
 

 

Abstract—Cyber Physical Systems (CPS) and Internet of 

Things (IoT) open the way for new generation of Industrial 

Control Systems (ICS) characterized by high flexibility, 

modularity and reconfigurability necessary within Industry 4.0. 

Inevitable shift from centralized to distributed control systems is 

underway, but the changes are not as rapid as expected. One of 

the limiting factors is the lack of engineering techniques for 

distributed control systems design, simulation and verification. 

In this paper we analyze recently proposed techniques for 

distributed control systems development using an example of a 

simple transport system consisting of two CPS – smart conveyor 

belt and smart cylinder. In particular we consider the methods 

based on Control Interpreted Petri Nets (CIPN), Supervisory 

Control Theory (SCT) and IEC 61499 standard. 

 
Index Terms—Distributed Control; Industrial Control 

Systems; Cyber Physical Systems; Industry 4.0.  

 
 

I. INTRODUCTION 

Industry 4.0 and introduction of Cyber Physical Systems 
(CPS) at manufacturing shop floor lead to significant changes 
in Industrial Control Systems (ICS) [1]. The demand for 
highly flexible automation and reconfigurable manufacturing 
induced by fluctuating market needs and high product variety 
on one [2], and the development of CPS based systems as the 
leading enabling technology on the other hand [1] represent 
the main drivers of these changes. CPS based smart devices 
with integrated computational and communication capabilities 
open up new possibilities in terms of ICS modularity, 
flexibility and reconfigurability. It is expected that with the 
full extent implementation of CPS at manufacturing shop 
floor the traditional automation hierarchy standardized 
through IEC 62264 will be replaced with truly distributed 
control systems where the control tasks will be carried out 
through interoperability of networked smart devices – Fig. 1. 
It is expected that all elements of automation hierarchy will 
remain, but in terms of functional hierarchy distributed over 
network without the pyramidal structure of the corresponding 
devices [3]. 

CPS are already readily employed at manufacturing shop 
floors in different automation tasks primary as smart sensors 
and actuators, and strict automation hierarchy is already 
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broken down as there exist communication of different 
devices intra and over non-adjacent levels of automation 
pyramid. Nevertheless, as a rule, smart sensor and actuators 
are integrated in ICS in traditional manner – they are 
connected to the central controller (e.g., Programmable Logic 
Controller - PLC) that carries out the control task. In this way, 
computational capabilities of CPS, their modularity and 
ability to make manufacturing systems adaptable to new 
products are not fully exploited. 
 

 
 

Fig. 1. Change of control paradigm in Industry 4.0: a) IEC 62264 automation 
hierarchy; b) Distributed control 
 

There are several reasons for this. One is the inertia of 
control engineers community to implement new trends and 
their rationalle to keep the existing techniques for ICS design, 
that were practicaly tested and proven in a myraid of real-
world examples. Yet, due to inability of traditional ICS to deal 
with high product variaty, there is a trend to perform a number 
of processes in manufacturing manually which represents a 
step backwards with respect to process sophistication; in this 
context, modularity of control system and distribution of 
control tasks are paramount for automation in Industry 4.0. 
The other reason is the lack of well-proven formaly-
consequent engineering techniques for the desing of 
distributed control systems, i.e., for the distribution of control 
taks to smart devices [4]. Finally, when CPS are employed at 
manufacturing shop floor (regardless if centrally or 
distributed) cybersecurity related issues on communication 
links emerge. 

Recently, a number of techniques for distribution of control 
tasks to smart devices and for dealing with cybersecurity 
within ICS have been proposed. Within this paper we will 
illustrate some of them using an example of simple system for 
parts transport that is presented in Section II. In particular, we 
will consider the method for control system distribution that is 
based on Control Interpreted Petri Nets (CIPN) that we 
proposed in [5], as well as the method based on Supervisory 
Control Theory [6] – Section III. Furthermore, in Section IV 
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we will show how the distributed control system can be 
simulated using IEC 61499 standard [7], and in Section V we 
will consider the possible effects of cyber-attacks on discrete 
event system using the methodology that we presented in [8]. 
Finally, Section VI gives some concluding remarks. 

II. DESCRIPTION OF THE SYSTEM AND CONTROL TASK 

The system that we consider in this paper is used for parts 
transport and consists of: 1) smart conveyer belt and 2) smart 
cylinder (Fig. 2). Conveyor belt transfers parts to position II 
and it is actuated by step motor M that is started/stopped using 
signal m. In addition, the belt contains sensor s that detects the 
presence of parts in removing position II, as well as start 
switch st that is used for the start of the system operation. 
Both sensors and actuator are connected to the belt’s local 
controller denoted as LC1. Smart cylinder, on the other hand, 
besides the actuator, contains a monostable 5/2 dual control 
valve controlled by signal ap (ap = 1 for cylinder advancing 
and ap = 0 for cylinder retracting), as well as limit switches 
a1/a0 for detecting final advanced/retracted position. 
Pneumatic and sensing devices are augmented with local 
controller LC2 that controls the smart cylinder. The allocation 
of sensing and actuation signals to smart devices’ local 
controllers is presented in Table I. 
 

TABLE I 
SENSORS AND ACTUATORS SIGNALS MAPPING TO LOCAL CONTROLLERS 

 

Device Loc. Cont. Signal Description 

Smart 
conveyer 

LC1 

m Motor actuation 
s Sensor for part detection 
st Start switch 

Smart 
cylinder 

LC2 

ap Cylinder actuation 
a1 Advanced position sensor 
a0 Retracted position sensor 

 

 
 

Fig. 2.  Graphical representation of the system used in case study 
 

The system should function as follows. After pressing the 
start switch, conveyor belt starts motion; when the part comes 
to the conveyor belt, it is transferred to position II where the 
sensor s is activated. After activation of signal s, conveyor 
belt stops and the cylinder removes the part from the belt (it 
advances and immediately retracts to home position). Once 

cylinder reaches the retracted position, the conveyor starts 
moving again to transfer new part to position II and the cycle 
repeats.  

There are a number of different methods for formal 
description of the controller that would ensure the described 
system behavior when it is controlled using one (centralized) 
controller, e.g., PLC. Most frequently employed technique 
that represents de facto standard in ICS design are CIPN and 
the derived formalisms of GRAFCET (Graphe Fonctionnel de 
Commande des Étapes et Transitions - Functional Graph of 
Control by Steps and Transitions) and IEC 61131-3 
Sequential Function Chart (SFC). CIPN represent bipartite 
graphs containing transitions represented by bars and places 
represented by circles [9]. Within CIPN each transition has 
associated condition as a Boolean function of sensory signals 
(although actuator signals can be used as well), whereas the 
actions which change the values of control system outputs are 
allocated to the CIPN places. The state of CIPN is represented 
by token(s) assigned to places, and during system evolution 
the token passes from previous to the next place when the 
transition between them fires, i.e., when the associated 
condition is true. Using CIPN formalism the desired 
performance of the system from Fig. 2 can be described using 
CIPN form Fig. 3; this CIPN can be easily transferred to SFC 
or other embedded devices programming languages and 
implemented in centralized PLC or some other device (e.g., 
microcontroller).  
 

 
 

Fig. 3.  CIPN describing the desired behavior of the system from Fig. 2. 

III. DISTRIBUTION OF CONTROL TASKS TO SMART DEVICES  

Opposite to centralized control systems design, generally, 
there is a lack of methods for the design of distributed 
controllers [10]. Existing approaches can be classified as 
bottom-up and top-down. Using bottom-up methods the 
behavior of each device within the control network is 
described using Petri nets [11], Supervisory Control Theory 
(SCT) [12], IEC 61499 [7] or similar formalisms, and the 
behavior of the system as a whole is obtained through their 
composition. These methods are characterized by low 
backwards compatibility since their implementation 
necessitates completely new mindset in system designers. 
Furthermore, they are usually based on trial and error and as 
such are time consuming and require significant verification 
[4]. Top-down approaches, on the other hand, describe the 
system as if centrally controlled and, using predefined 
methodology, distribute control tasks to smart devices. These 
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methods are characterized by high backwards compatibility 
and can be easily embraced by engineers in everyday practice. 
 A top-down approach from [5] is based on CIPN. Global 
CIPN describing the behavior of the system as a whole and 
mapping of sensors and actuators to local controllers with 
direct access to these devices are at the input of this method. 
Following the set of rules that consider the allocation of 
sensing and actuation signals to transitions and places within 
global CIPN on one hand, and physical mapping of sensors 
and actuators to local controllers LCi on the other, this method 
generates a separate CIPNi to be employed at each LCi. 
Basically, this approach extracts from global CIPN into CIPNi 
the places that contain actuating signals allocated to LCi along 
with preceding transitions, and introduces places with sending 
commands to compensate missing links. The details regarding 
the method can be found in [5].  

Following this approach, for the CIPN from Fig. 3 and 
allocation of sensing and actuation signals from Table I, 
CIPN1 and CIPN2 presented in Fig. 4 are obtained. Within 
these CIPNs, the transitions and places that were extracted 
from global CIPN (Fig. 3) are denoted in parentheses. The 
actions associated to places within CIPN1 and CIPN2 contain 
only actuating signals mapped to corresponding devices 
(conveyor belt and cylinder, respectively). On the other hand 
the transitions can contain the signals allocated to the other 
device, as denoted red in T4

1, Tinit
2 and T4

2. These signals are 
transferred between local controllers using selected 
communication protocol, and protocol agnostic sending 
commands are denoted green in corresponding places in Fig. 
4. These commands are the result of the application of the 
procedure from [5]. 
 

 
 

Fig. 4. CIPN representation of the system control distributed to smart devices: 
a) CIPN1 representing control tasks distributed to smart conveyer belt; b) 
CIPN2 representing control tasks distributed to smart cylinder; 
 

For example, while at P4
1 smart conveyor belt sends 

information about motor stopping to smart cylinder which 
receives it in transition Tinit

2 or T4
2 depending on the current 

state; in this way T3 from Fig. 3 is performed. Similarly, while 
at P4

2 smart cylinder sends information about getting to 
retracted position to smart conveyer belt, which the latter 
receives at transition T4

1, delivering the T5 from Fig. 3. Once 
CIPNs for local controllers are generated, their 
implementation is straightforward as in the case of centralized 
controllers. 

An example of bottom-up approach for distribution of 
control tasks will be illustrated using SCT formalism [6]. The 
models of the local controllers – supervisors for smart devices 
can be presented by Finite State Machines (FSM) in which the 
transition between states occurs on the events that represent 
the change of certain (actuation or sensory) signal. FSMs 
representing the desired behavior of LC1 and LC2 are given in 
Fig. 5. In particular, SB represents smart conveyer belt (Fig. 
5a) and SC (Fig. 5b) smart cylinder cyber part. Note that in 
smart conveyer belt FSM model motor activation signal (m = 
1) is denoted by mp, whereas deactivation signal (m = 0) is 
denoted mm. Similarly, for smart cylinder ap = 1 is denoted 
by ap and ap = 0 by am. The signals that are transferred from 
a local controller are marked green, and the signals that are 
received are marked red.  

As can be observed from the Fig. 5, the design of local 
controllers using this formalism is not straightforward and 
requires to simultaneously take care about the behavior of 
both devices and communication of signals between them 
which can be extremely tedious and error prone when larger 
number of local controllers is used. The equivalence of SB and 
SC to CIPN1 and CIPN2 from Fig. 4 can be observed.  
 

 
 

Fig. 5. Case study from Fig. 2 – FSMs representing: a) Conveyer belt local 
controller – SB; b) Cylinder local controller – SC;. 
 

 To verify that the system as a whole will have the desired 
behavior after implementation of the developed controllers, 
using SCT formalism, the physical part of the system should 
be modeled as well. FSMs from Fig. 6 - GB and GC represent 
physical parts of smart conveyer belt and smart cylinder, 
respectively. 
 

 
 

Fig. 6. Case study from Fig. 2 – FSMs representing: a) Conveyer belt physical 
device - GB; b) Cylinder physical device - GC. 
 

Conjoint operation of all four FSMs from Figures 5 and 6 is 
presented by FSM G from Fig. 7, where x, y, z and v in state 
notation (x, y, z, v) represent the states of SC, SB, GC and GB, 
respectively. FSM G, that represents the behavior of the CPS 
from Fig. 2, is obtained using the following FSM operation: 
 

   CBCB G||GS||SG   (1) 
 

where || denotes FSM parallel composition, and  product 
operator [6]1. Comparing CIPN from Fig. 3 which represents 
the desired behavior of the system and FSM from Fig. 6 that 
represents the conjoint behavior of smart devices with 
distributed control tasks, the equivalence can be observed. 
Nevertheless, it should be noted that the implementation of 
SCT formalism assumes that CIPNs are not used during 

 
1 All automata operations are carried out using DESUMA software [13] 
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system representation, and in this paper we use it for the 
comparison only. 
 

 
 

Fig. 7. Case study from Fig. 2 – behavior of the system represented using 
single FSM – G 

IV. MODELING AND SIMULATION OF DISTRIBUTED CONTROL 

SYSTEMS USING IEC 61499 

Once the control task is distributed to smart devices’ local 
controllers, it is beneficial to further verify it, preferably using 
simulation. IEC 61499: Function blocks [7] represents an 
international standard intended for distributed control system 
modeling and simulation. Using this standard the functionality 
of a system’s hardware or software component is encapsulated 
using function blocks (FBs) that introduce object oriented 
paradigm into industrial control systems programming [14, 
15]. FBs represent classes whose instances can be used for 
task execution in concrete applications. Using this formalism, 
CPS are modeled and simulated through interaction between 
their physical and cyber parts, each represented by separate 
FB. The blocks are integrated through real-time interaction 
that is modeled using events and data flows. The functionality 
of an FB is event driven and it is defined by its Execution 
Control Chart (ECC) that specifies the behavior of the 
modeled component when certain events in the system occur. 
They are in the form similar to CIPN. 

IEC 61499 formalism models the behavior of the system 
through a network of FBs called application. Within 
application each smart device is introduced using 
corresponding FBs and multiple devices are interconnected 
using certain events and data. Fig. 8 represents IEC 61499 
application for the system from Fig. 22. Within this 
application function blocks ConveyCyber and ConveyPhys 
model cyber and physical parts of the smart conveyer, 
whereas CylCyber and CylPhys model corresponding parts of 
smart cylinder. Each FB contains head (upper part) that 
contains input (left side) and output (right side) events and 
body that contains input (left side) and output (right side) 
data. FB refreshes input/output data on the occurrence of the 
corresponding event, and their interconnections are modeled 
with connectors - red for event and blue for data flow. 

Fig. 9 presents the ECCs for FBs modeling the behavior of 
the smart conveyor. At the system start, ConveyPhys 
transfers to S1, activates start switch (action Start) and issues 
CNF event to invoke the change of corresponding 

ConveyPhys output and ConveyCyber input; after that, it 
waits for REQ event and receipt of signal for motor activation 

(mot = true) from ConveyCyber when it passes to S2. Within 
S2 it activates sensor (action Sensor_act), issues CNF event to 

change corresponding input in ConveyCyber and waits for 
REQ events with the desired input data from ConveyCyber to 
return to S1. 

 
2 For IEC 61499 modeling and simulation 4diac software [16] is used. 

 
Fig. 8. IEC 61499 application that models the behavior of the system from 
Fig. 2. 
 

a) 

 
b) 

 
c) 

ConveyCyber actions 
Start_mot mot:=true; 
Stop_mot mot:=false; 

ConveyPhys actions 
Start st:=true; 
Sensor_act sen:=true; 

 

Fig. 9. ECCs for conveyer belt: a) cyber part of the conveyer belt - 
ConveyCyber ; b) physical part of the conveyer belt ConveyPhys; c) actions 
definition. 
 

Simultaneously, at the beginning, ConveyCyber waits for 
REQ event (CNF event from ConveyPhys – Fig. 8) and the 
value st = true from ConveyPhys; on the receipt of this data it 
transfers to S1 where it carries out Start_mot action and 
invokes CNF event to inform the ConveyPhys (which is at 
that moment in S1 or S3) about signal change. Afterwards it 
waits in S1 information from ConveyPhys that sensor is 
activated to transfer to S2. In S2 it invokes the action for 
motor stopping and informs ConveyPhys and CylCyber about 
this change using events CNF and Send_C. Finally, after 
receipt of information that cylinder removed the part from the 
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belt from CylCyber through event REC_C and data a0 = true, 
it returns to S1. 
 

a) 

 
b) 

 
c) 

CylCyber actions 
Advance ap:=true; 
SendToMotor a0m:=true; 
Retract ap:=false; 

CylPhys actions 
Advanced a0:=false; 

a1:=true; 
Retracted a0:=true; 

a1:=false; 
 

Fig. 10. ECCs for cylinder: a) cyber part of the cylinder - CylCyber ; b) 
physical part of the cylinder CylPhys; c) actions definition. 
 

 
 

Fig. 11. Cylinder resource with introduced Publish and Subscribe function 
blocks for simulation of the system performance. 

Similarly (Fig. 10), at the begining CylCyber waits for the 
information from ConveyCyber that motor stopped (REC_M 
event that is connected to Send_C from ConveyCyber – Fig. 
8), moves to S1, invokes cylinder advancing (action 
Advance), and upon receipt of the event and data referring to 
the completion of CylPhys advancing, issues commands for 
its retraction. When it gets the information that CylPhys 
retracted, CylCyber issues Send_M event to inform CylCyber 
that motor can start motion, and waits for the new signal from 
ConveyCyber that motor stopped (REC_M event connected to 
Send_C) to return to S1 and prepare for the new cycle. 

Finally, CylPhys moves between states corresponding to 
advanced and retracted positions in accordance with the 
events and data received from CylCyber. 

Comparing these ECCs with CIPNs and FSMs from 
Figures 4, 5 and 6, the equivalence can be observed. 

To simulate the behavior of the control system defined by 
application (Fig. 8) function blocks are allocated to different 
resources and the communication is introduced through 
publish and subscribe FBs as presented in Fig. 11 using an 
example of smart cylinder. 

V. SECURITY RELATED ISSUES 

As can be observed from previous sections, the performance 
of distributed control system is communication intensive, thus 
openings up the space for malicious cyber-attacks by various 
adversaries and raising cyber security related issues. A 
number of different attack scenarios can be identified and in 
case of discrete event systems such as one at hand two kinds 
of attacks can be singled out: 1) event removal and 2) event 
insertion. The adversaries can issue these attacks in various 
combinations always having the common goal to remain 
stealthy and to have negative effect on the system 
performance. Considering the possible consequences of cyber-
attacks on ICS that can be not only of economic nature but 
also safety related (catastrophic damages of the equipment or 
even threats to human health and lives), it is crucial to analyze 
possible attack points, scenarios and consequences at early 
phases of the system design. Within this paper we will briefly 
illustrate an approach for modeling attacks scenarios using 
SCT based methodology that we proposed in [8]. We will 
consider the examples of removal and insertion attacks on a0 
signal transmitted from smart cylinder to conveyor belt. 

Following a0 removal attack denoted by a0r, smart 
conveyor belt cyber part will remain in the state at which it 
waits for a0 to progress with functioning, whereas smart 
cylinder cyber and physical parts will continue functioning as 
if attack did not occur. Described evolution of the system can 
be modeled using FSMs under attack SB

r, SC
r and GC

r 
presented in Fig. 12a-c. In these automata the evolution of the 
system elements under attack is denoted in red lines. The 
details of the model generation can be found in [8], and the 
performance of the system as a whole is represented by 
automaton: 
 

   r
CB

r
C

r
B

r
G||GS||SG   (2) 
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which is presented in Fig. 12d. From this figure it can be 
observed that on the a0 removal attack the system stops (it 
enters the state marked red) and no damage is expected. 
 

 
 

Fig. 12. Model of the system under a0 removal attack: a) SB
r – model of 

conveyor cyber part; b) SC
r – model of cylinder cyber part; c) GC

r – model of 
cylinder physical part; d) model of the whole system behavior under attack. 
 

 
 

Fig. 13. Model of the system under a0 insertion attack: a) SB
i – model of 

conveyor cyber part; b) GB
i – model of conveyor physical part; c) model of 

the whole system behavior under attack. 
 

When insertion attack is considered, it should be noted that 
to remain stealthy, the adversary can issue the a0 insertion 
attack only while SB is in state 5 [8]. Following insertion 
attack a0i, the conveyer belt supervisor will transfer from 
state 5 to state 2 as if real a0 was received as presented in red 
line in FSM SB

i in Fig. 13a. Simultaneously, conveyor 
physical part will remain in the state 2 as given in automaton 
GB

i from Fig. 13b (the details regarding the formalism for 
generation of these automata can be found in [8]). The 
behavior of the whole system under a0 insertion attack is 
modeled through: 
 

   C
i
BC

i
B

i
G||GS||SG   (3) 

 

presented in Fig. 13c where the possible evolutions of the 
system after attack are denoted using red states. These 
scenarios include starting the motor before the part is removed 
from the conveyer belt and can lead to the falling of the part 
from the transporter and its damage. 

VI. CONCLUSION 

Within this paper we have summarized and illustrated using 
a case study our recent research results in the area of CPS 
based distributed control systems design, verification and 
cyber protection. In particular, we have presented the 
application of the top-down approach for distributed control 
system design that is based on CIPN and that is characterized 
by excellent backwards compatibility. The convenience of this 
technique is supported through illustrating the application of a 
bottom-up technique based on SCT that requires completely 
new approach to ICS modeling. Furthermore, we have shown 
how the developed distributed control system can be 
simulated using standard IEC 61499. Finally, since the 
deployment of CPS and IoT at manufacturing shop floor leads 
to significant cyber security issues, we have shown how the 
SCT based framework can be applied for the analysis of cyber 
threats in our case study. 
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