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Abstract—In the context of passive coherent direct
localization by a distributed receiving antenna array,
we analyze how much the localization error increases
due to non-ideal knowledge of receive antenna positions.
We perform Monte-Carlo simulations with a wideband
localization algorithm for a large distributed antenna array
that surrounds the area were the transmitters are, and
for an array of two pairs of antennas facing the area
from a side. The former exhibits a very low increase in
localization error, whereas the latter increases the error
significantly, compared to the effect of the noise. We also
derive approximate confidence intervals to confirm the
validity of the drawn conclusions.

Index Terms—Receive antenna position uncertainty;
confidence intervals; coherent direct wideband position
estimation; distributed antenna array; massive MIMO

I. I NTRODUCTION

I N this paper, we analyze a system that performs
passive coherent direct wideband localization

of a radio source (Tx) transmitting an arbitrarily
wideband signal. The paper [1] explained the
importance of wideband modeling, especially
in newer generations of wireless systems. The
(receive) antennas of the system are distributed
in the area where the localization is performed.
Therefore, we cannot assume planar wavefronts,
but treat them as spherical, [2]. Each receive
antenna is connected to an appropriate front-
end, thus forming a single receive channel.
Coherent localization requires that spatial coherence
exists in the propagation medium and that the
receive channels are time, frequency and phase
synchronized, as described in [3], [4]. We assume
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that these conditions are satisfied. Even though the
antennas are distributed, their front-ends could be
held at the same place (collocated), such as in the
example architecture in Fig. 1, which makes it easier
to synchronize them. There are multiple sources of
localization error in this scenario, such as the noise,
interference, multipath propagation, synchronization
errors and the uncertainty in the placement of the
receive (Rx) antennas of the system, to mention a
few.

The paper [3] showed that an error of about one
thousandth of the carrier wavelength was achievable
with coherent localization. A similar TDoA (Time
Difference of Arrival) error (when converted to
a length) was shown to be achievable in [5].
However, these results were obtained when the
receive antenna positions were known exactly. The
problem of accurate receive antenna placement
is an important theoretical as well as practical
problem, which the authors have encountered in a
hardware implementation of a system for coherent
localization, based on the methods in [3].

The impact of array element errors, either as
(correlated) array shape distortions, independent
errors of elements, or both, on the main beam
direction, width, gain, as well as the sidelobe level
was analyzed in [6]–[12]. The impact on direction
of arrival estimation was analyzed in [13] and the
impact on localization in [14]. Since the antennas
in our paper are distributed, we model the element
position errors as mutually independent and random.
Also, since we are interested in localization of Txs
inside the array aperture or close to it, the measure
we use to quantify the impact of these errors is the
localization accuracy.

In this paper, we are interested in the effects
of the uncertainty in the Rx antenna positions on
the accuracy of the mentioned type of localization.
The authors of [15] proposed a method to estimate
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the position of a sensor in the array performing
localization.The accuracy with which the antennas
(the sensors) in the array are placed has to be
greater in coherent radio localization, which this
paper deals with, because, generally, the antennas
have to be placed more accurately than the
expected accuracy of the localization they are used
for. Besides providing user location information
for location-based services, the main purpose of
coherent localization is to improve link performance
in wireless systems, [16]. One such application
of localization is in distributed beamforming.
Distributed beamforming is robust with respect to
the ambiguity problem, which exists in coherent
localization (as explained on page 12 in [3]), so we
do not focus on it in this paper. Many of the papers
dealing with localization usually assume perfectly
known Rx antenna positions, so it is important to
analyze the effects of imperfect knowledge of Rx
antenna positions. The results of this paper are
important for selecting methods for measuring the
geometrical relations (such as distances) between
the antennas of the localization system, as well as
for any applications that rely on accurate location
estimation (with subwavelength accuracy) of radio
transmitters.

II. PROBLEM FORMULATION

Specifically, we want to quantify the increase in
localization error due to the Rx antenna placement
error compared to the noise-only scenario. To that
end, we will use a signal model similar to that in
[3], given by

um(t) = am exp (−jωc (t0 + τm)) s (t− t0 − τm)+ηm(t),
(1)

whereum(t) is the signal in Rx channelm, m ∈
{1, 2, . . . ,M}, M is the number of the Rx antennas,
am is a real-valued attenuation coefficient,ωc =
2πfc is the carrier frequency,t0 is the unknown
shift between the Tx and Rx time axis,τm =
dm/c is the propagation delay from the Tx, at
an unknown position~r, to Rx antennam, at ~rm,
c is the speed of propagation,dm = ‖~r − ~rm‖,
and ηm(t) is the complex additive white Gaussian
noise, AWGN. Figure 1 shows the system model
and geometrical relations between the antennas.
Note that, in coherent localization, the phase term
contains the carrier phase only, and is modeled (by

Fig. 1. The system model.

theexponential term) separately from the amplitude
am. The terms (t− t0 − τm) models the envelope
time delay of the transmitted signal/sequences(t)
(wideband modeling). The signal-to-noise ratio,
SNR, in channelm is SNRm = SNR0d

2
0/d

2
m, where

SNR0 is used as a reference SNR at a distance of
d0 = 1 m. For convenience, let the unit of time be
one sampling interval. This doesnot mean that the
time variables/parameters are integers.

In each channelm, the samples available to
a localization algorithm areum(t), for t ∈
{0, 1, . . . , N − 1}. The algorithm computes an
estimate of the Tx position,̂~r, with an error∆r =
‖~̂r−~r‖. The root-mean-squared localization error is

RMSE=
√

MSE =
√

E ∆r2. (2)

Since the Rx antenna positions,~rm, are random
variables, we can define the receive antenna RMSE,
the RxRMSE, similarly. Since different methods can
be used to position the Rx antennas, we use a
generic model for the position errors. Let us assume
that the error of each~rm along each of the axes
(x and y; if antennas are distributed in 3D, then
alsoz) is an independent 0-mean Gaussian random
variable with the same varianceσ2

ax. Therefore
RxRMSE is eitherσax

√
2 for 2D or σax

√
3 for 3D

localization. The goal is to analyze how much the
RMSE increases with RxRMSE.
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III. L OCALIZATION WITH ANTENNA POSITION

UNCERTAINTY: ERRORANALYSIS

We estimated the RMSE (which contained the
effects of both the noise and the Rx antenna position
uncertainty) through Monte-Carlo simulations for
segments of random Gaussian transmitted sequences
that were N = 256 samples long. The carrier
frequency was60 GHz and the bandwidth was
100 MHz. We used the SCM-MUSIC from [3] as a
representative of coherent localization methods for
unknown transmitted sequences. For a given set of
Rx antenna positions, i.e. the array geometry, the
true positions were randomly generated for each
simulation run according to the given RxRMSE.

A. Approximate Confidence Intervals

We will characterize the quality of an estimate
of the localization RMSE by an approximate
confidence interval. To that end, we first note
the distribution of the estimator̂MSE. We have
that M̂SE is the mean of the values∆r2

k, k ∈
{1, 2, . . . , K}, whereK is the number of Monte-
Carlo runs and∆rk is the Euclidean distance
between the estimated and the true location of
the transmitter (i.e. the location error). The values
∆r2

k are i.i.d. random variables, so, according
to the Central limit theorem, the distribution of(

M̂SE− µ
)

/σ is N (0, 1), whereµ andσ2 are the

mean and variance of̂MSE, respectively. Further,
we haveµ = E ∆r2

k = MSE (the true value) and
σ2 = Var ∆r2

k/K.
For a given level of confidence,p, define ε as

P (|ξ| ≤ ε) = p, whereξ ∼ N (0, 1). Therefore,

ε =
√

2 erfc−1 (1− p) . (3)

Next, recall that

∆r2
k = ∆x2

k + ∆y2
k + ∆z2

k, (4)

where ∆xk, ∆yk, and ∆zk are the individual
errors along the coordinate system axes (for 2D
localization∆zk = 0). We assume that they are 0-
mean Gaussian random variables with an unknown
level of correlation. Thus,∆r2

k is expected to have a
chi-square distribution withn degrees of freedom,
χ2(n), where we expectn = 2 in the case when
the Tx is inside the aperture of the array for
2D localization, n = 3 inside the aperture for

3D localization, andn = 1 when the individual
errors are highly correlated or when one of them
is dominant over the other two (when the Tx is
outside the array aperture). For a random variable
Wn ∼ χ2(n), we rely on

Var Wn =
2

n
(E Wn)2 , (5)

as a property of the chi-square distribution.
Combining the previous properties, we obtain

P
(∣∣∣M̂SE−MSE

∣∣∣ ≤ d
)

= p, (6)

where

d = ε

√
Var ∆r2

k

K
= MSE · ε

√
2

nK
. (7)

To approximate this, we usen = 1 as the worst
case (the one that produces the widest confidence
interval) and, since MSE is unknown, we usêMSE
instead:

d̂ = M̂SE · ε
√

2

K
. (8)

Insteadof using an absolute confidence interval[
M̂SE− d̂, M̂SE+ d̂

]
, we can use a relative one,[

M̂SE/δ2, M̂SE · δ2
]
, by definingδ as M̂SE/δ2 =

M̂SE− d̂. This produces an approximate confidence

interval for theR̂MSE=
√

M̂SE,[
R̂MSE/δ, R̂MSE· δ

]
, (9)

where

δ =

√√√√ 1

1− ε
√

2
K

=

=

(
1− 2√

K
erfc−1 (1− p)

)−1/2

. (10)

Note that one convenient property ofδ is that
it does not depend on either the geometry, or
the value of the MSE. It only depends on the
number of simulation runs,K, and the chosen level
of confidence,p. This formula is also useful for
determining the number of simulation runs needed
for a confidence interval of a given width.
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Fig. 2. The localization RMSE vs RxRMSE for different values of
SNR0 for the array geometryG18.

B. Simulation Results

The results for different SNRs were generated
for K = 4096 runs. The width of the confidence
intervals (9), forp = 0.99, was then determined by
δ = 1.03, (10).

Figure 2 shows the results for a geometryG18,
used in [3], and based on [17], for localization in
the horizontal plane1.2 m below the array. The Tx
was roughly below the center ofG18. The SNRs
in the channels were grouped around the value
6 dB below SNR0. The figure shows four curves for
SNR0 values of 10, 15, 20, and25 dB. Note that
they were evaluated only for RxRMSE below the
RMSE of localization when there is no Rx antenna
uncertainty, because it only makes sense that the
accuracy of Rx antenna placement is greater than
the accuracy of the localization method for the Tx.
The curves show a very low increase in localization
RMSE with an increase of RxRMSE. This can be
explained by the fact that the number of Rx antennas
is relatively large, they surround the area where
the Tx is expected to be, and the placement errors
are independent, so that all antennas would not
move the main lobe of the localization algorithm
in the same direction. Instead, those errors tend to
partially cancel each other out, so the dispersion of
the maximum of the main lobe is increased only
slightly.

On the other hand, if some of the Rx antennas
are close to each other (the antennas are grouped
into subarrays), the number of antennas is small,
or they do not surround the area where the Tx
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Fig. 3. The localization RMSE vs RxRMSE for different values of
SNR0 for the array geometryG4.

is, a much larger increase in RMSE is expected.
Figure 3 confirms this and shows the results for a
geometryG4 with two subarrays of two antennas
each, with their broadsides facing the area in front
of the array. The(x, y) coordinates in [m] of the
Rx antenna positions were(0.0884,−0.0884),
(−0.0884, 0.0884), (2.5316,−0.0884), and
(2.7084, 0.0884). The Tx was placed in front
of the array at(1.3, 1.5) in [m] and the distance to
the Rx antennas was around2 m. This means that
the actual SNRs were6 dB below SNR0. To make
the comparison fair, the curves were then evaluated
for the same values of SNR0 as for theG18 case.
The increase in RMSE for the maximum mentioned
RxRMSE was very large (around 9 times) so the
curves are only shown for values below one half
of that.

It would also be worthwhile to explore how the
localization RMSE scales with the number of Rx
antennas,m. However, to make the comparison for
different values ofm fair, for eachm the array
geometry should be optimized in some way. If the
geometries were deterministic, it is unlikely that
the geometry form can be generated form the
geometry form − 1 by adding a single antenna
without changing the positions of the others. If the
geometries were random, the RMSE values should
be averaged over different realizations of these
geometries for all consideredm. A uniform circular
array could be considered for a fair comparison,
but there are practical limitations that need to
be considered as well, e.g., the antennas would
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probably be placed on walls or possibly on the
ceiling of a room (in which the localization occurs),
so this constrains the positions of the antennas to a
rectangle/cuboid. However, since strict optimization
of the Rx array geometry is outside the scope of the
paper, this remains as an interesting topic for future
research.

IV. CONCLUSION

We analyzed the impact of receive antenna
position uncertainty on the accuracy of coherent
direct wideband localization by a distributed
receiving antenna array. Independent Gaussian
errors in receive antenna positions were assumed.
According to the simulation results, the impact of
this uncertainty is small compared to the effect
of the noise forG18, which has a large number
of antennas that encompass the area where the
transmitters are. On the other hand, for arrays which
have a small number of antennas, or have closely
packed subarrays of antennas, especially when the
transmitter is outside the aperture, such asG4, the
degradation of localization accuracy is rather large.
The confidence intervals show that these effects are
due to the Rx antenna positions uncertainty, and not
merely due to the randomness in the simulations.
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