
 

  

Abstract—In this paper, we present a computer vision system 

for object detection and spatial position and orientation 

recognition. To solve the problem, we separated the process in 

several stages: in the first stage the system uses principal 

component analysis (PCA) method in optimal conditions to detect 

objects in the image. Then, after the object is extracted, we 

projected it in the appropriate eigenspace, produced by singular 

value decomposition (SVD) of the set of images of the rotated 3D 

CAD model. The closest match is then processed by correlation 

between it and the real-object image in log-polar space. The result 

is combined with information from other cameras to derive the 

approximate position and object orientation using multiple-view 

geometry.  
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I. INTRODUCTION 

The problem of object detection in images is one of the oldest 

in computer vision [1] and has over the years been solved by 

various methods, among which are neural networks and 

principal component analysis (PCA). Convenient in the sense 

that they only require a set of training data to extract key 

features from objects, they provide vastly accurate 

classification results. However, as the accuracy rises so does 

the required memory, which is also the case as the complexity 

of objects rises.  

In industrial robotics we require the robot arm to handle 

objects of varying complexities, ranging from simple boxes to 

machine parts. In these cases, a camera is a good tool to use to 

scan the scene and retrieve information about objects. The 

problem arises when we need to do more than classify an 

object. Assuming we are only provided with several cameras, 

we aim to get the most information about the scene which 

would be the position and orientation of objects.  

We will aim to decrease the amount of images necessary to 

train the neural network, or in the case of principal component 

analysis [2] to eliminate the need for them altogether and 

instead only use the 3D CAD models provided. The CAD 

models are used to obtain reference images of their respective 

objects in different positions [3]. From these images we 
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calculate the histogram of oriented gradients (HOG) and use 

them for singular value decomposition (SVD) based on the idea 

that these features are enough to determine, at least the 

approximate, orientation of an object. Following this, we will 

use correlation of gradient data in log-polar space which is 

rotation and scale invariant. Additionally, we will analyze the 

speed of the algorithm to determine whether it can be used for 

moving objects. We will test the system on a set of simple 

objects (cube, cuboid, cylinder and pyramid) of different colors 

(red, blue, green, brown, orange, black). In future work, we will 

attempt to use the system on more complex objects such as 

machine parts or 3D wooden puzzle pieces. 

 

 
 

Fig. 1.  Scene setup with simple objects of multiple colors on a table.  

II.  THE ROLE OF ROBOT VISION AND 3D CAD MODELING IN 

TRAJECTORY PLANNING 

To understand the need for proper object position and 

orientation recognition, we look at an example of a robot 

grappler arm. We assume the objects are still and placed on a 

table in various positions. To successfully grab an object, the 

robot arm must be placed so that the object does not slip from 

its grasp. Additionally, a robot may need to navigate between 

objects and in such cases the knowledge of their position and 
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orientation is crucial [1]. Camera images can be used to 

determine the approximate position of an object using multiple-

view geometry, after knowing the exact or approximate 

positions of the cameras. In this case we assume camera 

positions are unknown except for their general relative position 

i.e. ‘front’, ‘left’ and ‘above’. Thus, we used reference points 

to determine the approximate camera positions before using 

them to determine the object positions. 

III. CONFIGURING THE 3D ROBOT VISION SYSTEM 

Although some results are possible without calculating the 

positions of the cameras, we strive to achieve the most accurate 

representation of the scene and so require this as the first step. 

Given that no prior information is known about the position and 

angle at which the cameras observe the scene, we use a set of 

reference points on the scene to determine them. The size, 

position and distance between the reference points is known. 

We search the images for these points, assign the appropriate 

labels for them, and then, using the known data we reconstruct 

the camera position and orientation. 

IV. FUSION OF 3D CAD MODEL DATA AND CAMERA IMAGES          

The CAD models are used to construct a set of images from 

various views by applying rotation transformations to them. 

For the SVD algorithm we use rotations around each of the axes 

in increments of 15 degrees, whereas for the log-polar 

correlation we use 5-degree increments, however for only two 

axes. This is because one of the axes contributes solely to 2D 

image rotation. 

As for the vision data, as mentioned before, we use a set of 

three cameras to observe the scene. Each camera image is 

processed on its own in parallel with the others and upon 

completion updates the other two. In this way, should any 

image be wrongly paired, the image with the higher correlation 

coefficient will take precedence and change the initially 

estimated view-image to another one based on the camera 

positions. 

In this way we achieve a feedback loop by utilizing CAD 

model data to interpret the information acquired by cameras 

and then comparing them to the real thing. 

V. RECOGNITION OF OBJECT SHAPE AND SPATIAL 

ORIENTATION USING IMAGES AND 3D CAD MODELS 

A. Object detection using PCA 

Before the object orientation algorithm can begin, we must 

first detect objects in the image. One of the goals we set 

ourselves was to detect the objects without using real-object 

images, but rather just the models. For this purpose, we created 

936 training images for each of the models, depicting different 

views that we used as the training set.  

The PCA method for object detection relies on using a 

training set to find principal components (PCs) to use to 

reconstruct images. Assuming that the best image 

reconstruction can be done only when using the PCs created 

from an image set of the same type [2], based on the accuracy 

of the reconstruction, we can classify an image as one of the 

objects or part of the background. 

As mentioned in [2] we use vectorized reference intensity 

images to acquire a projection matrix P, and μ as the mean of 

the set. When given a vectorized intensity input image u we get 

the reconstructed image r through: 

 

 𝑟 = 𝑃′𝑃(𝑢 − 𝜇) + 𝜇.        (1) 

 

The reconstructed image is then compared to the original 

image and their difference d is expressed as the 2-norm 

between the two image vectors, as in 

 

𝑑 = ‖𝑟 − 𝑢‖.        (2) 

 

To test this method, we supplied an image of the blue 

pyramid object as the input image and then used different 

training sets containing reference model-images and looked at 

differences d they produced. 

 

 
 

Fig. 2.  Image reconstruction of the blue pyramid image using principal 
components obtained from four different model data sets (blue pyramid, red 

cylinder, green pyramid, and orange cuboid).  

 

As shown in Fig. 2, the best reconstruction is achieved by 

using the appropriate training data set. We used a set of fixed 

numbers for the number of PCs used to reconstruct the image, 

except for the final one, which was the number of PCs that 

conserved 90% of the singular energy α, similar to how it was 

done in [3]. 

One of the problems this method encountered was the 

situation when, instead of an object, the input image was that 

of the background. Given its simplicity in comparison to an 

image containing an object the difference d was even lower 

than those of the desired object. Thus, we found that it was 

necessary to have a minimum number of real-object images and 

background images to create an additional classifier, or for the 

parts of the image with just the objects to be extracted before 

applying PCA. 
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Fig. 3.  Image reconstruction using principal components obtained from the 

blue pyramid model data set, with PC showing the number of principal 
components used and SE representing the retained percentage of singular 

energy. 

 

As shown in Fig. 3 increasing the number of PCs also 

increases the accuracy of the reconstruction. However, doing 

so beyond a certain point would reduce efficiency instead as 

the increase of accuracy does not justify the decrease in 

computation speed and added memory.  

B. Finding the closest match using the SVD algorithm 

After extracting the object from the entire image, we proceed 

to use singular value decomposition to find the closest match 

among a set of rotated model images. As an object’s orientation 

can be represented by its edges, we use gradient analysis to find 

features. The histogram of oriented gradients provides us with 

the necessary data t (column matrix of size n × 1) that we place 

as the columns of a matrix T = [t1 t2 …  tN], which the SVD 

algorithm is applied to.  

 

𝑇 = 𝑈𝛴𝑉𝑇        (3)          

 

From (3) we take the matrix U and use the first k (1 ≤ k ≤ N) 

columns representing eigenvectors of the largest k eigenvalues 

in S, sorted in descending order [2]. Like so, we derive the 

matrix U' from U. Multiplying with vectorized HOG features 

of input image data u we can project that data to the eigenspace, 

while reducing dimensionality. This is also applied to all 

columns of the matrix T creating a matrix T' of reduced size k 

× N. We then compare the projected data of the input image u 

with the other projections t' from reference image HOG 

features (columns of T'), as in 

 

𝑑𝑖  =  ‖𝑡𝑖 − 𝑈𝑇′
𝑢‖.        (4) 

 

 Index i in (4) denotes the index of the projection being 

compared with the projected input image. We store the results 

in an array which we sort at the end of the algorithm, and the 

index with the minimum difference points to the reference 

model image that would be the best pair to the input image.  

 

 
Fig. 4.  Result of SVD comparison between extracted object images (top row) 

from three views (front, left and above) and a set of rotated model images 

(bottom row). 

 

 We can see in Fig. 4 that the algorithm provides two good 

matches and one bad match. Additionally, we can see that the 

sides of the pyramid in bad lighting were omitted from the 

approximations. However, as the algorithm’s main purpose is 

just to narrow the search range for the subsequent parts, having 

even two out of three bad matches wouldn’t pose a problem. 

 In future work, we will focus on improving the quality of the 

SVD method to include more accurate estimates both in 

optimal conditions, as was done in this paper, and when there 

is occlusion as the total time required for the match to be found 

greatly depends on the initial estimate. 

C. Finding the closest match using log-polar correlation 

Aside from the SVD algorithm used to narrow down the 

possible choices for object positions, we use intensity image 

correlation in log-polar space to deduce the best pairing of the 

real-object-image and view-image of the model. Log-polar 

space is used as it is both rotation and scale invariant [5]. 

Correlation is used to find the pair with the highest correlation 

coefficient and determine the rotation angle which is 

proportional to the vertical shift. 

 

 
Fig. 5. Model images from multiple viewpoints (first row) and the log-polar 

transformations of the paired intensity images (second row) 

 

One thing that can be seen from Fig. 5 is that all the log-polar 

transformations are quite unique. As such, it is not required to 

store all the information from those images. Rather, as they are 

computed from the center of the object and images 

encompasses mainly the object in question, we can take an area 

of interest that is the second half of the log-polar image along 

the ρ-axis. This area contains the entire object outline as well 

as the endpoints of the object edges within the outline. 
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Problems that may occur in this stage are related to the center 

used for computing the log-polar transformation. Because we 

were dealing with objects without occlusion and that are 

distinct from the background, we could use simple methods of 

color segmentation to find all the object pixels and then 

determine the center as a “center of mass”. 

However, in cases where occlusion is present, or the object 

is more complex, or the object detection algorithm does not 

perfectly capture the object, finding the exact center becomes a 

problem. As mentioned before, log-polar correlation is both 

rotation and scale invariant, but it is sensitive when it comes to 

the center from where it is calculated. In case the estimated 

center of the object is shifted from where it is located on a 

template image then correlation may not yield adequate results, 

depending on how much the center is shifted. In [5] it is shown 

that the best correlation coefficient is achieved when the 

location of the object center matches that of its template image. 

 

 
Fig. 6. Real-object images (first row) and best pairs from log-polar correlation 

without angle correction (second row). 
 

The results shown in Fig. 6 show that the log-polar 

correlation method finds accurate matches for the objects in 

question. This means that it is safe to use the less-accurate SVD 

method first to provide an initial object orientation estimate. 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

The algorithm was run under the assumption of real-time 

work, meaning that the number of additional angles around the 

ones found by the SVD method, which would be checked by 

the log-polar correlation, had to be lowered to two sets of 4 

angles on each side of the central one found by SVD (total of 9 

angles). With such modifications the algorithm ran at around 

60 ms for single-object orientation detection. This is excluding 

the time for object detection which took around 50 ms. We will 

attempt to further bring down the required computation time for 

this task in future work. 

Additionally, one of the possible alterations that we tried was 

lowering the number of angles that would be checked to only 

one, the one provided by the SVD method. This lowered the 

computation time from 60 to around 10 ms.  

The possibility of larger errors occurring due to SVD was 

taken into account and thus after every iteration (determining 

the 6D position of every object in the scene), the results are 

carried over to the next iteration until a plateau is hit. Based on 

the experimental results, we have determined that the algorithm 

is capable of operating in real-time. 

The entire algorithm we proposed is an iterative one and can 

be summarized in several steps: 

1. We use PCA to detect objects in the image for each 

of the cameras. This step can be skipped after the 

first run in cases where the scene is static. 

2. We calculate an input image’s HOG features and 

send them to the SVD algorithm to estimate the 

object’s orientation. This is done for every camera 

image, resulting in three estimates. 

3. The estimates are then turned to intensity images, 

transformed into log-polar space, and processed by 

2D correlation. The resulting coefficients are 

compared, and the best result is sent further. 

4. Knowing the transformation matrices between 

cameras, we use the estimate to obtain images that 

the other cameras should see. These images are 

treated as the new input images and sent to Step 1. 

 

 
Fig. 7. Iteration 1 of the algorithm. Real-object images (first row), SVD 

estimated object view images (second row) and log-polar correlation results 

without angle correction (third row). 

 

Fig. 7 shows that even in the first step of the algorithm we 

can obtain accurate results, similar to ones in Fig 6 and that the 

algorithm would end in the second iteration. The total number 

of iterations needed for convergence varies depending on the 

initial orientation estimations as well as the number of camera 

images that we can work with. In cases where one or two of the 

cameras cannot see an object, that number would exponentially 

rise.  

VII. CONCLUSION 

In this paper, we have presented a method of determining the 

6D position of an object based on singular value decomposition 

and correlation of gradients in log-polar space. PCA allowed us 

to accurately detect an object, while using the same method 

with a set of HOG features allowed us to give an initial estimate 

of the object’s orientation. Afterwards, we have taken the 
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gradients of the grayscale images of the estimates and 

transformed them to log-polar space. The properties of the log-

polar space, scale and rotation invariance, have allowed us to 

lower the number of matches (number of reference images) to 

compare, reducing computation time. Moreover, we have taken 

only part of the log-polar images, further reducing computation 

time. Finally, using iterations assures operation in real-time, 

while the results on Fig. 6 show that the algorithm will 

converge with accurate results.  
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