

Abstract—Cyber Physical Systems (CPS) and Internet of

Things (IoT) open the way for new generation of Industrial

Control Systems (ICS) characterized by high flexibility,

modularity and reconfigurability necessary within Industry 4.0.

Inevitable shift from centralized to distributed control systems is

underway, but the changes are not as rapid as expected. One of

the limiting factors is the lack of engineering techniques for

distributed control systems design, simulation and verification.

In this paper we analyze recently proposed techniques for

distributed control systems development using an example of a

simple transport system consisting of two CPS – smart conveyor

belt and smart cylinder. In particular we consider the methods

based on Control Interpreted Petri Nets (CIPN), Supervisory

Control Theory (SCT) and IEC 61499 standard.

Index Terms—Distributed Control; Industrial Control

Systems; Cyber Physical Systems; Industry 4.0.

I. INTRODUCTION

Industry 4.0 and introduction of Cyber Physical Systems
(CPS) at manufacturing shop floor lead to significant changes
in Industrial Control Systems (ICS) [1]. The demand for
highly flexible automation and reconfigurable manufacturing
induced by fluctuating market needs and high product variety
on one [2], and the development of CPS based systems as the
leading enabling technology on the other hand [1] represent
the main drivers of these changes. CPS based smart devices
with integrated computational and communication capabilities
open up new possibilities in terms of ICS modularity,
flexibility and reconfigurability. It is expected that with the
full extent implementation of CPS at manufacturing shop
floor the traditional automation hierarchy standardized
through IEC 62264 will be replaced with truly distributed
control systems where the control tasks will be carried out
through interoperability of networked smart devices – Fig. 1.
It is expected that all elements of automation hierarchy will
remain, but in terms of functional hierarchy distributed over
network without the pyramidal structure of the corresponding
devices [3].

CPS are already readily employed at manufacturing shop
floors in different automation tasks primary as smart sensors
and actuators, and strict automation hierarchy is already

Zivana Jakovljevic is with the University of Belgrade – Faculty of

Mechanical Engineering, 16 Kraljice Marije, 11000 Belgrade, Serbia (email:
zjakovljevic@mas.bg.ac.rs).

Dusan Nedeljkovic is with the University of Belgrade – Faculty of
Mechanical Engineering, 16 Kraljice Marije, 11000 Belgrade, Serbia (email:
dnedeljkovic@mas.bg.ac.rs).

broken down as there exist communication of different
devices intra and over non-adjacent levels of automation
pyramid. Nevertheless, as a rule, smart sensor and actuators
are integrated in ICS in traditional manner – they are
connected to the central controller (e.g., Programmable Logic
Controller - PLC) that carries out the control task. In this way,
computational capabilities of CPS, their modularity and
ability to make manufacturing systems adaptable to new
products are not fully exploited.

Fig. 1. Change of control paradigm in Industry 4.0: a) IEC 62264 automation
hierarchy; b) Distributed control

There are several reasons for this. One is the inertia of
control engineers community to implement new trends and
their rationalle to keep the existing techniques for ICS design,
that were practicaly tested and proven in a myraid of real-
world examples. Yet, due to inability of traditional ICS to deal
with high product variaty, there is a trend to perform a number
of processes in manufacturing manually which represents a
step backwards with respect to process sophistication; in this
context, modularity of control system and distribution of
control tasks are paramount for automation in Industry 4.0.
The other reason is the lack of well-proven formaly-
consequent engineering techniques for the desing of
distributed control systems, i.e., for the distribution of control
taks to smart devices [4]. Finally, when CPS are employed at
manufacturing shop floor (regardless if centrally or
distributed) cybersecurity related issues on communication
links emerge.

Recently, a number of techniques for distribution of control
tasks to smart devices and for dealing with cybersecurity
within ICS have been proposed. Within this paper we will
illustrate some of them using an example of simple system for
parts transport that is presented in Section II. In particular, we
will consider the method for control system distribution that is
based on Control Interpreted Petri Nets (CIPN) that we
proposed in [5], as well as the method based on Supervisory
Control Theory [6] – Section III. Furthermore, in Section IV

Distribution of Control Tasks to Smart Devices
in Industrial Control Systems: a Case Study

Zivana Jakovljevic, Member, IEEE and Dusan Nedeljkovic

ROI2.2 Page 1 of 6

we will show how the distributed control system can be
simulated using IEC 61499 standard [7], and in Section V we
will consider the possible effects of cyber-attacks on discrete
event system using the methodology that we presented in [8].
Finally, Section VI gives some concluding remarks.

II. DESCRIPTION OF THE SYSTEM AND CONTROL TASK

The system that we consider in this paper is used for parts
transport and consists of: 1) smart conveyer belt and 2) smart
cylinder (Fig. 2). Conveyor belt transfers parts to position II
and it is actuated by step motor M that is started/stopped using
signal m. In addition, the belt contains sensor s that detects the
presence of parts in removing position II, as well as start
switch st that is used for the start of the system operation.
Both sensors and actuator are connected to the belt’s local
controller denoted as LC1. Smart cylinder, on the other hand,
besides the actuator, contains a monostable 5/2 dual control
valve controlled by signal ap (ap = 1 for cylinder advancing
and ap = 0 for cylinder retracting), as well as limit switches
a1/a0 for detecting final advanced/retracted position.
Pneumatic and sensing devices are augmented with local
controller LC2 that controls the smart cylinder. The allocation
of sensing and actuation signals to smart devices’ local
controllers is presented in Table I.

TABLE I
SENSORS AND ACTUATORS SIGNALS MAPPING TO LOCAL CONTROLLERS

Device Loc. Cont. Signal Description

Smart
conveyer

LC1

m Motor actuation
s Sensor for part detection
st Start switch

Smart
cylinder

LC2

ap Cylinder actuation
a1 Advanced position sensor
a0 Retracted position sensor

Fig. 2. Graphical representation of the system used in case study

The system should function as follows. After pressing the
start switch, conveyor belt starts motion; when the part comes
to the conveyor belt, it is transferred to position II where the
sensor s is activated. After activation of signal s, conveyor
belt stops and the cylinder removes the part from the belt (it
advances and immediately retracts to home position). Once

cylinder reaches the retracted position, the conveyor starts
moving again to transfer new part to position II and the cycle
repeats.

There are a number of different methods for formal
description of the controller that would ensure the described
system behavior when it is controlled using one (centralized)
controller, e.g., PLC. Most frequently employed technique
that represents de facto standard in ICS design are CIPN and
the derived formalisms of GRAFCET (Graphe Fonctionnel de
Commande des Étapes et Transitions - Functional Graph of
Control by Steps and Transitions) and IEC 61131-3
Sequential Function Chart (SFC). CIPN represent bipartite
graphs containing transitions represented by bars and places
represented by circles [9]. Within CIPN each transition has
associated condition as a Boolean function of sensory signals
(although actuator signals can be used as well), whereas the
actions which change the values of control system outputs are
allocated to the CIPN places. The state of CIPN is represented
by token(s) assigned to places, and during system evolution
the token passes from previous to the next place when the
transition between them fires, i.e., when the associated
condition is true. Using CIPN formalism the desired
performance of the system from Fig. 2 can be described using
CIPN form Fig. 3; this CIPN can be easily transferred to SFC
or other embedded devices programming languages and
implemented in centralized PLC or some other device (e.g.,
microcontroller).

Fig. 3. CIPN describing the desired behavior of the system from Fig. 2.

III. DISTRIBUTION OF CONTROL TASKS TO SMART DEVICES

Opposite to centralized control systems design, generally,
there is a lack of methods for the design of distributed
controllers [10]. Existing approaches can be classified as
bottom-up and top-down. Using bottom-up methods the
behavior of each device within the control network is
described using Petri nets [11], Supervisory Control Theory
(SCT) [12], IEC 61499 [7] or similar formalisms, and the
behavior of the system as a whole is obtained through their
composition. These methods are characterized by low
backwards compatibility since their implementation
necessitates completely new mindset in system designers.
Furthermore, they are usually based on trial and error and as
such are time consuming and require significant verification
[4]. Top-down approaches, on the other hand, describe the
system as if centrally controlled and, using predefined
methodology, distribute control tasks to smart devices. These

ROI2.2 Page 2 of 6

methods are characterized by high backwards compatibility
and can be easily embraced by engineers in everyday practice.
 A top-down approach from [5] is based on CIPN. Global
CIPN describing the behavior of the system as a whole and
mapping of sensors and actuators to local controllers with
direct access to these devices are at the input of this method.
Following the set of rules that consider the allocation of
sensing and actuation signals to transitions and places within
global CIPN on one hand, and physical mapping of sensors
and actuators to local controllers LCi on the other, this method
generates a separate CIPNi to be employed at each LCi.
Basically, this approach extracts from global CIPN into CIPNi
the places that contain actuating signals allocated to LCi along
with preceding transitions, and introduces places with sending
commands to compensate missing links. The details regarding
the method can be found in [5].

Following this approach, for the CIPN from Fig. 3 and
allocation of sensing and actuation signals from Table I,
CIPN1 and CIPN2 presented in Fig. 4 are obtained. Within
these CIPNs, the transitions and places that were extracted
from global CIPN (Fig. 3) are denoted in parentheses. The
actions associated to places within CIPN1 and CIPN2 contain
only actuating signals mapped to corresponding devices
(conveyor belt and cylinder, respectively). On the other hand
the transitions can contain the signals allocated to the other
device, as denoted red in T4

1, Tinit
2 and T4

2. These signals are
transferred between local controllers using selected
communication protocol, and protocol agnostic sending
commands are denoted green in corresponding places in Fig.
4. These commands are the result of the application of the
procedure from [5].

Fig. 4. CIPN representation of the system control distributed to smart devices:
a) CIPN1 representing control tasks distributed to smart conveyer belt; b)
CIPN2 representing control tasks distributed to smart cylinder;

For example, while at P4
1 smart conveyor belt sends

information about motor stopping to smart cylinder which
receives it in transition Tinit

2 or T4
2 depending on the current

state; in this way T3 from Fig. 3 is performed. Similarly, while
at P4

2 smart cylinder sends information about getting to
retracted position to smart conveyer belt, which the latter
receives at transition T4

1, delivering the T5 from Fig. 3. Once
CIPNs for local controllers are generated, their
implementation is straightforward as in the case of centralized
controllers.

An example of bottom-up approach for distribution of
control tasks will be illustrated using SCT formalism [6]. The
models of the local controllers – supervisors for smart devices
can be presented by Finite State Machines (FSM) in which the
transition between states occurs on the events that represent
the change of certain (actuation or sensory) signal. FSMs
representing the desired behavior of LC1 and LC2 are given in
Fig. 5. In particular, SB represents smart conveyer belt (Fig.
5a) and SC (Fig. 5b) smart cylinder cyber part. Note that in
smart conveyer belt FSM model motor activation signal (m =
1) is denoted by mp, whereas deactivation signal (m = 0) is
denoted mm. Similarly, for smart cylinder ap = 1 is denoted
by ap and ap = 0 by am. The signals that are transferred from
a local controller are marked green, and the signals that are
received are marked red.

As can be observed from the Fig. 5, the design of local
controllers using this formalism is not straightforward and
requires to simultaneously take care about the behavior of
both devices and communication of signals between them
which can be extremely tedious and error prone when larger
number of local controllers is used. The equivalence of SB and
SC to CIPN1 and CIPN2 from Fig. 4 can be observed.

Fig. 5. Case study from Fig. 2 – FSMs representing: a) Conveyer belt local
controller – SB; b) Cylinder local controller – SC;.

 To verify that the system as a whole will have the desired
behavior after implementation of the developed controllers,
using SCT formalism, the physical part of the system should
be modeled as well. FSMs from Fig. 6 - GB and GC represent
physical parts of smart conveyer belt and smart cylinder,
respectively.

Fig. 6. Case study from Fig. 2 – FSMs representing: a) Conveyer belt physical
device - GB; b) Cylinder physical device - GC.

Conjoint operation of all four FSMs from Figures 5 and 6 is
presented by FSM G from Fig. 7, where x, y, z and v in state
notation (x, y, z, v) represent the states of SC, SB, GC and GB,
respectively. FSM G, that represents the behavior of the CPS
from Fig. 2, is obtained using the following FSM operation:

 CBCB G||GS||SG (1)

where || denotes FSM parallel composition, and product
operator [6]1. Comparing CIPN from Fig. 3 which represents
the desired behavior of the system and FSM from Fig. 6 that
represents the conjoint behavior of smart devices with
distributed control tasks, the equivalence can be observed.
Nevertheless, it should be noted that the implementation of
SCT formalism assumes that CIPNs are not used during

1 All automata operations are carried out using DESUMA software [13]

ROI2.2 Page 3 of 6

system representation, and in this paper we use it for the
comparison only.

Fig. 7. Case study from Fig. 2 – behavior of the system represented using
single FSM – G

IV. MODELING AND SIMULATION OF DISTRIBUTED CONTROL

SYSTEMS USING IEC 61499

Once the control task is distributed to smart devices’ local
controllers, it is beneficial to further verify it, preferably using
simulation. IEC 61499: Function blocks [7] represents an
international standard intended for distributed control system
modeling and simulation. Using this standard the functionality
of a system’s hardware or software component is encapsulated
using function blocks (FBs) that introduce object oriented
paradigm into industrial control systems programming [14,
15]. FBs represent classes whose instances can be used for
task execution in concrete applications. Using this formalism,
CPS are modeled and simulated through interaction between
their physical and cyber parts, each represented by separate
FB. The blocks are integrated through real-time interaction
that is modeled using events and data flows. The functionality
of an FB is event driven and it is defined by its Execution
Control Chart (ECC) that specifies the behavior of the
modeled component when certain events in the system occur.
They are in the form similar to CIPN.

IEC 61499 formalism models the behavior of the system
through a network of FBs called application. Within
application each smart device is introduced using
corresponding FBs and multiple devices are interconnected
using certain events and data. Fig. 8 represents IEC 61499
application for the system from Fig. 22. Within this
application function blocks ConveyCyber and ConveyPhys
model cyber and physical parts of the smart conveyer,
whereas CylCyber and CylPhys model corresponding parts of
smart cylinder. Each FB contains head (upper part) that
contains input (left side) and output (right side) events and
body that contains input (left side) and output (right side)
data. FB refreshes input/output data on the occurrence of the
corresponding event, and their interconnections are modeled
with connectors - red for event and blue for data flow.

Fig. 9 presents the ECCs for FBs modeling the behavior of
the smart conveyor. At the system start, ConveyPhys
transfers to S1, activates start switch (action Start) and issues
CNF event to invoke the change of corresponding

ConveyPhys output and ConveyCyber input; after that, it
waits for REQ event and receipt of signal for motor activation

(mot = true) from ConveyCyber when it passes to S2. Within
S2 it activates sensor (action Sensor_act), issues CNF event to

change corresponding input in ConveyCyber and waits for
REQ events with the desired input data from ConveyCyber to
return to S1.

2 For IEC 61499 modeling and simulation 4diac software [16] is used.

Fig. 8. IEC 61499 application that models the behavior of the system from
Fig. 2.

a)

b)

c)

ConveyCyber actions
Start_mot mot:=true;
Stop_mot mot:=false;

ConveyPhys actions
Start st:=true;
Sensor_act sen:=true;

Fig. 9. ECCs for conveyer belt: a) cyber part of the conveyer belt -
ConveyCyber ; b) physical part of the conveyer belt ConveyPhys; c) actions
definition.

Simultaneously, at the beginning, ConveyCyber waits for
REQ event (CNF event from ConveyPhys – Fig. 8) and the
value st = true from ConveyPhys; on the receipt of this data it
transfers to S1 where it carries out Start_mot action and
invokes CNF event to inform the ConveyPhys (which is at
that moment in S1 or S3) about signal change. Afterwards it
waits in S1 information from ConveyPhys that sensor is
activated to transfer to S2. In S2 it invokes the action for
motor stopping and informs ConveyPhys and CylCyber about
this change using events CNF and Send_C. Finally, after
receipt of information that cylinder removed the part from the

ROI2.2 Page 4 of 6

belt from CylCyber through event REC_C and data a0 = true,
it returns to S1.

a)

b)

c)

CylCyber actions
Advance ap:=true;
SendToMotor a0m:=true;
Retract ap:=false;

CylPhys actions
Advanced a0:=false;

a1:=true;
Retracted a0:=true;

a1:=false;

Fig. 10. ECCs for cylinder: a) cyber part of the cylinder - CylCyber ; b)
physical part of the cylinder CylPhys; c) actions definition.

Fig. 11. Cylinder resource with introduced Publish and Subscribe function
blocks for simulation of the system performance.

Similarly (Fig. 10), at the begining CylCyber waits for the
information from ConveyCyber that motor stopped (REC_M
event that is connected to Send_C from ConveyCyber – Fig.
8), moves to S1, invokes cylinder advancing (action
Advance), and upon receipt of the event and data referring to
the completion of CylPhys advancing, issues commands for
its retraction. When it gets the information that CylPhys
retracted, CylCyber issues Send_M event to inform CylCyber
that motor can start motion, and waits for the new signal from
ConveyCyber that motor stopped (REC_M event connected to
Send_C) to return to S1 and prepare for the new cycle.

Finally, CylPhys moves between states corresponding to
advanced and retracted positions in accordance with the
events and data received from CylCyber.

Comparing these ECCs with CIPNs and FSMs from
Figures 4, 5 and 6, the equivalence can be observed.

To simulate the behavior of the control system defined by
application (Fig. 8) function blocks are allocated to different
resources and the communication is introduced through
publish and subscribe FBs as presented in Fig. 11 using an
example of smart cylinder.

V. SECURITY RELATED ISSUES

As can be observed from previous sections, the performance
of distributed control system is communication intensive, thus
openings up the space for malicious cyber-attacks by various
adversaries and raising cyber security related issues. A
number of different attack scenarios can be identified and in
case of discrete event systems such as one at hand two kinds
of attacks can be singled out: 1) event removal and 2) event
insertion. The adversaries can issue these attacks in various
combinations always having the common goal to remain
stealthy and to have negative effect on the system
performance. Considering the possible consequences of cyber-
attacks on ICS that can be not only of economic nature but
also safety related (catastrophic damages of the equipment or
even threats to human health and lives), it is crucial to analyze
possible attack points, scenarios and consequences at early
phases of the system design. Within this paper we will briefly
illustrate an approach for modeling attacks scenarios using
SCT based methodology that we proposed in [8]. We will
consider the examples of removal and insertion attacks on a0
signal transmitted from smart cylinder to conveyor belt.

Following a0 removal attack denoted by a0r, smart
conveyor belt cyber part will remain in the state at which it
waits for a0 to progress with functioning, whereas smart
cylinder cyber and physical parts will continue functioning as
if attack did not occur. Described evolution of the system can
be modeled using FSMs under attack SB

r, SC
r and GC

r
presented in Fig. 12a-c. In these automata the evolution of the
system elements under attack is denoted in red lines. The
details of the model generation can be found in [8], and the
performance of the system as a whole is represented by
automaton:

 r
CB

r
C

r
B

r
G||GS||SG (2)

ROI2.2 Page 5 of 6

which is presented in Fig. 12d. From this figure it can be
observed that on the a0 removal attack the system stops (it
enters the state marked red) and no damage is expected.

Fig. 12. Model of the system under a0 removal attack: a) SB
r – model of

conveyor cyber part; b) SC
r – model of cylinder cyber part; c) GC

r – model of
cylinder physical part; d) model of the whole system behavior under attack.

Fig. 13. Model of the system under a0 insertion attack: a) SB
i – model of

conveyor cyber part; b) GB
i – model of conveyor physical part; c) model of

the whole system behavior under attack.

When insertion attack is considered, it should be noted that
to remain stealthy, the adversary can issue the a0 insertion
attack only while SB is in state 5 [8]. Following insertion
attack a0i, the conveyer belt supervisor will transfer from
state 5 to state 2 as if real a0 was received as presented in red
line in FSM SB

i in Fig. 13a. Simultaneously, conveyor
physical part will remain in the state 2 as given in automaton
GB

i from Fig. 13b (the details regarding the formalism for
generation of these automata can be found in [8]). The
behavior of the whole system under a0 insertion attack is
modeled through:

 C
i
BC

i
B

i
G||GS||SG (3)

presented in Fig. 13c where the possible evolutions of the
system after attack are denoted using red states. These
scenarios include starting the motor before the part is removed
from the conveyer belt and can lead to the falling of the part
from the transporter and its damage.

VI. CONCLUSION

Within this paper we have summarized and illustrated using
a case study our recent research results in the area of CPS
based distributed control systems design, verification and
cyber protection. In particular, we have presented the
application of the top-down approach for distributed control
system design that is based on CIPN and that is characterized
by excellent backwards compatibility. The convenience of this
technique is supported through illustrating the application of a
bottom-up technique based on SCT that requires completely
new approach to ICS modeling. Furthermore, we have shown
how the developed distributed control system can be
simulated using standard IEC 61499. Finally, since the
deployment of CPS and IoT at manufacturing shop floor leads
to significant cyber security issues, we have shown how the
SCT based framework can be applied for the analysis of cyber
threats in our case study.

ACKNOWLEDGMENT

This research was supported by the Science Fund of the
Republic of Serbia, grant No. 6523109, AI-MISSION 4.0

REFERENCES

[1] H. Kagermann, W. Wahlster, and J. Helbig, “Recommendations for
Implementing Strategic Initiative INDUSTRIE 4.0,” Acatech, Germany,
2013 [Online]. Available: http://www.acatech.de

[2] H. ElMaraghy, “Smart changeable manufacturing systems.” Proc

Manuf, vol. 28, pp. 3-9, 2019.
[3] Reference Architecture Model Industrie 4.0 (RAMI4.0), 2015. [Online].

Available: fhttp://www.zvei.org
[4] J. Otto, B. Vogel-Heuser, and O. Niggemann, “Automatic parameter

estimation for reusable software components of modular and
reconfigurable cyber-physical production systems in the domain of
discrete manufacturing,” IEEE Trans. Ind. Informat., vol. 14, no. 1, pp.
275–282, Jan. 2018.

[5] Z. Jakovljevic, V. Lesi, S. Mitrovic, and M. Pajic, “Distributing
sequential control for manufacturing automation systems,” IEEE Trans.

Contr Syst Tech., vol. 28, no. 4, pp. 1586-1594, July 2020.
[6] P. Ramadge and W. Murray Wonham, “The control of discrete event

systems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, 1989.
[7] Function blocks – Part 1: Architecture, IEC 61499-1:2012.
[8] Z. Jakovljevic, V. Lesi, and M. Pajic, “Attacks on Distributed

Sequential Control in Manufacturing Automation,” IEEE Trans. Ind.

Informat., vol. 17, no. 2, pp. 775-786, Feb. 2021.
[9] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets, 2nd

ed. Berlin, Germany: Springer, 2010.
[10] R. Vrabič, D. Kozjek, A. Malus, V. Zaletelj, and P. Butala, “Distributed

control with rationally bounded agents in cyber-physical production
systems,” CIRP Ann., vol. 67, no. 1, pp. 507–510, 2018.

[11] L. Wang, C. Mahulea, and M. Silva, “Distributed model predictive
control of timed continuous Petri nets,” in Proc. IEEE Conf. Decis.
Control, pp. 6317–6322, Dec. 2013.

[12] M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control of
discrete-event systems under attacks,” Dynamic Games and Appl., vol.
9, pp 965-983, Dec. 2019.

[13] L. Ricker, S. Lafortune, and S. Genc, “Desuma: A tool integrating
giddes and umdes,” in Proceedings - Eighth International Workshop on
Discrete Event Systems, WODES 2006, pp. 392–393, 2006.

[14] J. H. Christensen, T. Strasser, A. Valentini, V. Vyatkin, and A. Zoitl,
“The IEC 61499 Function Block Standard: Software Tools and Runtime
Platforms,” in ISA Automation Week, 2012.

[15] V. Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed

Control Systems Design, ISA, 2012.
[16] https://www.eclipse.org/4diac/ Accessed: 2020-04-24

ROI2.2 Page 6 of 6

