroš Ilić, Jovan Šumarac, Ilija Stevanović, Aleksandar Rodić 

ROI1.2 Page 1 of 6



 

III. USING SOLIDWORKS® SOFTWARE FOR DESIGNING 

COMPLEX OBJECTS 

Solidworks® is a solid modeling computer-aided design 
(CAD) program that’s suitable for designing numerous 
complex objects. In this particular case various mechanical 
components are modeled and used for development of the 
interface. Some of these objects are shown on Figure 1.  

 

 
 
Fig. 1.  Representation of typical complex objects found in the machine 
industry. These objects are chosen as they represent various kinds of 
assemblies, depending on interrelation of the parts. 

 
The selected assemblies are some of the most common 

types in the machine industry and assembly processes. They 
are listed gradationally, so that simpler assemblies are 
described first. The simplicity of the assembly is observed 
from the aspect of the number of possible mutual positions 
that the parts can or must take to form an assembly. 

A. Axle with bearings 

This is one of the simplest mounting assemblies. In 
layman's terms, bearings can be found in infinitely many 
positions with the axle. This statement is justified by the axial 
symmetry of the parts that enter the assembly. It is necessary 
to achieve the appropriate positions immediately before the 
assembly process and perform a simple translation in order to 
form an assembly. Their model is shown in Fig. 1 in upper-
left corner. Even though bearings need significant force to be 
mounted, this assembly is only used in the field of robot 
kinematics. 

B. Simple puzzle 

This form represents a more complex assembly than the 
previous one since only 4 mutual positions in the assembly are 
possible. They are achieved by a 90° rotation around the 
mounting axis. If the parts are not marked, the observer will 
not even be able to distinguish the different positions. Even 
though this type of the simplest puzzle is not typically found 
in the industry it’s just a mere representation of assembly of 
prismatic shapes. It is shown in Fig. 1 in upper-right corner. 

C. Linear guide rail 

Classical example of a linear bearing, that is actually an 
assembly that can only be formed in a certain way. The guide 
and the slider must be brought to a precisely determined 
position and orientation in order for the assembly to be 
formed by a simple translation or inserting the slider into the 
guide. This assembly is shown on Fig. 1, bottom-left corner. 

D. Spherical vessel 

Unlike the other parts, it is not given in some of the 
standard views (isometry, trimetry ...). The given view (Fig. 1, 
bottom-right corner) is selected to show the grooves for 
closing and opening. This type of assembly is one of the most 
complex assemblies that can be found on the assembly line. It 
is necessary to bring both hemispheres to a position in which 
the tongue of the upper part coincides with the slit of the 
lower part. After connecting the hemispheres, it is necessary 
to rotate them by a certain angle and thus achieve the 
formation of the assembly, i.e., sealing the spherical vessel. 

E. 3D puzzle pyramid  

This type of assembly was taken into consideration as an 
example of the most complex technological assembly 
operation. The pyramid consists of 5 parts. It is necessary to 
assemble them in a specific order. An additional aggravating 
circumstance is the difficulty of distinguishing the parts of the 
pyramid itself. For this purpose, the outer sides of the parts 
are painted with various colors, while the inner sides are 
painted with the characteristic color of wood. The idea is to 
assemble the pyramid by a two-handed manipulator in some 
of the future works. Both assembled and disassembled 
pyramid is shown in Figure 2, respectively. 

 

 
 

Fig. 2 – Comparison of assembled and disassembled pyramid.  The 
complexity of parts’ interrelationships can be seen on the figure. 

IV. SURFACE TRIANGULATION, DATA EXPORT AND OBJECTS’ 

DATABASE CREATION 

In order for the parts and its CAD models to be readable by 
the robot’s control unit, it is necessary that the geometry data 
of those parts is stored in numerical format. For this purpose, 
Microsoft Excel spreadsheet is chosen. Apart from being 
compatible with numerous programming languages, it is also 
easy to be reviewed by the user of the interface.  

Of course, direct conversion from CAD models to Excel 
spreadsheets is not possible. Therefore, the MATLAB 

ROI1.2 Page 2 of 6



 

software package will be used, where the procedures for the 
indirect conversion of parts from the Solidworks® 
environment into an Excel spreadsheet will be written. In 
order for all this to be feasible, it is necessary to export the 
CAD model in the appropriate format. Figure 3 represents the 
flowchart of this method.  

 

 
 

Fig. 3 – Flowchart representing the process of transferring the CAD model to 
the designated Excel spreadsheet with a mesh model’s representation in 
MATLAB plotter 

 
Of all the possible extensions that Solidworks® supports, 

only two solutions are significant - STL format (.stl) and 
VRML format (.wrl). Although the selection of each of them 
entails certain advantages and disadvantages, that are 
presented in Table 1.  

 
TABLE I 

COMPARISON OF CHOSEN EXTENSIONS’ CHARACTERISTICS 

 

Format 
(extension) 

Advantages Disadvantages 

VRML 
(.wrl) 

Ability to work with 
colors and their RGB 

vectors 

Poorly 
researched topic; 
Lack of support 
on MATLAB 

forums 

STL  
(.stl) 

Relatively easy 
import to MATLAB; 
Very strong support 
within the MATLAB 

community 

Able to store 
only geometry 
data, but not 

coloring of the 
faces 

 

A. STL files 

The abbreviation STL (Standard Triangle Language) 
represents a format suitable for 3D printing, i.e., 
stereolithographic methods in general. The format is 
characterized by triangulation of surfaces, i.e., division of 
surfaces into triangles. Figure 4 shows the process of forming 
a STL file.  

 

 
 

Fig. 4 – From the amorphous structure of the torus shape represented with 
dotted red line in the picture, a multitude of triangles is formed (one of which 
is marked in blue). 

 
If it is amorphous, i.e., the more complex the surface, the 

greater the number of triangles in the network and vice versa. 
It is quite certain that simple geometric surfaces such as 
rectangles or squares will be divided into only two triangles, 
while circles and elliptical shapes will be divided into a 
finitely large number of triangles. Every STL file is 
characterized with connectivity matrix, coordinates of every 
point and each triangle’s normal vector. The connectivity 
matrix has dimensions 3xn, where n represents number of 
triangles. This matrix defines what points form what triangle, 
respectively. Each triangle has its own corresponding normal 
vector represented with a unit vector. 

B. VRML files 

The VRML (Virtual Reality Modeling Language) format 
was created at the end of the last century with the intention of 
displaying three-dimensional vector graphics objects. The 
main emphasis was on the implementation of this format in 
internet communication, especially web presentations. These 
types of files (although their extension is *.wrl) are actually 
textually formatted and very easy to read by humans. Of 
course, by reading only a text file, one cannot create the body 
image that the file describes. Therefore, MATLAB will be 
used, which will read certain segments of the file, convert 
them into numerical values and form from them, first a mesh 
model, and then an Excel spreadsheet.  

As mentioned in Table 1, VRML files have the ability to 
store information about faces’ coloring. Information about 

ROI1.2 Page 3 of 6



 

coloring is stored in similar way like those for normal vectors. 
For each generated triangle a three-dimensional vector is 
formed that describes primary colors in additive color 
synthesis. Each component represents the amounts of red, 
green and blue, respectively.  

 

C. Creating the database 

After successfully exporting the models in suitable form, 
it’s needed to import them in the MATLAB’s environment.  
After loading the file’s full name, the designated function 
makes the spreadsheet with the same name as the STL/VRML 
file. Given spreadsheet is formatted in such manner (merging 
cells, naming the titles, etc.) that is appropriate for following 
code to fill in the information about triangulation 
(connectivity matrix), coordinates, normal vectors and, 
regarding the VRML file, the coloring too. 

When reading of the chosen format is done, designated 
script stores significant values in appropriate matrices and 
starts filling in the Excel spreadsheet. If chosen format is STL, 
the script uses modified version of downloaded function 
stl_read(), made by MATLAB community. On the other side, 
if it’s needed to convert the VRML file, the script calls 
designated function wrl_read(), that, firstly convert’s the 
VRML file to text file and extracts desired strings of text that 
contains information that’s needed to fill in the Excel 
spreadsheet. These strings are converted into numerical form 
and saved as matrices, that, as in previous case, fill in the 
database. 

In Figure 5 a typical Excel spreadsheet with CAD model’s 
info is represented. The spreadsheet is cut in half over the J-
column in order to fit the formatting of this article.  

 

 
  

Fig. 5 – The appearance of the Excel spreadsheet that originated from 
model’s VRML file. This screenshot shows data only for first 10 triangles, 
even though the number of triangles can be measured in thousands for 
amorphous surfaces. 

 

Here, a user can see from what vertices the triangles are 
format, e.g., the vertices numerated as 7,2 and 9 form the first 
triangle. Their coordinates in local coordinate system can be 
read in the neighboring table. Components of the normal unit 
vector for the first triangle can be read from cells L3 to N3 
and its RGB coloring vector can be found in cells Q3:S3. Note 
that this spreadsheet came from conversion of the VRML file, 
since it has information about the coloring. The spreadsheet 
formed from STL files is practically the same without the last 
(fourth) table describing the colors. 

Note that the tables always start from the same cell, no 
matter what model is being converted. Only change is number 
of rows in the Excel file. This feature enables making the 
universal MATLAB function for reading Excel spreadsheets 
and storing the values in corresponding matrices. 

V. GENERATING MESH MODELS FROM 3D DATABASE 

As a verification of the stored data, it’s needed to read the 
spreadsheet and visualize that numerical information with a 
mesh model. If and only if the mesh model made by 
MATLAB plotter is same as initial CAD model, the code can 
be verified. 

Firstly, the code calls the Excel file with desired name and 
starts reading the data from the tables. For every table read, it 
stores the values in corresponding matrix. After that, an 
already built-in functions form a three-dimensional mesh from 
the connectivity list (first table in the spreadsheet) and 
corresponding coordinates of given vertices (second table in 
the spreadsheet). Afterwards, each normal unit vector is 
drawn with the origin in triangle’s centroid. If we’re working 
with the STL files, all triangles will be painted with the same 
color. On the other side, if the user is converting the VRML 
file, each triangle will be colored with their correspondent 
RGB vector. Figure 6 shows the CAD model of an axle on the 
left and the result of reading the spreadsheet on the right. This 
is the result of converting the STL files.  

 

 
 

Fig. 6 – The result of the conversion of the CAD model to Excel spreadsheet 
and back again to MATLAB’s mesh model. Coloring of the mesh model can 
be changed to any color, but whole model must be colored uniformly 
 
 On the other side, if we chose to export the CAD model as 
a VRML file, it will store its original coloring and represent it 
in its original colors in MATLAB plotter. Figure 7 shows a 
mesh model with surface vectors of 3D puzzle pyramid’s red 
part in its original coloring. As it was said earlier the parts’ 
outer surface is colored differently, but their inner sides depict 
wood’s natural coloring. 

ROI1.2 Page 4 of 6



 

 
 
Fig. 7 – 3D puzzle pyramid’s corresponding mesh model of the red part 
shown in MATLAB plotter. Outer face is colored with red and inner ones are 
with color of wood, just like we colored them in Solidworks®. Blue arrows 
pointing outwards represent normal unit vectors of each triangle. 

VI. DEFINING THE CONTOUR OF THE OBJECT AND 

CORRESPONDING SIGNIFICANT POINTS 

The procedure for defining the path that will enable the 
TCP to outline the surface lying on the desk is given on the 
figure 7 in form of the flow chart. This flowchart represents 
the second part of the whole process – the extraction of the 
numerical data of modeled parts.  

The first step is to acquire the information of the object on 
the work desk. The camera will recognize the object lying on 
the desk and its position and orientation. Let’s say that camera 
recognized the object on Figure 7. With the help of artificial 
intelligence, desired object’s information will be found in the 
database. With the knowledge of position of the object in 
global, i.e., robot’s coordinate system, object’s local 
coordinate system will be transformed. Hence the vertices in 
contact with the desk will change. Therefore, we’ll know the 
exact vertices lying on the desk, and their coordinates in 
global coordinate system. 

The problem occurs if the shape of the face is oval or circle-
shaped. Since the triangulation transforms the circle into a 
polygon, the center of the circle becomes the vertex that’ 
included in all triangles. Even though it has its z-coordinate 
equal to zero, we must eliminate it too in order to form a 
closed polygon. 

With the points extracted from the Excel spreadsheet, the 
2D polygon of the surface is made. On Figure 8 the polygon is 
drawn with red lines with normal vectors pointing outside. 
The face represented on the Figure is actually the outer side of 
the puzzle’s part – the red side. 

  When the polygon representing the contour of the object 
lying on the work desk is constructed, we advance to forming 
a trajectory of the tip of the end-effector of the robot. As said 
earlier, the laser pointer will be attached to the end-effector 
that will outline the contour of the object. In order to do such 
a thing, we must make another polygon with desired offset 
from the edges of the initial polygon.  
 

 
 

Fig. 7 – A flowchart depicting the process of the creation of significant 
points of TCP’s path outlining the lying surface of the given object 

 
The newly formed polygon is actually a modified 

enlargement of the surface’s contour with rounded edges. It is 
constructed in a for-loop that goes over every point and 
checks if it’s in a convex or concave vertex. The whole 

ROI1.2 Page 5 of 6



 

process of creating the rounded enlarged polygon from the 
initial one can be described with the following steps: 

 First, every edge is shifted outwards for desired 
distance. Now, instead of closed polygon, we have 
a set of disconnected lines, but with preserved 
lengths. 

 For every vertex of the contour, algorithm checks 
whether they’re convex or concave 

 If they are convex, a new middle point is added, so 
that end effector outlines the convex vertex in a 
radius 

 If, on the other hand, the vertex is concave, two 
significant points are replaced with one and therefore 
radius is made again in order to avoid collision.  

After this part of the algorithm completes the whole contour 
and the last vertex is formed, the potential trajectory of the 
TCP is plotted in 2D diagram, as represented in Figure 8. 

 

 
 

Fig. 8 – Newly generated trajectory of the end effector. It can be seen that one 
of the vertices is concave, hence a collapsing of neighboring points occurred. 
It can also be seen that the edges have been shifter outwards in the direction 
of normal unit vector. 

 
In every, newly generated, significant point, the end 

effector’s approach vector is computed. Approach vector will 
always have direction from the significant point to the 
correspondent point within the contour. Every point’s position 
and approach vector’s components are then stored in an Excel 
spreadsheet, as shown on Figure 9. 

 

 
 

Fig. 9 – The look of the Excel spreadsheet containing the information about 
TCP’s position (left part) and end-effector’s approach vector outlining the 
object’s surface on the table. The Z coordinates are the function of the desired 
angle of the laser’s beam. 

VII. CONCLUSION 

Although the given example is a simple problem, it 
represents the new way of transcribing and eventually storing 
the numerical representation of complex geometry objects. 
This way of storing the data (in Excel spreadsheets) is chosen 
because it is the best way for a human eye to examine the 
data. This data can be stored in any file that is suitable for 
reading as long as the programmer knows how to 
store/look/extract the information.  

It is clear that this process doesn’t give homogeneous 
transformational matrices for every significant point. The idea 
is to store information in that way that can be easily retrieved 
by robot’s controller or any other computing unit meant for 
simulation or robot control.  

ACKNOWLEDGMENT 

The results presented in the paper are obtained in the scope 
of the research projects: „Development and Experimental 
Performance Verification of Mobile Dual-Arms Robot for 
Collaborative Work with Humans“, Science and Development 
Program – Joint Funding of R&D Projects of the Republic of 
Serbia and the People's Republic of China, contract no. 401-
00-00589/2018-09, 2018-2021 and national R&D project no. 
TR-35003, both supported  by the Ministry of education, 
science and technology development of Republic Serbia. 

 

REFERENCES 
 
[1] Peddie, Jon, The history of visual magic in computers: how beautiful 

images are made in CAD, 3D, VR and AR, 1st ed, London, 
Springer,2013 

[2] Tseng, M.M.; Jiao, J. (2001) “Mass Customization”, in: Handbook of 
Industrial Engineering, Technology and Operation Management New 
York, NY: Wiley, 2001, 978-0-471-33057-8  

[3] J. J. Uicker, G. R. Pennock, and J. E. Shigley, Theory of Machines and 
Mechanisms, New York, Oxford University Press, 2003 

[4] Paul Festa and John Borland, "Is a 3D web more than just empty 
promises?". CNET News.com, May 19, 2005. 

[5] P. Corke, Robotics vision and control. Fundamental algorithms in 
MATLAB®, 3rd ed, London, Springer, 2011 

ROI1.2 Page 6 of 6




