PA4YYHAPCKA TEXHUKA U UHOPOPMATUKA

/
COMPUTING AND INFORMATION ENGINEERING

(PT/RTI)

Jedno rjesenje posrednika u sistemu uslovnog
pristupa digitalne televizije

Radenko Banovi¢, Ilija Basic¢evi¢ i Nemanja Lazukic¢

Apstrakt— Postoje dvije vrste TV (televizijske) usluge u
domenu pretplate: javna (svima dostupan sadrZaj za koji nije
potrebna pretplata) i pretplatnicka TV usluga (TV sadriaj je
dostupan samo pretplacenim korisnicima). Da bi pretplatnicka
TV usluga imala smisla potrebno je zastititi TV sadrZaj cijelim
prenosnim putem. Postoji nekoliko modela zastite pretplatni¢kog
TV sadrzZaja, a jedan od njih je CAS (eng. Conditional Access
System). Kompanija Widevine je Kkreirala rjeSenje sistema
uslovnog pristupa (CAS) takvo da je besplatno za sve operatere.
Da bi operateri mogli upravljati Korisnicima i sadrZajem,
potrebno je implementirati korisni¢ku upravljaku logiku
sistema. U ovom radu je predstavljeno jedno rjeSenje softverskog
posrednika (eng. Proxy) u kome je realizovana Korisni¢ka
upravljacka logika sistema uslovnog pristupa u Widevine CAS
sistemu.

Kljuéne redi—Conditional Access System; Proxy;
Television;

Digital

. Uvop

Pretplatnicka televizija je usluga koju nude satelitski,
kablovski i drugi distributeri televizijskih kanala. Klju¢na
taCka preduzetnickog modela u pretplatni¢koj televiziji jeste
zaStita televizijskog sadrzaja cijelim prenosnim putem, od
emitera do krajnjeg korisnika, ¢ime se otklanja mogucnost
pristupa sadrzaju nepretplaenim korisnicima[l]. Postoji
nekoliko tehnologija zastite televizijskog sadrzaja, a
najpoznatije su upravljanje digitalnim pravima (eng. Digital
Rights Management) i sistem uslovnog pristupa (eng.
Conditional Access System).

Sistem uslovnog pristupa predstavlja zaStitu prenosnog
puta[2] (i on se najéesce koristi za televiziju uzivo), dok je
upravljanje digitalnim pravima zami$ljeno kao mehanizam
zaStite sadrzaja (te se najceSce koristi za televiziju na zahtjev
(eng. On Demand)). Za razliku od upravljanja digitalnim
pravima, U sistemima uslovnog pristupa uobi¢ajno je da se
nakon odredenog vremenskog intervala mijenjaju kljucevi
kojima je skremblovan sadrzaj koji se dostavlja korisniku[3].
Kompanija Widevine je kreirala sopstveno rjesenje CAS
sistema za Android TV i Android STB (Set-Top Box) uredaje
koje je napravilo veliki pomak u industriji digitalne televizije.

Radenko Banovi¢ — Fakultet Tehnickih Nauka, Univerzitet u Novom Sadu,
Trg Dositeja Obradovica 6, 21000 Novi Sad, Srbija (e-mail:
Radenko.Banovic@rt-rk.com).

Ilija BasiGevi¢ — Fakultet Tehni¢kih Nauka, Univerzitet u Novom Sadu,
Trg Dositeja Obradovica 6, 21000 Novi Sad, Srbija (e-mail:
ilibas@uns.ac.rs).

Nemanja Lazuki¢ — Istrazivacko-razvojni Institut RT-RK, Novi Sad,
Srbija, (e-mail: Nemanja.Lazukic@rt-rk.com).

RT1.1 Page 1 of 3

Il. WIDEVINE CAS SISTEM

Klju¢na prednost Widevine CAS rjeSenja u odnosu na
konkurenciju jeste to §to je kompletan CAS ekosistem dat
operatorima na besplatno koriStenje, pod uslovom da se
izvrS8ava na Android TV operativnom sistemu[5].
Komponente Widevine CAS sistema su : licencni posluzioc
(eng. License Server), OEMCrypto (modul koji se integrise u
Android TV), ECM (eng. Entitlement Control Message)
generator, skrembler i posrednik u sistemu uslovnog pristupa.
SI. 1. prikazuje komponente Widevine CAS sistema na
visokom nivou apstrakcije.

Skremblovan audiohideo sadrZaj,

ECM poruka
Skmmhll!”’ '—:> Android TV/STB
Enkoder i
Kljut za
skremblovanje
audiomdeo ECHporuka
sadrZaja

Zahtjev za Kijuéevima
za kodovanje
(Enfilement keys)

ECM generator] [

Kljugewi za kodovanje

Widevine CAS

N
7

Widevine CAS
WLS (Widevine CAS licenca
License Server)

Zahtfjevza

Sl. 1. Widevine CAS sistem

Neke komponente sistema su date tako da se ne mogu
prilagodavati (OEMCrypto, licencni posluzioc), dok ECM
generator i posrednik u sistemu uslovnog pristupa moraju da
se implementiraju za svakog provajdera posebno, ali tako da
se oslanjaju na Widevine SDK (eng. Software Development
Kit). Licencni posluzioc je klju¢na tacka sistema u Kkojoj se
sastaju predajna i prijemna strana. Koristenje licencnog
posluzioca je moguce nakon §to Widevine odobri zahtjev za
koristenjem, i kreira posebne URL putanje prema zahtjevu
provajdera.

Sa predajne strane se licencnom posluziocu $alje zahtjev za
dostavljanjem klju¢a (eng. Entitlement Key) kojim se
enkriptuje ECM poruka u kojoj se nalaze kljucevi kojima je
skremblovan televizijski sadrzaj. Sa prijemne strane se
licencnom posluziocu $alje zahtjev za dostavljanjem licence iz
koje se izvlace kljucevi kojima je moguce dekriptovati ECM
poruku, te sa kljuCevima izvuéenim iz ECM poruke
deskremblovati televizijski sadrzaj i prikazati ga korisniku.

I1l. POSREDNIK U SISTEMU USLOVNOG PRISTUPA SA
KORISNICKOM UPRAVLJACKOM LOGIKOM

Posrednik kao jedan od elemenata CAS sistema komunicira
sa Android TV / STB uredajem, kao i sa licencnim
posluziocem. Takode, potrebno je kreirati korisnicki interfejs
preko kog je moguce unositi podatke vezane za korisnike,
kanale, pakete na koje su Kkorisnici pretplaceni, §to je
ilustrovano u Sl. 2.

OPERATER

I

POSREDNIK

WIDEVINE
LICENSE SERVER

!

KORISNIK
(STB UREDJAJ)

Sl 2. Interakcija posrednika sa okolinom

Posrednik je zamiSljen kao mrezno orijentisan servis Kkoji
koristi REST (eng. Representational State Transfer) API (eng.
Application Programming Interface) arhitekturu softvera[4].
Koristenje =~ REST APl arhitekture je omogudéilo
identifikovanje razli¢itih resursa uz pomo¢ definisanja
posebnih URI (eng. Uniform Resource ldentifier) putanja,
tako da i operater i korisnik (STB uredaj) mogu koristiti
posrednik $aljué¢i razlicite zahtjeve ka njemu. URI putanje
namijenjene komunikaciji sa operaterom se odnose na
upravljanje sadrzajem baze podataka (dodavanje i brisanje
korisnika, uredaja, paketa kanala, azuriranje informacija o
pretplatama korisnika).

STB uredaj korisniku Salje zahtjev za licencom, zatim se
nakon obrade zahtjeva provjerava da li je korisnik koji
zahtjeva licencu za svoj STB uredaj pretplacen na Zeljeni
sadrzaj. Ukoliko jeste pretplacen, zahtjev se proslijeduje
licencnom serveru, te se licenca dobijena od strane licencnog
servera proslijeduje korisniku koji je uputio zahtjev za
licencom. Komunikacija izmedu STB uredaja i posrednika, te
posrednika i licencnog posluZzioca je prikazana u Sl. 3

Posredniku CAS
sistemu

Licencni

Android TV posludlac

Zahtjev za licencom (HTTP POST)

Proviera pretplate korisnika
na sadrZaj

Zahtjev za licencom (HTTP POST)

CAS licenca

CAS licenca

Posredniku CAS
sistemu

Licencni

Android TV poslugilac

Sl. 4. Dijagram poziva posrednika

RT1.1 Page 2 of 3

IV. OPIS REALIZACIE

Posrednik je ralizovan kao HTTP posluzilac u C++
programskom jeziku, jer je SDK na koji se on oslanja takode
realizovan u C++ programskom jeziku. Jezgro posrednika
predstavlja baza podataka u kojoj se nalaze sve relevantne
informacije na osnovu kojih je moguce odrediti da li je
korisnik pretplacen na odgovarajuce pakete kanala. Sema baze
podataka je prikazana na Sl. 4.

Korisnik

Korisnik_ID Pretplata Paket_ID
Jauni_ID Naziv_Pakela
Pretplata_ID
Korisnicko_lme:
Korisnik_ID
Ime
Paket_ID
Prezime

Email

Lozinka Paket_Kanal

Paket_Kanal_ID

Upravnik Paket_ID

Korisnik_Uredjaj

KorisnikUredjaj_ID Upravnik_ID Kanal_ID

Korisnik_ID Javni_ID
Uredjaj_ID! Ime
Prezime
Korisnicko_lme Kanal_ID

Uredjaj Lozinka

Uredjal_ID Super_Upravnik

Naziv_Kanala

Naziv_Uredjaja

Sl. 4. Sema baze podataka

A. Alati koristeni za realizaciju

Posto je C++ izabran kao programski jezik, a posrednik
treba da bude HTTP posluzilac izabrali smo Mongoose
biblioteku[6] u kojoj je implementiran na dogadaj pobudeni
(eng. Event-driven) neblokiraju¢i API za HTTP i uz koji je
mogucée kreirati REST API servise koji su neophodni za
komunikaciju sa okolinom. Za upravljanje bazom podataka
koristena je SQlite biblioteka[7].

B. Implementacija obrade zahtjeva za licencom

Nakon §to posrednik zaprimi zahtjev na URI putanji
dobavi_licencu u funkciji handle_lic_req() se uz pomo¢
poziva SDK funkcije getDevicelnfo() iz zahtjeva za licencu
dobijaju informacije o uredaju i to : proizvoda¢, model,
identifikacioni broj uredaja i serijski broj sertifikata uredaja.
Iz zahtjeva za licencu se uz pomo¢ poziva SDK funkcije
getContentld() dobavlja informacija o paketu kanala za koji se
Salje zahtjev za licencu.

Na osnovu dobijenih informacija o uredaju iz baze
podataka se dobavlja informacija o korisniku. Zatim se na
osnovu informacije o korisniku i paketu kanala provjerava da
li je korisnik pretplac¢en na zeljeni paket kanala. Ukoliko je
korisnik pretplacen na paket kanala pozivom SDK funkcije
GenerateLicenseRequestAsJSON() se na osnovu zahtjeva za
licencu generiSe zahtjev koji se preko HTTP Post metode
koristenjem Curl biblioteke salje licencnom serveru.

HTTP odgovor dobijen on licencnog posluzioca se
proslijeduje STB uredaju koji je poslao zahtjev pozivom
funkcije mg_printf() biblioteke mongoose. Ukoliko korisnik
nije pretplacen na Zeljeni sadrzaj na STB uredaj se odmah
Salje HTTP odgovor sa statusnim kodom 405 koji se odnosi
na to da takav zahtjev nije dozvoljen.

Svaka akcija za popunjavanje baze podataka je kreirana sa
posebnom uri putanjom i funkcijom koja obraduje zahtjev.
Akcije koje su obradene su : dodaj korisnika, obrisi korisnika,
pretplati korisnika, ukini pretplatu korisnika, dodaj uredaj,
obrisi uredaj, dodaj kanal, obrisi kanal, dodaj pretplatu, obrisi
pretplatu, dodaj kanal u paket i izbaci kanal iz paketa. U ovoj
fazi razvoja nije predvidena realizacija prednjeg dijela (eng.
Front-end) zbog &ega su implementirane samo funkcije za
popunjavanje baze podataka, i ¢itanja iz baze podataka
neophodna za dobavljanje licence.

V. TESTIRANJE

Predlozeno rjeSenje je testirano na Synaptics BG5CT STB
(SI. 8.) uredajima sa operativnim sistemom Android Q.
Koristena je Live Channels korisni¢ka aplikacija koja se
oslanja na Comedia DTV (eng. Digital Television) srednji sloj
kompanije iWedia, u kom je integrisam OEMCrypto koji
kreira zahtjev za licencom i koji sluzi za deskremblovanje
televizijskog sadrzaja.

Sl. 8. Synaptics BG5CT platforma

Sa predajne strane je koristen TSDuck set alata [8] koji se u
ovom slucaju koristio za skremblovanje TS (eng. Transport
Stream) toka podataka koji se nalazio u izvori$noj datoteci,
kao i za slanje skremblovanog toka podataka ka odredni$nom
STB uredaju koriStenjem racunarske mrezne infrastrukture i
IPv6 (eng. Internet Protocol version 6) protokola. Takode, sa
predajne strane je koristen ECM generator koji je razvijan u
paraleli sa posrednikom u sistemu uslovnog pristupa.

Funkcionalnost je testirana koriStenjem viSe prijemnih
uredaja pri ¢emu su mijenjane informacije o pretplaenim
korisnicima u bazi podataka. Kreirano je nekoliko testnih
sluéajeva u kojima su razli¢iti korisnici u razli¢itim testnim
slu¢ajevima bili pretplaceni na Zeljeni sadrzaj. Jedan primjer
testnog slucaja: korisnik A je pretplacen na zeljeni sadrzaj,
korisnik B nije pretplacen na Zeljeni sadrzaj, testiranjem je
utvrdeno da korisnik A ima pristup sadrzaju, dok korisnik B
nema pristpu sadrzaju.

Po zavrSetku testiranja utvrdeno je da su STB uredaji
pretplacenih korisnika uspjesno deskremblovali i
reprodukovali sadrzaj iz izvoriSne datoteke koja je emitovana

RT1.1 Page 3 of 3

ka njima. U slu¢ajevima nepretplacenih korisnika STB uredaji
su dobijali odgovor od posrednika da nisu pretplaceni na
zeljeni sadrzaj, te nisu dobili licencu iz koje bi mogli izvuéu
kljuceve kojima bi uspjesno deskremblovali sadrzaj.
Testiranjem je utvrdena funkcionalnost rjeSenja.

VI. ZAKLJUCAK

U ovom radu je prikazano jedno rjesenje posrednika u
sistemu uslovnog pristupa sa korisni¢kom upravljakom
logikom. Opisan je Widevine CAS sistem u cjelini kao i uloga
posrednika u njemu. Navedeni su svi alati koristeni u
realizaciji rjeSenja, te je dat detaljan opis rjeSenja. RjeSenje je
testirano koristenjem nekoliko prijemnih uredaja i nakon
uspjesno zavrSenih testova potvrdena je funkcionalnost
rjeSenja. Doprinos ovog rada u odnosu na postojeca rjeSenja je
u tome $to je kompatibilan sa Widevine CAS ekosistemom. U
buduénosti ovo rjeSenje moze biti unaprijedeno Kkreiranjem
prednjeg dijela posluzioca ¢ime bi se omogucio jednostavan
vizuelni prikaz i lakSe upravljanje pretplatom Korisnika, te
prosirenjem zadnjeg dijela posluzioca.

LITERATURA

[1] L Kastelan, V. Pekovi¢, V. Zlokolica, J. Zloh, D. Trifunovi¢,
“Simultaneous automated verification of conditional access system on
multiple TV sets,” Proc. IEEE International Conference on Consumer
Electronics, Berlin, Germany, pp. 269-270, Sept. 2012.

[2] Fu-Kuan Tu, Chi-Sung Laih and Hsu-Hung Tung, "On key distribution
management for conditional access system on pay-TV system," in IEEE
Transactions on Consumer Electronics, vol. 45, no. 1, pp. 151-158, Feb.
1999, doi: 10.1109/30.754430.

[3] Milan Bjelica, Nikola Tesli¢, Velibor Mihi¢, “Softver u digitalnoj
televiziji 17, 2017.

[4] Fielding, Roy Thomas (2000). "Chapter 5: Representational State
Transfer (REST)". Architectural Styles and the Design of Network-
based Software Architectures (Ph.D.). University of California, Irvine

[5] Widevine CAS, Jun 2021. [online].
https://www.widevine.com/solutions/widevine-cas
[6] Mongoose - Embedded Web Server, Jun 2021. [online].

https://github.com/cesanta/mongoose
[7] SQLite, Jun 2021. [online]. https://www.sglite.org
[8] TSDuck, Jun 2021. [online]. https://tsduck.io/

ABSTRACT

There are two types of TV (television) services in the domain of
subscription: public (content available to all for which no
subscription is required) and subscriber TV service (TV content is
available only to subscribed users). In order for the subscriber TV
service to make sense, it is necessary to protect the TV content
throughout the transmission. There are several models of protection
of subscriber TV content, and one of them is CAS (Conditional
Access System). Widevine has created a conditional access system
(CAS) solution that is free for all operators. In order for operators to
be able to manage users and content, it is necessary to implement the
user management logic of the system. This paper presents a solution
of a proxy server in which the user control logic of the conditional
access system in the Widevine CAS system is realized.

One solution of proxy server in the digital television
conditional access system

Radenko Banovi¢, Ilija Basic¢evi¢, Nemanja Lazukic¢

Jedno rjesenje ECM generatora

Radenko Banovi¢, Ilija BaSicevi¢, Ksenija Popov i Milenko Maksi¢

Apstrakt—Zastita televizijskog sadrZaja predstavlja jedan od
najveéih izazova u industriji digitalne televizije usljed sve
manjeg broja televizijskih kanala ¢ije se gledanje ne napladuje.
Da bi omogudili naplaéivanje televizijskog sadrzaja korisnicima,
potrebno je zastiti televizijski sadrzaj cijelim prenosnim putem.
Najkoristeniji model zastite Zivog televizijskog sadrzaja je CAS
(eng. Conditional Access System). CAS model podrazumijeva
postupak zastite video i audio sadrZaja skremblovanjem koje
ima za cilj sprjecavanje neovlastene reporodukcije audio i video
sadrzaja. Kontrolne rije¢i kojima je izvrS§eno skremblovanje se
prenose istim prenosnim kanalom kao i skremblovani sadrzaj u
okviru ECM (eng. Entitlement Control Message) poruke ali u
enkriptovanom obliku. Kompanija Widevine je realizovala
sopstveni CAS ekosistem potpuno besplatan za sve korisnike. U
ovom radu je predstavljeno jedno rjeSenje ECM generatora u
Widevine CAS sistemu.

Kljuéne re¢i—ECM generator, Conditional Access System,
Digital Television

. Uvop

U junu 2014. godine je prvi put prikazan Andoid TV
operativni sistem, Kkoji je prilagodena verzija Android
operativnog sistema za televizore i STB (set-top box)
uredaje[4]. Do danas je veliki broj proizvodaca televizora i
STB uredaja, kao i operatera televizijskih kanala integrisalo
Android TV kao operativni sistem koji se izvr§ava na
njihovim uredajima[5].

Kako bi privoljeli i preostale operatere televizijskih kanala i
proizvodace televizora i STB uredaja da integriSu Android TV
na svoje uredaje kreiran je Widevine CAS sistem uslovnog
pristupa koji je na koriStenje dat potpuno besplatno, ali moze
da se koristi samo uz Android TV operativni sistem. Da bi
sistem postao funkcionalan, potrebno je implementirati ECM
generator i posrednik u sistemu uslovnog pristupa, za $ta je
dat SDK (eng. Software Development Kit).

Komponente sistema koje je potrebno implementirati nisu
implementirane da bi svaki operater televizijskih kanala
prilagodio sistem svojim potrebama. Postoji nekoliko primjera
implementacije ECM generatora [1, 2], ali oni nisu
prilagodeni Widevine CAS ekosistemu. Widevine CAS sistem
je prikazan u Sl. 1.

Radenko Banovi¢ — Fakultet Tehni¢kih Nauka, Univerzitet u Novom Sadu,
Trg Dositeja Obradovica 6, 21000 Novi Sad, Srbija (e-mail:
Radenko.Banovic@rt-rk.com).

Ilija Basicevi¢c — Fakultet Tehni¢kih Nauka, Univerzitet u Novom Sadu,
Trg Dositeja Obradovica 6, 21000 Novi Sad, Srbija (e-mail:
ilibas@uns.ac.rs).

Ksenija Popov — Istrazivacko-razvojni Institut RT-RK, Novi Sad, Srbija,
(e-mail: Ksenija.Popov@rt-rk.com).

Milenko Maksi¢ — Istrazivacko-razvojni Institut RT-RK, Novi Sad, Srbija,
(e-mail: Milenko.Maksic@rt-rk.com).

RT1.2 Page 1 of 3

Skremblovan audiohideo sadrZaj,
ECM poruka

|::>

Zahtjevza Kljuéevima

Nzahuevza licencom
Kljut za WideunfCAS&
skremblovanje licenca
audioMdeo ECM poruka
sadrZaja
za enkriptovanje
(Enfilement keys)

Zahfjevza
IicenCM
%\Niuwne CAS
licenca
Kljuéevi za enkriptovanje

Sl. 1. Widevine CAS sistem

Il. ECM GENERATOR

Da bi audio i video sadrzaj bio zasti¢en tokom kompletnog
prenosnog toka vr$i se postupak skremblovanja. Inverzni
postupak u odnosu na skremblovanje se naziva
deskremblovanje, njime se zasticeni sadrzaj prevodi u osnovni
format razumljiv audio i video dekoderima[3].

Skremblovanje se vrsi koriStenjem kontrolne rijeci (kljuca
za skremblovanje). Koristenje kontrolne rije¢i u procesu
skremblovanja omogucuje promjenu kontrolne rijeéi u
vremenu, a period izmedu dve promjene se naziva periodom
kriptovanja. Sto je Ge$¢a izmjena kontrolne rijeéi, to je proces
skremblovanja bezbjedniji.

Trenutno koristena kontrolna rije¢ prenosi se u okviru ECM
poruke koja se generise u ECM generatoru. PID (eng. Packet
Identifier) vrijednost TS (eng. Transport Stream) paketa u
kom se nalazi ECM poruka se nalazi u CA deskriptoru PMT
tabele. ECM generator u Widevine CAS sistemu komunicira
sa licencnim posluziocem (eng. License Server) i
skremblerom. Pozicija ECM generatora u Widevine CAS
sistem je prikazan na Sl. 2.

Kljuéevi za enkriptovanje

- ECMporuka - ECMporuke -
KIjuZ za skremblovanje Zahtjevza Kljutevima

audio video sadrZaja za enkriptovanje ECM poruke
Sl. 2. Pozicija ECM generatora u widevine sistemu

U ovom radu je koriSten skrembler implementiran u TS
Duck programskoj podrsci. TS Duck je set alata koji se koristi
za manipulaciju MPEG prenoshim tokovima, a jedan od alata
je i skrembler koji moze da koristi i eksterni ECM generator
za generisanje ECM poruka[6]. ECM generator i TS Duck
komuniciraju po ECMG/SCS (eng. Simulcrypt Synchroniser)
protokolu[7].

U komunikaciji izmedu generatora i skremblera, skrembler
je implementiran kao Kklijent, dok generator treba da bude
implementiran kao posluZioc, te je ECM generator je u smislu
komunikacije sa skremblerom implementiran kao TCP/IP
posluZioc koja ¢eka zahtjeve od skremblera.

Po uspostavljanju veze generatora i skremblera kreira se
sesija koja je zaduzena za razmjenu poruka u okviru
ECMG/SCS protokola. ECMG/SCS protokol je prikazan na

SI. 3.

podesi kanal

Y

status kanala

A

podesi tok podataka

A 4

status toka podataka

A

proslijedivanje kontrolne rijedi

»
>

kreiranje ECM poruke

ECM poruka

A

proviera stanja kanala

A
Y

provjera stanja toka podataka

A
A4

zatvori tok podataka

Y

status toka podataka

A

S| 3. Dijagram ECMG/SCS protokola

WLS (eng. Widevine License Server) je veé¢ gotovo
rjeSenje sa kojim ECM generator komunicira putem HTTP
protokola. ECM generator treba od WLS da dobavi (eng.
Entitlement) kljuceve kojima ¢e enkriptovati ECM poruku u
kojoj se nalaze kljuéevi kojima je skremblovan sadrzaj, tako
da u slucaju presretanja ECM poruke presreta¢ ne moze da
dobije informaciju o kljuevima kojima je sadrzaj
skremblovan. Dijagram komunikacije skremblera, ECM

generatora i WLS je prikazan na SI. 4.
dobavi kljut za kodovanje

ECM poruke

kantrolna rijed

kljué za kodovanje ECM poruke

Sl. 4. Dijagram komunikacije ECM generatora

ECM poruka

RT1.2 Page 2 of 3

I1l. OPIS REALIZACIJE

ECM generator je realizovan kao C++ CLI (eng. Command
Line Interface) aplikacija. Prilikom pokretanja aplikacije
potrebno je proslijediti broj porta na kom aplikacija osluskuje
zahtjev Klijenta (skrembler) za uspostavljanjem veze.
Kompletno rjeSenje se oslanja na Widevine SDK (eng.
Software Development Kit). RjeSenje mozemo podijeliti u tri
logicke cjeline, i to: TCP/IP posluzilac, ECMG/SCS protokol,
i ECM generator.

A. TCP/IP posluzilac

Ovaj modul sadrzi dvije funkcije: void TCPstart(int port,
void (*onSessionEstablished)()) i void TCPstop(int port).
Funkcija TCPstart kreira TCP/IP uti¢nice sa podr$kom za
IPv4 i IPv6 protokole, stavlja posluZioca u stanje ¢ekanja
zahtjeva za konekcijom Klijenta, te uspostavlja vezu i kreira
sesiju za korisnik / posluzilac komunikaciju. Funkcijom
TCPstop se zatvara otvorena sesija.

B. ECMG/SCS protokol

U ovom modulu je implementiran ECMG/SCS protokol.
Implementiran je tako da se izvr$ava u while petlji, poziva se
funkcija read() koja je blokirajuéa, i koja zaustavlja
izvrSavanje petlje dok se memorija za smjeStanje dolaznih
podataka ne popuni. Iz pristiglih podataka se pozivom
funkcije int32_t msg_pars(const uint8_t* buff, uint32_t size,
struct ecmgp_msg* msg) popunjava sktruktura ecmgp_msg.

Jedno od polja strukture koja predstavlja poruku je tip
poruke, na osnovu kog se koristenjem swich grananja bira
grana u kojoj se priprema odgovor na poslatu poruku. Tip
poruke moze biti : CHANNEL_SETUP, STREAM_SETUP,
CW_PROVISION, STREAM_CLOSE_REQUEST. Svaka od
grana popunjava strukturu koja predstavlja poruku, te se
poziva funkcija int32_t msg_generator(uint8_t* buff, struct
ecmgp_msg* msg) koja od podataka iz strukture kreira poruku
koja se Salje ka klijentu.

Poruka tipa CW_PROVISION nosi i vrijednost klju¢a za
skremblovanje audio/video sadrzaja koja kriptovana treba da
se mnade u ECM poruci. U funkciji int32_t
gen_ecm_datagram(uint8_t* ecm_datagram, struct
ecmgp_msg™ msg) je implementirano kreiranje ECM poruke,
te se ona poziva u grani obrade poruke tipa CW_PROVISION.
Nakon poziva ove funkcije ECM poruka se dodaje kao polje
strukture ecmgp_msg, poziva se funkcija msg_generator
nakon koje se kreirana ECM poruka $alje skrembleru.

C. ECM generator (u uzem smisiu)

Za generisanje ECM poruke i kreiranje TS paketa, te
kreiranje zahtjeva za kljuevima za enkriptovanje ECM
poruke i parsiranjem odgovora dobijenog od WLS koriStene
su funkcije dobijene iz Widevine SDK paketa. Funkcija u
kojoj se kreira ECM poruka gen_ecm_datagram() kroz
parametar dobija poruku dobijenu od skremblera u kojoj se
nalaze kljucevi za skremblovanje audio/video podataka. Pored
kljuceva za skremblovanje, potrebno je dobaviti kljuceve za
enkriptovanje ECM poruke koji se dobijaju slanjem ispravnog
HTTP zahtjeva ka WLS.

Pozivom funkcije CreateEntitlementRequest() koja je dio
Widevine SDK kreira se zahtjev za kljuéevima za
enkriptovanje ECM poruke. Da bi se kreirao ispravan zahtjev
potrebno je funkciji proslijediti slede¢e podatke: identifikator
sadrzaja za skremblovanje, naziv operatera, broj kljueva za
skremblovanje (jedan, ili dva), rezolucija sadrzaja, ime
operatera koji potpisuje zahtjev za licencom, klju¢ za
potpisivanje enkriptovanog zahtjeva i vektor za potpisivanje
zahtjeva. Nakon $to je zahtjev ispravno kreiran koriStena je
CURL biblioteka[8] kako bi se poslao HTTP zahtjev ka WLS,
nakon ¢ega se odgovor upisuje u zeljeni dio memorije.

Nakon dobijenog odgovora, poziva se funkcija
ParseEntitlementResponse() koja iz sirovog odgovora izvlaci
dva kljuca za enkriptovanje ECM poruke. Pozivom funkcije
GenerateEcm() kojoj se kao parametri proslijeduju kljucevi za
enkriptovanje ECM poruke kreira se ECM poruka, da bi se na
kraju pozivom GenerateTsPacket() kreirao paket koji se $alje
ka skrembleru.

IVV. TESTIRANJE

U paraleli sa izradom ECM generatora, kreirano je i
rjeSenje posrednika u sistemu uslovnog pristupa (CAS Proxy),
te je integrisana Widevine OEMCrypto biblioteka u Android
STB uredaj. Nakon $to na Android STB uredaj pristigne
skremblovan audio/video sadrzaj, on posredniku u sistemu
uslovnog pristupa Salje zahtjev za licencom, sa informacijom
o kom sadrzaju je rije¢. Ukoliko dobije odgovor od
posrednika, licenca se proslijeduje OEMCrypto biblioteci koja
iz licence izvla¢i kljuCeve za dekriptovanje ECM poruke.
Ukoliko se poruka uspjesno dekriptuje, klju¢evima dobijenim
iz ECM poruke se deskrembluje audio/video sadrzaj, te je na
ekranu moguce vidjeti audio/video sadrzaj koji je poslat na
STB uredaj. PredloZeno rjeSenje je testnirano na Synaptics
BG5CT STB (SI. 5.) uredajima sa operativnim sistemom
Android Q. Koristena je Live Channels korisnicka aplikacija
koja se oslanja na Comedia DTV (eng. Digital Television)
srednji sloj kompanije iWedia.

Sl. 5. Synaptics BG5CT platforma

Posto su STB uredaji deskremblovali i

uspjesno
reprodukovali audio/video sadrzaj skremblovan kljucevima

generisanim u TS Duck alatu, te ECM porukama
enkriptovanim klju¢evima dobijenim od WLS, konstatovali
smo da je testiranjem utvrdena funkcionalnost rjesenja.

RT1.2 Page 3 of 3

V. ZAKLIJUCAK

U ovom radu je prikazano jedno rjesene ECM generatora u
Widevine CAS sistemu. U uvodu je objasnjena uloga i znacaj
CAS sistema, kao i njegova komercijalna primjena. Blize je
opisan nacin zastite televizijskog sadrzaja u CAS sistemima,
Prikazan je opis rjeSenja. RjeSenje je testirano na nekoliko
prijemnih uredaja, sa nekoliko ulaznih tokova podataka te je
potvrdena funkcionalnost sistema. U buduénosti se ovo
rjeSenje moze unaprijediti podrskom za kreiranje ECM poruke
za vise razli¢itih tokova podataka u paraleli.

LITERATURA

[1] Li Xiand Chen Xin, “Design of Digital Video Broadcasting Conditional
Access System Headend Communication Interface,” in Computer and
Modernization, vol. 1, no. 3, pp. 118-121, 2012.

[2] In-Hee Jo and Byoung-Soo Koh, " Building a common encryption
scrambler to protect paid broadcast services," in International Journal
of Internet Technology and Secured Transactions, vol. 6, no. 3, Nov.
2016, doi: 10.1504/1J1TST.2016.080391.

[3] Milan Bjelica, Nikola Tesli¢, Velibor Mihi¢, “Softver u digitalnoj
televiziji 17, 2017.

[4] Google Unveils First Android TV Device, Jun 2021. [online].
https://www.nexttv.com/news/google-unveils-first-android-tv-device-
384772

[5] Android TV OS reaches 80M monthly active devices, Jun 2021.
[online]. https://techcrunch.com/2021/05/18/android-tv-os-reaches-80m-
monthly-active-devices-adds-new-features/

[6] TSDuck, Jun 2021. [online]. https://tsduck.io/

[71 ECMG/SCS protokol, Oktobar 2008. [online].
https://www.etsi.org/deliver/etsi_ts/103100_103199/103197/01.05.01_6
0/ts_103197v010501p.pdf

[8] Curl library, Jun 2021. [online]. https://curl.se/

ABSTRACT

The protection of television content is one of the biggest
challenges in the digital television industry due to the
declining number of free-to-air television channels. In order to
enable the charging of television content to operators, it is
necessary to protect television content throughout the
transmission. The most widely used model for the protection
of live television content is the CAS (Conditional Access
System). The CAS model involves a process of protecting
video and audio content by scrambling that aims to prevent
unauthorized reproduction of audio and video content. The
scrambled control words are transmitted via the same
transmission channel as the scrambled content within the
ECM (Entitlement Control Message) message but in
encrypted form. Widevine has implemented its own CAS
model completely free for all users. In this paper, one solution
of ECM generator in Widevine CAS system is presented.

One solution of ECM generator

Radenko Banovic, llija Basicevic, Ksenija Popov, Milenko
Maksic

Aplikacija za demonstraciju XSS sigurnosnih
propusta

Katarina Simi¢, Zarko Stanisavljevi¢

Apstrakt — XSS (eng. Cross-site scripting) je jedna od
najceSc¢ih ranjivosti veb aplikacija uprkos tome S$to postoji
veliki broj razli¢itih mehanizama zastite. U ovom radu
prikazana je implementacija jedne ranjive aplikacije u okviru
koje je moguée demonstrirati razlicite tipove XSS sigurnosnih
propusta, kao i na¢ina njihove zloupotrebe, ali i eliminisanja.
Aplikacija se moZe Koristiti kao edukativno sredstvo za
prakticnu obuku softverskih inZenjera u zatvorenom i
bezbednom okruZenju.

Kljucne reci — XSS, OWASP top 10, sigurnosni propusti.

I. UvoD

Vaznost veb aplikacija posebno je dosla do izrazaja u
trenutku pandemije koronavirusa koja je pocela 2019.
godine i jo§ uvek traje. Od tada ljudi sve vise zavrSavaju
svoje poslove i obavljaju odredene aktivnosti, poput online
kupovine ili koris¢enja drustvenih mreza, uz pomo¢ veb
aplikacija. Na ovaj nacin korisnici na razliitim mestima
ostavljaju svoje poverljive podatke, veruju¢i veb
aplikacijama da oni nece pasti u pogresne ruke. Iz ovog
razloga je veoma bitno da svaka aplikacija u svakom
trenutku bude zastiCena od razli¢itih tipova napada i
pokusaja krade osetljivih podataka, i na taj nacin zadobije i
zadrzi poverenje svojih korisnika.

Vazan deo bezbednosti veb aplikacija jeste koncept polise
zajednickog porekla (eng. same-origin policy, SOP) [1].
Zahvaljuju¢i ovom mehanizmu, skripte jedne veb stranice
mogu da pristupe podacima druge veb stranice samo ako su
istog porekla. Dva URL-a su istog porekla ako su im
protokol, host i port identi¢ni. Na ovaj nacin spreceno je da
napadaci preko svojih zlonamernih veb aplikacija dodu u
posed osetljivih podataka smeStenih na nekom drugom veb
sajtu. Zbog toga su napadaci morali da osmisle nove nacine
kako mogu do¢i do korisnickih podataka, a da pritom
zaobidu polisu zajednickog porekla.

XSS [2][3] je jedan od bezbednosnih propusta koji
zaobilazi polisu zajednickog porekla. Jedan je od retkih
napada koji se iznova nalaze na OWASP-ovoj godisnjoj listi
top 10 bezbednosnih propusta [4] i gotovo da ne postoji
veliki veb sajt koji u nekom trenutku nije bio ranjiv na ovaj
napad. XSS podrazumeva umetanje klijentskih skripti u
ranjivu aplikaciju, koje su kasnije dostupne korisniku nakon
uCitavanja odredenih veb stranica te aplikacije. XSS
bezbednosni propust je i dalje popularan i zastupljen na
velikom broju veb aplikacija. Razlog tome Cesto moze biti
neiskustvo, neupucenost i neobazrivost programera koji

Katarina Simi¢ je student master studija na Elektrotehnickom fakultetu,
Univerziteta u Beogradu, Bul. kralja Aleksandra 73, 11120 Beograd, Srbija
(e-mail: sk193473m@etf.bg.ac.rs).

Zarko Stanisavljevi¢ radi na Elektrotehni¢kom fakultetu, Univerziteta u
Beogradu, Bul. kralja Aleksandra 73, 11120 Beograd, Srbija (telefon:
+381-11-3218-484; e-mail: zarko.stanisavljevic@etf.bg.ac.rs).

RT1.3 Page 1 of 6

izraduju veb aplikacije, kao i nedostatak testiranja aplikacija
na propuste prilikom svake velike izmene ili nadogradnje
aplikacije.

U ovom radu prikazana je implementacija i nacin
kori$¢enja ranjive veb aplikacije, na kojoj je moguce na
odredenim mestima umetnuti zlonamerne skripte i izvrSiti
neku od zlonamernih akcija na $tetu regularnog korisnika.
Cilj ove aplikacije je jednostavna demonstracija nekih od
najcesc¢e primenjenih i prakti¢énih XSS napada, koja bi na taj
nacin pomogla korisniku da bolje razume kada i kako ti
napadi mogu da se dese, kao i na kojim mestima u aplikaciji.
Nakon koris¢enja aplikacije, korisnik bi trebao da razume
osnovne koncepte XSS napada, kao i da bude u stanju da
primeni odgovarajue mere =zastite, koriste¢i nauceno,
prilikom izrade sopstvene aplikacije.

U drugom poglavlju se opisuju detalji XSS sigurnosnog
propusta. U treCem poglavlju je prikazan razvoj aplikacije
koji se koristi u demonstrativne svrhe XSS napada, uz
detaljan opis koriS¢enih tehnologija. U ¢etvrtom poglavlju je
opisan rad aplikacije i nacin koriS¢enja aplikacije. U petom
poglavlju je dat zakljucak.

II. XSS

Pojavom JavaScript programskog jezika sredinom
devedesetih godina proSlog veka omogucen je veliki
napredak u izradi veb aplikacija, koje su sada mogle biti i
interaktivne. Ali, pored svih dobrih 1 interesantnih
mogucnosti koje su sada bile dostupne, pojavile su se i one
lose koje mogu uticati negativno po korisnika, poput XSS
napada. Prvobitno se XSS napadu nije pridavalo mnogo
paznje, jer su serveri bili izazovnija i interesantnija meta
napadacima. Ali tokom godina situacija se preokrenula.
Serveri su vremenom postajali mnogo zasti¢eniji nego ranije
i bilo je sve teZe probiti njihovu zastitu. Uvidelo se i da
serveri nisu bili neophodni za izvrSavanje napada sa
klijentske strane. Pojavljivali su se razli€iti pretrazivaci koji
izvrSavaju klijentski kod, svaki sa svojim propustima u
zavisnosti od verzije, §to je programerima dodatno otezavalo
posao zaStite. Sa druge strane, programeri zbog manjka
vremena ili budzeta, kao i manjka iskustva i znanja, ne
posvecéuju dovoljno paznje bezbednosnim propustima, te ih
je veoma lako i napraviti. Zbog svega ovoga se XSS danas
smatra za jedan od najopasnijih i najucestalijih napada. Dve
tre¢ine svih veb aplikacija imaju XSS propuste u sebi, i
svaka velika i popularna aplikacija je u nekom trenutku
imala ovaj propust.

Primarni cilj napadaca jesu korisnici ranjivih aplikacija.
Napadi najceS¢e podrazumevaju kradu sesije, preuzimanje
osetljivih podataka, izvrSavanje nedozvoljenih akcija u ime
korisnika, dostavljanje zlonamernih softvera korisniku (eng.
malware), pa ¢ak i narusavanje zastite aplikacije od drugih
napada. Osim §to ovi napadi ostec¢uju same korisnike, mogu

mailto:zarko.stanisavljevic@etf.bg.ac.rs
mailto:zarko.stanisavljevic@etf.bg.ac.rs

da imaju i destruktivne posledice po samu aplikaciju,
ponajvise zbog gubitka poverenja od strane korisnika ako
aplikacija zahteva visok nivo bezbednosti zbog veoma
osetljivih i bitnih korisnikovih podataka podeljenih sa tom
aplikacijom.

Postoji nekoliko varijacija XSS napada, koje se mogu
podeliti u tri glavna tipa: reflektuju¢i, snimljeni i DOM
bazirani XSS napad.

A. Reflektujuci XSS napad

Reflektujuci XSS napad (eng. Reflected XSS attack) [5] je
najzastupljeniji od sva tri tipa. Pod ovim napadom se
podrazumeva da se umetnuta, zlonamerna skripta posalje na
server kao deo zahteva i zatim odmah reflektuje u
korisnikovom pretrazivacu u vidu odgovora koji sadrzi tu
skriptu. Dakle, podatak poslat serveru je vraéen i prikazan
na stranici bez ikakve prethodne provere tog podatka. Da bi
uspesno sproveo ovaj napad, napada¢ prvo mora da osmisli
URL koji ¢e sadrzati zlonamernu skriptu. Zatim ¢e taj URL
proslediti korisnicima na lukav nafin. Ako neko od
korisnika niSta ne posumnja, zahteva¢e URL od aplikacije i
server Ce vratiti odgovor koji ¢e sadrzati i napadaevu
skriptu. Korisnikov pretraziva¢ ¢e sada, izmedu ostalog,
izvrsiti 1 napadacevu skriptu i ukradeni podaci se $alju na
napadafev server i postaju mu dostupni. Ovakva vrsta
napada se izvrSava samo ako korisnik otvori napadacev
URL, te je tako ovaj napad Cesto jednokratan. Da bi napadac
naveo korisnika da nasedne i otvori sastavljen URL, mora da
se posluzi lukavim trikovima. Ako su mu meta individualne
osobe, napada¢ ¢e im zamaskirani URL upotpunjen
uverljivom porukom poslati direkno (npr. preko e-mail
poruke), tako da korisnik pozeli da taj URL i otvori. Ako mu
je meta veci broj ljudi, zamaskirani URL ¢ée postaviti na
nekim drugim veb stranicama u vidu linka, te ¢e ¢ekati da
neko taj link i otvori.

B. Snimljeni XSS napad

Snimljeni XSS napad (eng. Stored XSS attack) [6] je
najopasniji tip XSS napada, zato $to moze da ima znacajnije
posledice po veéi broj korisnika. Za razliku od reflektujuceg
napada, zlonamerna skripta se ¢uva na serveru, tako da ¢ée se
svakom korisniku, koji od servera bude zahtevao stranicu sa
umetnutom skriptom, u pretrazivacu ta skripta i izvrsiti. Ovi
medusobne komunikacije (forumi, komentari, pitanja
korisnika, itd.). Za izvrSavanje ovog napada napadal ne
mora da podmece korisnicima direktno sastavljen URL, ve¢
je dovoljno da sam umetne skriptu u aplikaciji. Posto ¢e ona
biti sacuvana na serveru, bi¢e dostupna svakom korisniku te
stranice. Ovaj napad ¢e najverovatnije dati bolje rezultate u
odnosu na reflektujuci, jer da bi napadac ukrao korisnikove
osetljive podatke, korisnik u najvec¢em broju slucajeva mora
biti ulogovan, Sto ¢e verovatno i biti slucaj prilikom
izvrSavanja snimljenog XSS napada, a manje verovatan
slucaj prilikom reflektuju¢eg. Snimljenim napadom je veca i
verovatno¢a da napadaceva zrtva bude administrator
napadnute veb aplikacije, §to znaci da cela aplikacija moze
biti komprimitovana i ugrozena.

C. DOM bazirani XSS napad

Za razliku od reflektujuc¢eg i snimljenog XSS napada, za
¢ije je izvrSavanje neophodno vracanje zlonamerne skripte

RT1.3 Page 2 of 6

sa servera, DOM (eng. Document Object Model) bazirani
XSS napad [7] ¢e se izvrsiti bez da server vrati skriptu
prosledenu u URL-u. Ovo je moguce zato Sto JavaScript
moze pristupiti DOM-u i samim tim moze dohvatiti i
parametre URL-a. To zna¢i da ¢e zlonamerni kod biti
preuzet sa URL-a i obraden u JavaScript kodu. Ovakva vrsta
napada ima viSe slicnosti sa reflektuju¢éim XSS napadom
nego snimljenim, jer zahteva od napadacda da sastavljen URL
na razne nacine podmetne korisnicima, ali je zbog svoje
prirode znatno opasniji. Razlika u odnosu na reflektujuéi
XSS napad jeste Sto ¢e JavaScript kod procesirati napadacev
URL, pa samim tim i napadac¢evu skriptu umetnutu u URL,
tako da bilo $ta Sto ¢e server vratiti kao odgovor nije vazno
prilikom ovog napada. Najveéi problem kod ovog propusta
jeste naéi uzrok zbog kojeg nastaje, a posto se taj uzrok
moze naci bilo gde u klijentskom kodu, programer bi morao
dobro da poznaje projekat prilikom istrage.

D. Zastita od XSS napada

Nakon upoznavanja sa XSS propustima i uvidanja
njihovih moguénosti i posledica po korisnike, naredni korak
za programere bi bio da svoje aplikacije od istih i zastite. S
obzirom da je malo potrebno da se propusti naprave,
neophodno je redovno testirati aplikacije na njih prilikom
svake nadogradnje koda. Radi efikasnije zastite aplikacija
preporucljivo je primeniti metode poput validacije input-a
[8], validacije output-a [9], konfiguracije aplikacije tako da
vraca Content-Security-Policy zaglavlje [10], zabrane unosa
korisnickih podataka na potencijalno opasnim mestima u
okviru aplikacije [11], kao i koriS¢enja odgovarajucih
zaglavlja odgovora koji bi mogli da detektuju HTML ili
JavaScript kod uw HTTP odgovorima, i samim tim sprece
njihovo ubrizgavanje, poput X-XSS-Protection zaglavlja
[12].

III. IMPLEMENTACIJA APLIKACIJE

Implementirana aplikacija se sastoji iz dva dela. Prvi deo
¢ini jednostavna, ali ranjiva veb aplikacija, koja sluzi za
isprobavanje razli¢itih XSS napada na razliitim mestima u
okviru te aplikacije. Drugi deo ¢ini napadacev server, na
koji pristizu ukradeni podaci nakon uspe$no izvrSenih
napada.

A. Implementacija ranjive aplikacije

Prvi deo alata za ulenje predstavlja jednostavnu veb
aplikaciju za pretrazivanje i dodavanje slika pod nazivom
ImageBrowser (Sl. 1).

Na pocetku se od korisnika trazi da se registruje ili
uloguje na aplikaciju. Nakon Sto se korisnik uloguje,
prikazuje mu se stranica sa porukom dobrodoslice. Nakon
toga korisniku su dostupne dve razliCite stranice sa
akcijama. Na prvoj stranici korisnik moze da dodaje svoje
slike uz koje ostavlja i odredene tagove — reci koje sluze za
opisivanje slike. Na drugoj stranici korisnik moze da, uz
pomo¢ input polja, pretrazuje slike na osnovu postojecih
tagova, da pretrazuje druge korisnike aplikacije dodajuci
simbol @ ispred korisnickog imena, kao i da prikazane slike
komentarise i na njih reaguje.

Sama aplikacija ima minimalan skup potrebnih
funkcionalnosti, ali i namerno napravljene XSS bezbednosne
propuste na vise mesta radi demonstracije nekih od XSS
napada.

Image Browser Image Browser

2]

Login Register

usemama: Emait

Pazswerd
Ussrmarma:

[eonm

Asdeauugs: Fmura

grom

a)

Uplosd i x|

b)

1 result found for term: #dog

#dog #ouppy
L2

§ [sated commert

<)

Sl. 1. Izgled ranjive aplikacije u pretrazivacu: a) poCetna stranica, b) stranica za dodavanje slika i c) stranica za pretrazivanje slika

Da bi korisnik mogao da dodaje i pretrazuje slike, kao i
da ostavlja komentare i reakcije, odredeni podaci moraju da
se ¢uvaju u bazi podataka. Aplikacija koristi H2 Java in-
memory bazu [13], koja omogucéava da se prilikom svakog
pokretanja aplikacije koristi inicijalno stanje podataka baze i
da se sve dotadasnje izmene gube, S§to omogucava lakSe
testiranje aplikacije.

Za implementaciju servera je koriS¢en razvojni okvir
Spring [14], kao 1 SpringBoot [15] koji koristi Spring kao
podlogu. U projektu se koristi i Apache Maven [16], alat za
izvr$avanje compile i build naredbi Java koda. Spring
Initializer [17] je projekat otvorenog koda (eng. open
source), koji omogucava generisanje konfigurisanog Spring
projekta uz odabir potrebnih zavisnosti (eng. dependencies).
Java kod je grupisan po paketima, od kojih je okruzujuéi
application.imagebrowser u okviru koga se pored drugih
nalazi i ImagebrowserApplication, glavna klasa aplikacije
(SL 2).

Package util
A A

Package model

|

i p

E Package dao i i Package helpers

T | «create» A IS

| 1 | 1

|
|
|
|

e

Package service

ImagebrowserApplicationTests

«creates

< Package controller

€ = ImagebrowserApplication

Package security

Sl. 2. UML dijagram paketa unutar application.imagebrowser okruzujuceg
paketa

Unutar ovog paketa se nalazi nekoliko drugih paketa, koji
sadrze sav potreban kod za uspostavljanje komunikacije i
ispravan rad servera sa bazom podataka, obradu pristiglih
zahteva na serveru i vracanje odgovarajucih stranica i
podataka koji se u€itavaju na stranici sa kojima ¢e korisnik
interagovati.

Klijentska strana sadrzi kod koji se izvrSava u
pretrazivacu, i sadrZi sve Sto korisnik moze da vidi i sa ¢ime
moze da interaguje. Najbitnije i najosnovnije tehnologije
koje su koris¢ene prilikom izrade klijentskog dela aplikacije
su HTML (eng. Hyper Text Markup Language), CSS (eng.
Cascading Style Sheets) 1 JavaScript. U okviru posmatrane
aplikacije se koriste JSP (eng. Java Server Pages) stranice
[18] koje podrzavaju dinamicki sadrzaj, $to omogucéava

RT1.3 Page 3 of 6

umetanje Java koda unutar HTML koda uz pomod
specijalnih JSP tagova. JSP komponenta predstavlja serviet
koji ispunjava ulogu korisni¢kog interfejsa za Java veb
aplikaciju. Radi olakSanog i preglednijeg fajla, uz JSP se
koristi i biblioteka JSTL (eng. The JSP Standard Template
Library) [19], koja omogucéava da se Java kod zameni
tagovima koji ¢e raditi identi¢an posao. Fragmenti JSP koda
koji se mogu koristiti na viSe mesta su smesteni u zasebne
fajlove, koji se uz pomo¢ tagova ucitavaju na odredenoj JSP
stranici. JSP fajlovi u aplikaciji koji ¢ine stranice su:
o Joginjsp, gde korisnik moze da se uloguje ili
registruje,
index.jsp, koji predstavlja glavnu
prikazanu korisniku nakon $to se uloguje,
upload.jsp, gde korisnik moze da dodaje slike i
tagove,
search.jsp, gde korisnik moze da pretrazuje slike
po tagovima ili drugim korisnicima, kao i
searchResults.jsp 1 noResults.jsp, dve stranice
koje server vraca kao rezultat AJAX [20] poziva,
prva sa rezultatima, i druga sa informacijom da
rezultata nema.

stranicu

B. Implementacija napadacevog servera

Drugi deo aplikacije ¢ini napadacev server, na kojem ce
se obradivati pristigli zahtevi, ta¢nije prethodno dohvaéeni
osetljivi podaci korisnika. Da bi zahtevi uopste mogli da
pristignu na server, napada¢ mora da sastavi URL koji ¢e u
sebi sadrzati zlonamerni kod za dohvatanje podataka i za
redirekciju. Nakon dohvatanja podataka, napada¢ moze da
ponovo izvrsi redirekciju nazad ka napadnutoj aplikaciji
tako da korisnik ni ne posumnja da je bio napadnut.

U okviru ove aplikacije je napadalev server
implementiran u Node.js [21] platformi koja predstavlja
asinhrono runtime okruzenje za JavaScript jezik, i koja
omogucava stvaranje skalabilnih veb aplikacija, samim tim i
izvrSavanje JavaScript koda van pretrazivaca.

U slucaju napadacevog projekta je instaliran paket
Express [22], koji predstavlja radni okvir za organizaciju
aplikacije prema MVC arhitekturi. Pomocéu Express-a se
mogu na jednostavan nacin obradivati pristigli zahtevi.
Napravljen je jedan JavaScript fajl, index.js, u kojem se,
prilikom izvrSavanja koda, pokrece server koji
osluskivanjem c¢eka na zahteve i obraduje one koji su
pristigli. Svaki zahtev se obraduje tako da se u terminalu
napadaca gde je pokrenuta skripta ispisu pristigli podaci, a
zatim po potrebi izvrsi i redirekcija. Dokle god napadacev
server radi, mo¢i ¢e da obraduje pristigle zahteve.

IV. NACIN KORISCENJA APLIKACIJE

U ovom poglavlju je dat prikaz nekoliko tipi¢nih scenarija
XSS napada, gde je prvo objasnjen cilj napada, uz prilozene
zlonamerne skripte za ispunjenje tog cilja, a zatim je na
kraju svakog primera dat savet za spreCavanje tog napada.
Bitno je napomenuti da su ovakve vrste napada kaznjive
zakonom svuda u svetu (npr. u Srbiji prema Krivicnom
zakoniku Republike Srbije (Clanovi 298 do 304a)) ukoliko
se sprovode prema aplikacijama fizickih i pravnih lica koja
nisu upoznata 1 saglasna sa aktivnostima na proveri
ranjivosti.

A. Krada korisnikove sesije

Nakon $to se korisnik uspesno uloguje na aplikaciju,
server ¢e poslati kolaci¢ sesije preko Set-Cookie zaglavlja.
Taj kolaci¢ ¢e se sada slati ka serveru uz svaki korisnikov
zahtev. Zbog toga je kolaci¢ sesije izuzetno osetljiv podatak,
jer ako napada¢ nekako uspe da dode do njegove vrednosti
mo¢i ¢e da Salje zahteve ka serveru u ime oSteéenog
korisnika. HttpOnly predstavlja deo Set-Cookie zaglavlja u
vidu flag-a. Ako je taj flag postavljen, to ¢e spreciti
klijentske skripte da pristupe vrednostima kolaci¢a. U
slu¢aju da taj flag nije postavljen, kradu sesije je moguce
izvesti. U slucaju ove aplikacije flag nije postavljen, tako da
je moguce pristupiti vrednosti kolacica sesije u JavaScript-u
preko document.cookie atributa (S1. 3).

® @® attackerwebsite — node « npm TERM_PROGRAM=Apple_Terminal SHELL=/bin/...
clél3é:attackerwebsite ksimic$® npm start

> attackerwebsite@l.@.@ start /Users/ksimic/Desktop/attackerwebsite
> node index.js

Example app listening on port 3008!
document.cookie: _ga=GA1.1.2132436374.1568379974; _gcl_au=1.1.808969092.1568379
974; SESSION=NWNZThIM2UtNTY10S0@YWUxLTg4NDItYmULINTgwNIMzMiNm

Sl. 3. Prikaz ukradenog kolacic¢a sesije u terminalu napadaca

1) Krada kolacica sesije - reflektujuci XSS napad

Na search stranici aplikacije postoji reflektuju¢i XSS
propust. Prilikom pretrage slika, uneti termin postaje URL
parametar, i prilikom vracanja rezultata od strane servera se
vrata 1 pretrazen termin koji se dodaje na stranicu.
Validacija na tim osetljivim tackama nije realizovana,
samim tim korisnik umesto termina moze da ukuca skriptu
unutar <script> taga. Napadal takode proverava na
svojoj masini da li document.cookie vraca njegovu tekucu
sesiju. Nakon §to utvrdi da vraca, napada¢ moze da sastavi
URL koji sadrzi zlonamerni kod.

2) Krada kolacica sesije - snimljeni XSS napad

U aplikaciji postoji i snimljeni XSS propust, tako da
napada¢ moze u komentare da ubacuje zlonamerni kod. Ako
je situacija ista kao kod reflektujuceg XSS propusta, napadac
sada moze isti zlonamerni kod da doda kao komentar (SI. 4).
To znaci da ¢e svakom korisniku kojem se taj komentar
bude ucitao na stranici biti ukraden kolaci¢ sesije. Ovo je
suptilniji nacin za prevaru korisnika, te je ve¢a verovatnoca
da ¢e korisnici biti prevareni ovom metodom nego da su

kliknuli na URL primljen od napadada u slucaju
reflektujuéeg XSS napada.

#dog #puppy

Qo

Sl. 4. Trenutak dodavanja napadaceve skripte u komentar

RT1.3 Page 4 of 6

3) Krada kolacica sesije - DOM bazirani XSS napad

Na upload stranici aplikacije postoji DOM bazirani XSS
propust. Korisnik moze da dodaje tagove koji se pridodaju
slici, 1 kako se neki tag doda on postaje deo URL-a u vidu
href parametra. Problem je Sto se taj deo URL-a nikada ne
Salje na server i ne obraduje, ali se prilikom ucitavanja
stranice sa takvim URL-om tagovi automatski dodaju. To
znacdi da se taj deo URL-a obradio negde u JavaScript kodu.
4) Nacin sprecavanja napada

Najlaksi i najefikasniji na¢in spreCavanja ovog napada
jeste jednostavno podesiti HttpOnly flag, koji u tom slucaju
sprecava klijentske skripte da dohvate podatke o kola¢i¢ima
(S1. 5). Na ovaj nacin document.cookie ¢e uvek vratiti
praznu vrednost i kolaci¢ sesije ¢e ostati bezbedan. lako
ovaj mehanizam odbrane od krade kolaci¢a funcionise, to ne
znaci da napadaC na istom mestu ne moze da izvrsi druge
zlonamerne akcije. Ovaj flag se setuje na razliite nacine, u
zavisnosti od kori§éenog programskog jezika.

application.properties

server.servlet.session.cookie.http-only=true

Sl. 5. Postavljanje HTTPOnly flag-a radi spre¢avanja krade kolacica sesije

B. Umetanje napadacevog koda na stranicu

U prethodnim primerima je data jednostavna skripta koja
izvrSava redirekciju i prosleduje kolaci¢ sesije napadacu, ali
ako je primenjena navedena tehnika zastite od tog napada,
napada¢ mora da nade drugi nacin da naskodi korisniku. Jo$
jedna tehnika jeste umetanje HTML koda na stranicu, kojem
se dodeljuju stilovi tako da izgleda kao da je zapravo deo
stranice. Ako je kod dovoljno uverljiv, moze da uveri
korisnika da uradi odredene akcije vodene tim kodom. U
naredna dva primera se moze videti kako umetanjem HTML
koda napada¢ moze da ukrade kredencijale korisnika, i kako
moze da navede korisnika da preuzme sumnjiv sadrzaj na
Svoju masinu.

1) Umetanje koda za preuzimanje sumnjivih fajlova

Ponekad napadacu nije samo cilj da ukrade korisnikove
podatke, ve¢ i da ga navede da preuzme odredeni fajl. To
postize umetanjem linka, na ¢iji klik se zapocinje
preuzimanje nekog fajla. U zavisnosti od toga §ta je cilj
napadaca, taj fajl moze da ima nikakav ili razoran uticaj na
korisnikovu masinu. Dovoljno je samo sastaviti taj link
dovoljno uverljivim da navede korisnika da klikne na njega,
tako da ¢e napadac i ovde uneti inline stilove, kao i uverljiv
tekst (SI. 6).

[a]

Congratulations! You are our 1000th visitor! Click here to claim a special price!

b pPIPO_IR.Zip

Sl. 6. Prikaz stranice za pretrazivanje slike sa umetnutim linkom za
preuzimanje sumnjivih fajlova
2) Phishing tehnika
lako kolaci¢i nakon primenjene zastite ne mogu biti

ukradeni, XSS propust i dalje postoji na istim mestima.
Napadac uvida da moze da umetne skriptu koja sa stranice

brise ceo HTML kod i zameni ga svojim. U ovom primeru je
za brisanje i dodavanje koda kori$¢en Jquery (tacnije .empty
i .append funkcije). Kod koji se dodaje predstavlja laznu
formu za unos korisnickog imena i Sifre. Ta taktika
umetanja ovakve vrste koda gde korisnik ,,dobrovoljno*
ostavlja licne podatke napadacu se zove phishing. Napadac
dodaje tekst da uveri korisnika da treba tu formu da popuni,
na primer saopsti korisniku da mu je istekla sesija i da mora
ponovo da se uloguje (SL. 7).

Image Browser SO

Your session expired, please log in again.

Username:

johndoe
Password

Sl. 7. Prikaz stranice za pretrazivanje slike sa umetnutom formom

Ako korisnik nista ne posumnja, moze uneti svoje licne
podatke. Klikom na dugme za logovanje se zapravo izvr§ava
redirekcija ka napadacevom serveru i Stampaju se podaci u
napadacevu konzolu i na kraju ponovo deSava redirekcija
nazad ka aplikaciji. Napada¢ sad ima korisnikovo ime i
Sifru, §to moze da zloupotrebi na sli¢an nacin kao i prilikom
krade sesije (SI. 8).

CO2R3I1LMGBWN:attackerwebsite ksimic$ node index.js
Example app listening on port 306!
username: johndoe

Eassword: 1234

Sl. 8. Prikaz ukradenih kredencijala u terminalu napadac¢a pomocu
phishing tehnike

attackerwebsite — node index.js — 80x24

3) Nacin sprecavanja napada

U prethodnim primerima nije bilo potrebno raditi dodatnu
validaciju zbog prirode napada. Ali u ovom slu¢aju bi bilo
pozeljno uraditi validaciju i input-a i output-a, na klijentskoj
i na serverskoj strani. Prilikom pretrage se deSava AJAX
poziv, pa je pozeljno da se pre toga uradi sanitizacija
input-a, najverovatnije uz pomo¢ regularnog izraza. U
slu¢aju da input ne ispunjava zahteve, AJAX poziv se nece
izvr$iti 1 korisniku se ostavlja poruka da zna da je input polje
bilo neispravno popunjeno. Slede¢i korak je wuraditi
validaciju u kontroleru prilikom obrade zahteva i vracanja
odgovarajuce stranice. Tu bi najbolje resenje bilo koris¢enje
gotovih metoda za zamenu (escaping) HTML koda. Ako je
ipak potrebno dozvoliti odredene tagove ili specijalne
karaktere, metode moraju ru¢no da se pisu uz veliki oprez.
Na primer, ako korisnik zameni <script> tag praznim
stringom bez rekurzije, napada¢ moze da sastavi skriptu sa
script tagom <scr<script>ipt>. Takode mora da se
vodi ra¢una da se obrade i uppercase i lowercase karakteri.
Bitno je odredene karaktere i stringove menjati u celoj
skripti, a ne samo po prvom pojavljivanju. Zlonameran kod
moze biti prosleden i kao atribut nekog dozvoljenog taga, pa
je 1 za to potrebna validacija. Nakon §to programer utvrdi
sve Sta mu je potrebno za validaciju na serveru, moze da
uradi i validaciju output-a. Najlaksi nacin uraditi to u okviru
ove aplikacije jeste koriste¢i JSTL tag <c:out>, jer ovaj
tag omogucava escaping vrac¢enog koda. Na kraju se uz ove
tehnike postize visok nivo zastite od ovakvog XSS napada.

RT1.3 Page 5 of 6

C. Izvrsavanje nedozvoljenih radnji u ime korisnika

Osim krade podataka, napada¢é moze pomocu
zlonamernog koda i da izvr$i neku radnju na stranici u ime
korisnika. U tom sluc¢aju nema potrebe da iSta radi na svom
serveru, ve¢ samo da pripremi kod koji ¢e se izvrsiti. Ako je
cilj napadaca da Sto vise korisnika oSteti, to bi najbolje
postigao uz snimljen XSS napad.

Skripta za ovaj primer je sastavljena tako da se u
odredenom vremenskom intervalu daju ili sklanjaju
korisnikove reakcije na slike (S1. 9). Iako ovaj napad nema
veée posledice po korisnika, sam napad moze da izazove
nelagodnost i zbunjenost. Ovo je samo jedan primer
izvrSavanja nedozvoljenih akcija u skladu sa datim alatom,
ali 1 u ovom slu¢aju zlonamerne skripte mogu da izazovu i
znatno vece posledice, posebno ako korisnik nije ni svestan
da se nesto desilo.

#dog #puppy #dog #puppy

LA Qo

23:10:11 23:10:16

‘ | Cr i
SI. 9. Prikaz izvrSavanja napadaceve skripte u ime korisnika u toku
odredenog vremenskog intervala

Iako je cilj napadaca razli¢it u odnosu na prethodni
primer, metoda sprecavanja od XSS napada je ista. Potrebno
je validirati input i output, sa klijentske i serverske strane.
Pozeljno je raditi validaciju na svim osetljivim mestima da
bi se smanjio rizik od napada.

D. Keylogger

Jo$s jedan nacin na koji napada¢ moze da dode do
osetljivih korisnikovih podataka jeste da umetne skriptu koja
napadacevom serveru prosleduje karaktere koje korisnik
unosi, karakter po karakter uz ta¢no vreme unosa. Ova
tehnika nadgledanja pojedinac¢nih karaktera koje korisnik
unosi se naziva keylogger, i najefikasnija je na stranicama
na kojima se unose poverljivi podaci, poput broja kreditne
kartice ili kredencijala. Skripta radi tako §to pravi ograni¢en
niz karaktera koji se Salje u odredenom vremenskom
intervalu samo ako je taj niz popunjen.

Na stranici za registraciju namerno je napravljen
bezbednosni propust. Kada korisnik prilikom registracije
unese ve¢ postojeée korisnicko ime ili e-mail, prilikom
osvezavanja stranice ¢e ta informacija biti prisutna u URL-u
11z nje biti ispisana u odgovarajucée input polje (SI. 10).

Login Register
Usemame: Email:
johndoe@email.com
Password:
Username:
=
Account with this usermame already exist
Password:
Confirm password:

Sl. 10. Prikaz pocetne stranice u toku izvrSavanja keylogger XSS napada

Napadac je otkrio da moze svojim zlonamernim kodom da
zatvori tag tog input polja, i dalje samo izvrsi svoju skriptu.
Chrome, Safari 1 IE pretrazivaci su se u ovom slucaju
pokazali otpornim na napad zahvaljujuéi X-XSS-Proftection
zaglavlju odgovora. Svi korisnici koji se nalaze na ostalim
pretrazivacima ¢e biti ranjivi. Napadac¢ na ovaj nacin moze
da sazna kredencijale korisnika kroz individualne karaktere
(SL 11).

attackerwebsite — node index.js — 111x11

ahe

"1"},{"t":"2621-7-30 23:19:28",
AT 1"2021-7-30 23:19:20", "k" Mt} {

"2021-7-30 23:19:28", "k":"c"
1"2021-7-30 23:19:23", "k*:"T30"}]

9 23:19:20","

ke, [{"t":"2
3, {"t":"2021-7-3
1

Sl. 11. Prikaz ukradenih informacija u terminalu napadaca tokom
izvrSavanja keylogger XSS napada

E. Jednostavan primer DOM baziranog XSS propusta

Preporucljivo je =zaobi¢i manipulaciju DOM-a u
klijentskom kodu koliko god je to moguée da bi se smanjile
Sanse za DOM bazirani XSS napad. U ovom primeru se
namerno na dnu svake stranice nalazi dekodovani URL
tekuce stranice, koji se i dohvata i dekoduje u JavaScript
kodu (S1. 12). Ovde napadac takode moze da umetne skriptu
koja ¢e potpuno zaobiéi server i manipulisati kod koji se
izvrSava u JavaScript-u.

Dekodovani URL tekuée stranice se dohvata prilikom
ucitavanja te stranice u JavaScript kodu uz pomo¢ svojstva
document. URL. Na ovaj nacin se vrs$i manipulacija DOM
podataka, $to otvara mogucnost da stranica bude ranjiva na
DOM bazirani XSS napad. Eliminacijom tog koda problem
bi u potpunosti nestao, ali ako je ipak potrebno taj kod i
izvrsiti, neophodno je uraditi validaciju. Tokom izvrSavanja
atributa document. URL, on se i dekoduje, te je preporucljivo
ukloniti tu funkcionalnost. Ako informacija treba da bude
dekodovana, treba izvrSiti zamenu (eng. escaping)
nepozeljnih karaktera koji se mogu naéi u skripti sa
odgovaraju¢om interpretacijom tog karaktera. Na ovaj nacin
je spreCeno izvrSavanje zlonamerne skripte na svim
stranicama aplikacije.

« C @ localhost:2080/index#<script>alert 'DOM?%20based’ 20XS5%20attack’) </script>

i Apps

Image Browser a @3

Hello, johndoe!

Welcome to ImageBrowser, where you can upload your own images with corresponding tags, or you can search for
already existing ones.

Have fun!

Currantly a: hitp:ocalost-80601ndex

Sl. 12. Prikaz ranjivosti stranice na kojoj se nalazi dekodovani URL

V. ZAKLJUCAK

U ovom radu predstavljena je jedna ranjiva aplikacija
pomocu koje se moze izuCavati XSS sigurnosni propust.
Aplikacijom su pokriveni razli¢iti tipovi XSS napada.
Koris¢enjem aplikacije moguce je demonstrirati neke
interesantne zloupotrebe ovih propusta. Najvaznije je da
korisnici mogu na siguran nacin u zatvorenom okruzenju
detektovati propuste, a zatim koriste¢i tehnike zastite
ispraviti propuste i uveriti se da njihova resSenja ispravno
rade. Aplikaciju je takode moguce nadograditi po potrebi u
buduénosti, radi dodavanja novih primera i propusta koji bi
korisnicima dodatno omoguéili testiranje i ucenje o XSS

RT1.3 Page 6 of 6

napadu. Aplikacija je kori§¢ena za izvodenje laboratorijskih
vezbi na predmetu Zastita racunarskih sistema i mreza na
Elektrotehnickom fakultetu u Beogradu, ali efekti koris¢enja
nisu izmereni usled uslova izvodenja nastave izazvanih
pandemijom koronavirusa.

LITERATURA
[1] Same origin policy, pristupano 21.05.2021,
https://developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy

[2] D. Stuttard, M. Pinto, “The Web Application Hacker’s Handbook:
Finding and Exploiting Security Flaws”, second edition, John Wiley
& Sons Inc, 2011

[3] Cross-site Scripting, pristupano 21.05.2021, https://owasp.org/www-
community/attacks/xss/

[4] OWASP Top Ten Project, pristupano 21.05.2021,
https://owasp.org/www-project-top-ten/
[5] Reflected XSS Attacks, pristupano 21.05.2021,

https://owasp.org/www-community/attacks/xss/#reflected-xss-attacks

[6] Stored XSS Attacks, pristupano 21.05.2021, https://owasp.org/www-
community/attacks/xss/#stored-xss-attacks

[77 DOM Based XSS, pristupano 21.05.2021, https://owasp.org/www-
community/attacks/DOM_Based XSS

[8] Input Validation Cheat Sheet, pristupano 21.05.2021,
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation Chea
t Sheet.html

[9] XSS Prevention Rules, pristupano 21.05.2021,
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_
Prevention Cheat Sheet.html#rule-1-html-encode-before-inserting-
untrusted-data-into-html-element-content

[10] Content Security Policy (CSP), pristupano 21.05.2021,
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
[11] XSS Prevention Rules, pristupano 21.05.2021,

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site Scripting
Prevention Cheat Sheet.html#rule-0-never-insert-untrusted-data-
except-in-allowed-locations

[12] X-XSS-Protection Header, pristupano 21.05.2021,
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site Scripting_
Prevention_Cheat_Sheet.html#x-xss-protection-header

[13] H2 Database, pristupano
https://www.h2database.com/html/main.html

[14] Spring, pristupano 21.05.2021, https:/spring.io/

Spring Boot, pristupano 21.05.2021, https://spring.io/projects/spring-

boot

[16] Apache Maven, pristupano 21.05.2021, https://maven.apache.org/

17] Spring Initializr, pristupano 21.05.2021, https://start.spring.io/

JSP Tutorial, pristupano 21.05.2021, https://www.javatpoint.com/jsp-

tutorial

[19] JSTL (JSP Standard Tag Library),
https://www.javatpoint.com/jstl

[20] AJAX, pristupano 21.05.2021,

US/docs/Web/Guide/AJAX

Node.js, pristupano 21.05.2021, https://nodejs.org/en/

] Express, pristupano 21.05.2021, https://expressjs.com/

21.05.2021,

—
Wi
[t}

—
(e}
—

pristupano 21.05.2021,

https://developer.mozilla.org/en-

——
NSNS
N —
—

ABSTRACT

XSS (Cross-site scripting) is one of the most common
vulnerabilities in web applications, despite the fact that there are
many defense mechanisms against it that are available. This paper
presents the implementation of a vulnerable application in which
different types of XSS vulnerability can be demonstrated, along
with the ways they can be misused, but also the ways they can be
eliminated. The application can be used as an educational tool for
software developer practical training in a closed and safe
environment.

AN APPLICATION FOR DEMONSTRATION OF XSS
VULNERABILITY

Katarina Simic, Zarko Stanisavljevic

SQLIiTrainer - sistem za u¢enje 0 SQLI
sigurnosnim propustima u aplikacijama

Porde Madi¢, Zarko Stanisavljevié

Apstrakt — Sigurnosni propusti u aplikacijama koji nastaju
prilikom njihovog razvoja i ostaju nedetektovani u
produkcionom okruZenju mogu dovesti do narusavanja
integriteta, poverljivosti i dostupnosti takvih aplikacija.
SQLiTrainer predstavlja skup ranjivih aplikacija kojima se
mogu demonstrirati razli¢ite vrste SQLi (eng. SQL injection)
ranjivosti. U radu je opisan na¢in implementacije SQLiTrainer
sistema i dati su primeri na koji na¢in se sistem moze iskoristiti
za prakti¢nu obuku programera. Sistem je uspesno koriséen za
izvodenje laboratorijskih vezbi na predmetu ZaStita
racunarskih sistema i mreZa na Elektrotehni¢kom fakultetu u
Beogradu.

Kljuéne re¢i — SQLI, sigurnosni propusti, razvoj bezbednog
softvera.

I. Uvop

Razvoj bezbednog softvera podrazumeva postojanje
svesti kod programera o potencijalnim problemima, a zatim
i primenu ¢itavog seta dobrih praksi, kao i automatizovanih
alata tokom procesa razvoja softvera. Aplikacije kod kojih
postoje sigurnosne ranjivosti koje se mogu zloupotrebiti
mogu dovesti do Stete kako za korisnike takvih aplikacija,
tako i za njihove autore.

Jedan od sigurnosnih propusta koji je ¢esto zastupljen u
veb aplikacijama je SQL injection [1], kod koga se na
razli¢ite nacine na nepredviden nacin mogu umetnuti
naredbe koje mogu narusiti integritet, poverljivost i
dostupnost baza podataka. Ovaj propust se ve¢ duZi niz
godina nalazi na top listama najce$¢ih sigurnosnih propusta
u aplikacijama koje objavljuju organizacije kao S$to je
OWASP (Open Web Application Security Project) [2].

U opstem slucaju nije jednostavno omoguditi
programerima da kroz prakti¢an rad unaprede svoje znanje o
ovakvim problemima, jer to podrazumeva izucavanje
razliCitth mehanizama kojima se narusava informaciona
bezbednost aplikacija na kojima se primenjuju. Primena
ovih mehanizama kada se izvrSavaju prema sistemima
fizickih i pravnih lica koja nisu upoznata i saglasna sa
aktivnostima na proveri ranjivosti i testiranju upada u
njihove sisteme je kaznjiva svuda u svetu (npr. u Srbiji
prema Kriviénom zakoniku Republike Srbije (Clanovi 298
do 304a)). Iz tog razloga postoje razliiti sistemi koji
omoguéavaju svojim korisnicima da u zatvorenom
okruzenju na praktican nacin obave obuku, a da ne prekrse
zakon [3-5]. U ovom radu prikazan je jedan novi sistem za
ucéenje 0 SQLi sigurnosnim propustima u aplikacijama.

Porde Madi¢ radi u kompaniji Zuehlke Engineering, Bul. Milutina
Milankoviéca 1i, 11070 Novi Beograd, Srbija (e-mail:
djordje.madic@zuehlke.com).

U trenutku rada na ovom istrazivanju Porde Madi¢ je bio student master
studija na Elektrotehni¢kom fakultetu, Univerziteta u Beogradu.

Zarko Stanisavljevi¢ radi na Elektrotehnickom fakultetu, Univerziteta u
Beogradu, Bul. kralja Aleksandra 73, 11120 Beograd, Srbija (telefon:
+381-11-3218-484; e-mail: zarko.stanisavljevic@etf.bg.ac.rs).

RT1.4 Page 1 of 5

U drugom poglavlju su na primeru opisani uzrok i koraci
kod izvodenja SQLi napada. U tre¢em poglavlju prikazan je
naéin kori§¢enja realizovanog sistema na primeru jedne
laboratorijske vezbe. U cetvrtom poglavlju prikazana je
implementacija laboratorijskih vezbi. U petom poglavlju dat
je zakljucak.

Il. SQL INJECTION

OWASP definiSe injection kao ,slanje nepouzdanih
podataka interpreteru kao deo komande ili zahteva“. SQL
injection je tip napada koji se koristi za neovlaséeni pristup
SQL bazi podataka koju aplikacija koristi. Napada¢ moze
Citati osetljive podatke, menjati njihovu strukturu, a u nekim
slucajevima i izvrSavati komande nad operativnim sistemom
baze. Uzrok postojanja propusta je $to aplikacija dozvoljava
da korisnikov unos ucestvuje u kreiranju SQL upita,
omogucavajuéi mu da modifikuje originalni upit u svoju
korist. U nastavku je na primeru SQLi Login Bypass napada
objasnjen postupak izvrsavanja napada.

SQLi Login Bypass pocinje na stranici za prijavu
korisnika, kao na Sl. 1. Cilj napada je, u bukvalnom prevodu
sa engleskog, ,,zaobi¢i prijavu“, odnosno prijaviti se ne
znajuci ni jedno korisni¢ko ime ni lozinku.

Korisnicko ime ‘

Lozinka ‘

‘ Prijava

Sl. 1. Stranica za prijavu korisnika

Prvi korak napada je analiza aplikacije. Ideja je pronaci
ulazne podatke aplikacije koji se potencijalno koriste za
kreiranje SQL upita. Ti podaci su kandidati da ,nose
napadacki upit. U primeru prijave korisnika postoje dva
ulazna podatka, korisni¢ko ime i lozinka.

U narednom koraku potrebno je pretpostaviti kako izgleda
SQL upit i odabrati ulazne podatke za napad. Na primer, upit
za prijavu moze biti sledeci:

SELECT * FROM korisnik
WHERE korisnicko ime='$korisnicko_ime'
AND lozinka='$lozinka'

Delovi upita $korisnicko_ime i $lozinka su ulazni podaci
sa korisnickog interfejsa, a napad se, na primer, moze
izvrsiti kroz $korisnicko_ime.

Napad se nastavlja na korisnickom interfejsu. U
najéescem slucaju tekstualni unos u polje za korisnicko ime
bice tretiran kao podatak, odnosno nece biti interpretiran kao
komanda od strane baze podataka. Kako je korisnicko ime
tekstualnog tipa, u upitu se koristi apostrof za ozna¢avanje
pocetka i kraja tekstualnog podatka. U slucaju da se u polje
za korisnicko ime unese apostrof, karakteri koji prethode
tretirace se kao podatak, dok ¢e se oni koji slede tretirati kao
komanda.

Koriste¢i ovu €injenicu napada¢ ima priliku da modifikuje
originalni upit. Pod pretpostavkom da je prijava korisnika
uspesna ukoliko upit vrati bar jedan rezultat, napad se moze
izvrsiti kao na Sl. 2. §to rezultuje slede¢im upitom:

SELECT * FROM korisnik
WHERE korisnicko_ime=""
password=""

or true --' and

Rezultat upita su svi redovi tabele ,,korisnik”. Simbol ,,--"
predstavlja oznaku za komentar ¢ime se ignoriSe deo upita
nakon korisni¢kog imena.

Uslov ,,or true” ¢ini da svaki red bude deo rezultata,
ignoriSuci korisnicko ime.

"or true -- ‘

‘Lozinka ‘

‘ Prijava ‘

Sl. 2. SQLi napad na slu¢aju kori$¢enja prijave korisnika

Osnovu prevencije SQLi sigurnosnog propusta ¢ine
parametrizovani upiti (eng. Parametrized Statement,
Prepared Statement). Oni omogudéavaju da se bazi prvo
prosledi $ablon upita koji ¢e se koristiti, a zatim za svako
izvrSavanje S$ablona i konkretni podaci. Kori$¢enje
parametrizovanih upita garantuje da konkretni podaci nece
biti interpretirani, ¢ime se eliminiSe SQLi sigurnosni
propust. U nastavku je primer kori§¢enja parametrizovanog
upita za pronalazak korisnika sa odredenim korisni¢kim
imenom u programskom jeziku Java:

String query = "SELECT * FROM korisnik WHERE
korisnicko_ime = ?";

PreparedStatement preparedStatement =
connection.prepareStatement(query);
preparedStatement.setString(1, "petar");
ResultSet results =
preparedStatement.executeQuery();

I1l. PRIMER KORISCENJA SQLITRAINER SISTEMA

Primer koriS¢enja realizovanog sistema bice dat kroz
prikaz jedne od laboratorijskih vezbi, dok ¢e nacin upotrebe
sistema u nastavi biti prikazan na primeru predmeta Zastita
racunarskih sistema i mreza (ZRM) [6] na Elektrotehni¢kom
fakultetu u Beogradu (ETF).

RT1.4 Page 2 of 5

A. Laboratorijska vezba Megatron

Laboratorijska vezba Megatron zasniva se na aplikaciji
koja predstavlja veb prodavnicu kompjuterske opreme.
Vezba pocinje na stranici za pretragu proizvoda. Pretraga se
vr§i po nazivu, gde je moguée uneti i samo deo naziva
proizvoda. Rezultat pretrage prikazuje se u vidu tabele, sa
kolonama za naziv i cenu proizvoda, kao na SI. 3.

" "Megatron

Pretraga proizvoda

Q, Headset

Naziv Cena
HyperX Cloud Il Gaming Headset $23
Gaming Headset $33

Sl. 3 Pretraga prozvoda

Cilj laboratorijske vezbe je pronadi korisni¢ko ime i
lozinku svih korisnika aplikacije. Boduju se i sledece
informacije:

o Naziv baze koju koristi aplikacija
o Verzija baze

¢ Nazivi tabela

¢ Nazivi kolona

Napad se izvrSava kroz polje za pretragu proizvoda, dok
se podaci koji su rezultat napada prikazuju u tabeli rezultata
pretrage. Na primer, unosom sledeCeg teksta u polje za
pretragu dolazi se do naziva baze:

and false union select 1, database() --

Sledec¢im unosom dolazi se do verzije baze:

and false union select 1, h2version() --

Kako bi se doslo do korisni¢ckog imena i lozinke svih
korisnika aplikacije, prvo je potrebno pronaci naziv tabele
koja sadrzi korisnike. Slede¢im unosom dolazi se do naziva
svih tabela u bazi:

' and false union select 1, table_name from
information_schema.tables where
table_schema=database() --

Iz prethodnog koraka saznaje se da je tabela sa
korisnicima sac¢uvana pod imenom users. Slede¢im unosom
dolazi se do naziva svih kolona ove tabele:

and false union select 1, column_name from
information_schema.columns where
table_name="users' --

Poslednji korak je definisanje upita Kkoji
korisni¢ko ime i lozinku svih korisnika:

prikazuje

and false union select username, password
from users --

Tabela sa rezultatima sadrzace korisni¢ko ime i lozinku
svih korisnika, kao na SI. 4.

Pretraga proizvoda

O\ " and false union select username, password from users --

Pritisnite ENTER da zapoénete pretragu

Naziv Cena
admin $lenovo
shop1 $razer
shop2 $genius

Sl. 4 Korisni¢ko ime i lozinka svih korisnika aplikacije

B. Nacin upotrebe u nastavi

ZRM je predmet master studija na Modulu za ra¢unarsku
tehniku i informatiku ETF-a, Koji je razvijen u okviru
Erasmus+ KA2 projekta pod nazivom Information Security
Services Education in Serbia (ISSES) [7]. Uzimajuéi u obzir
probleme kod prakti¢nog izu¢avanja tema koje se obraduju
na predmetu, a koji su pomenuti u poglavlju I, za studente je
napravljeno zatvoreno virtuelno laboratorijsko okruzenje u
okviru Laboratorije za informacionu bezbednost, koja je
uspostavljena i opremljena u okviru istog (ISSES) projekta.

Svaki student ima sopstveno virtuelno laboratorijsko
okruzenje kome pristupa koris¢enjem VPN veze. Za razli¢ite
teme koje se obraduju na predmetu koriste se razlicite
konfiguracije virtuelnih laboratorijskih okruzenja. U slucaju
laboratorijskih vezbi u kojima se koristi SQLiTrainer sistem
laboratorijsko okruzenje se sastoji od jedne virtuelne masine
na kojoj je pokrenut Ubuntu Linux i na kojoj je pokrenut
SQLiTrainer sistem. Studenti mogu da pristupe aplikacijama
SQLiTrainer sistema iz svojih pretrazivaca kori§¢enjem
VPN veze.

SQLiTrainer sistem se koristi za izvodenje
laboratorijiskih vezbi, ali i kao deo finalnog prakticnog
ispita na predmetu. Zahvaljujuéi nacinu implementacije
sistema, uz minimalne izmene u kodu, moguce je
jednostavno izmeniti svaku od aplikacija tako da se dobiju
drugaciji problemi sa istom tematikom, ¢ime je omoguéeno
da se isti sistem iskoristi i prilikom obuéavanja studenata, ali
i prilikom provere njihovog znanja.

Jo§ jedan vazan aspekt, kada je u pitanju upotreba
sistema, jeste i jednostavnost instalacije i konfiguracije.
Prilikom konfigurisanja laboratorijskog okruzenja za
izvodenje laboratorijskih vezbi potrebno je pokrenuti vise
aplikacija istovremeno. Nacin implementacije SQLiTrainer
sistema omogucava da se svaka aplikacija moze pokrenuti
na razlicitom portu, C¢ime se prethodno postize na
jednostavan nadin. Kada je u pitanju instalacija, jedno
reSenje je da se aplikacije iskopiraju na svaku virtuelnu
masinu i pokrenu odgovaraju¢im komandama. Ovo reSenje
je vremenski zahtevno i neprakti¢no kada postoji veliki broj
studenata na predmetu, a samim tim i veliki broj
laboratorijskih okruZenja koje je potrebno pripremiti. Nacin
implementacije SQLiTrainer sistema dozvoljava da se
iskoristi neki od alata za automatizaciju, kao §to je na primer

RT1.4 Page 3 of 5

Ansible [8], ¢ime se prethodni problem efikasno resava na
taj nacin §to se napiSu odgovarajuce skripte za ovaj alat
kojima se prethodno manuelni posao kopiranja i pokretanja
aplikacija u potpunosti automatizuje.

Opisani sistem je koriS¢en u nastavi u dve uzastopne
Skolske godine 2019/2020 i 2020/2021. Prve $kolske godine
finalni praktiéni ispit uspesno je savladalo 67% studenata
(22/33), dok je u drugoj Skolskoj godini uspesno bilo 65%
studenata (53/81).

IV. IMPLEMENTACIJA SQLITRAINER SISTEMA

Sistem ¢ine Cetiri aplikacije identi¢ne strukture. Dve
demonstriraju ~ Union-based ~ SQLi, pravolinijski i
jednostavan napad gde se u kratkim iteracijama otkriva sve
vise podataka iz baze. Slede¢a demonstrira Blind SQLi za
koju je specifi¢no da se podaci iz baze nikada ne prikazuju
napadacu, i Spada u teze napade za manuelno izvr$avanje.
Poslednja demonstrira SQLi Login Bypass, gde je cilj
napadaca da uspe$no izvr§i korisniCku prijavu bez
prethodnog poznavanja bilo kog korisnickog imena ili
lozinke. U ovoj aplikaciji student se upoznaje sa upotrebom
HTTP Proxy server, kao alata u izvrsavanju SQLIi napada.

Sistem je implementiran kao skup Java veb aplikacija
koriste¢i Spring Boot [9] i h2 [10] in-memory bazu
podataka. Korisnicki interfejs aplikacija kreiran je koristeci
HTML, CSS i JavaScript. Za kreiranje lepSeg korisni¢kog
interfejsa koriséen je MaterializeCSS [11], dok AngularJS
[12] pojednostavljuje pisanje koda za interakciju sa
korisnikom i HTTP (eng. Hypertext Transfer Protocol)
komunikaciju sa serverom.

Korisnicki interfejs i serverska aplikacija mogu se
posmatrati kao dve odvojene aplikacije koje komuniciraju
preko HTTP-a.

User

controller

service

£ HTTe
s, request ;

[/j sonver

SI.5 Zivotni ciklus zahteva u aplikaciji korisni¢kog interfejsa

Korisni¢ki interfejs realizovan je kao Single Page
Application (SPA). Srz aplikacije ¢ine HTML stranica
index.html i JavaScript kod app.js. Resursi aplikacije
organizovani su u posebne direktorijume:

e css — sadrzi CSS biblioteke i definicije stilova
specifi¢nih za aplikaciju,

e images — sadrzi fotografije kori§¢ene na korisni¢kom
interfejsu i

¢ js—sadrzi JavaScript biblioteke i kod aplikacije.

Organizacija koda je slojevita i definise dva sloja:
o controller — kod koji obraduje korisnicke akcije i
e service — kod za komunikaciju sa serverskom
aplikacijom.

Sloj controller je visi sloj i zavisan od sloja service, a
korisni¢ki zahtevi prolaze kroz oba sloja aplikacije. Na SlI. 5
prikazano je kako korisni¢ki zahtev putuje kroz aplikaciju
korisni¢kog interfejsa i do serverske aplikacije.

Organizcija serverskog koda je takode slojevita, gde su
slojevi aplikacije predstavljeni slede¢im Java paketima:

e controller — Kklase za razmenu podataka sa
aplikacijom korisni¢kog interfejsa,

e service — klase koje izvrSavaju poslovnu logiku
aplikacije i

e repository — klase za Ccitanje i upis domenskih
objekata u bazu podataka.

Pored navedenih paketa postoji i paket domain koji sadrzi
klase koje predstavljaju domenske entitete.

{OHTTP
\ request ;

controller
sernvice
repository

domain
object

SI. 6 Zivotni ciklus zahteva u serverskoj aplikaciji

Zahtevi koji dolaze sa korisnickog interfejsa prolaze kroz
sve slojeve aplikacije. Nacin razmene podataka izmedu
slojeva prikazan je na Sl. 6 na primeru zahteva koji na kraju
rezultuje upisom u bazu podataka. Svaki sloj aplikacije
zavisan je od sledeceg (nizeg) sloja, a Cesto su svi paketi
aplikacije zavisni od domenskog. U nekim
implementacijama izostavljen je servisni sloj, jer ne bi
sadrzao nikakvu logiku, ve¢ bi samo prosledivao podatke
slede¢em sloju.

Svaka instanca aplikacije poseduje svoju instancu baze,
koja se pokrece zajedno sa aplikacijom i cuva podatke u
memoriji. Kod serverske aplikacije prate SQL skripte koje se
izvSavaju nad bazom prilikom pokretanja aplikacije, kako bi
pri svakom pokretanju aplikacije stanje baze bilo identi¢no.
Skripte se nalaze u slede¢im fajlovima:

e schema.sql — izvrSava se prva i njena uloga je da
kreira relacionu Semu baze i

e data.sql — popunjava bazu podacima.

RT1.4 Page 4 of 5

Prilikom zaustavljanja aplikacije zaustavlja se i baza
podataka, a podaci iz nje trajno nestaju.

Varijacije problema laboratorijskih vezbi mogu se kreirati
na viSe nacina. Najjednostavniji je izmeniti SQL skripte
¢ime se menja pocetno stanje baze podataka. Kompleksnije
izmene, poput izmene imena kolona i tabela, zahtevaju i
manje izmene u kodu aplikacije. Navedene skripte se mogu
pokrenuti i nad nekom drugom bazom podaka, na primer
PostgreSQL ili MySQL, za §ta je dovoljno u
konfiguracionom fajlu aplikacije navesti parametre za
konekciju. Koris¢enje razli¢itih baza podataka povecava
kompleksnost zadatka jer koriste razlicite dijalekte SQL
jezika.

V. ZAKLJUCAK

U ovom radu predstavljen je jedan novi sistem za ucenje
0 SQLi sigurnosnim propustima u aplikacijama.
SQLiTrainer sluzi za prakti¢énu obuku programera u oblasti
razvoja bezbednog softvera. Realizovan je kao skup ranjivih
aplikacija kojima se mogu demonstrirati razli¢iti tipovi SQLi
propusta koji se mogu javiti u aplikacijama. Omogucava
proveru postojanja propusta u sigurnom okruzenju, kao i
ucenje tehnika kojima se mogu otkloniti uoceni propusti. U
radu je prikazan opis SQLiTrainer sistema i na¢in njegovog
korisc¢enja. U buduénosti se planira dodavanje skupa vezbi u
kojima ¢e studenti biti u prilici da isprave propuste koji
postoje u aplikacijama.

ZAHVALNICA

Autori Zele da se zahvale master inz. Adrianu Milakovicu
i prof. dr Pavlu Vuletiéu na pomo¢i prilikom uvodenja
sistema na laboratorijske vezbe na predmetu Zastita
racunarskih sistema i mreza.

LITERATURA

[1] ,SQL injection,“ Dostupno na:
community/attacks/SQL_Injection, poslednji
2021.

[2] ,,OWASP.* Dostupno na: https://owasp.org/, poslednji put pristupano:
maj 2021.

[3] ,Avatao,“ Dostupno na: https://avatao.com/, poslednji put pristupano:
maj 2021.

[4] ,Juice Shop, Dostupno na: https://owasp.org/www-project-juice-
shop/, poslednji put pristupano: maj 2021.

[5] .Security Idiots,“ Dostupno na: http://www.securityidiots.com/,
poslednji put pristupano: maj 2021.

[6] ,Zastita raunarskih sistema 1 mreza,“ Dostupno na:
https://www.etf.bg.ac.rs/fis/karton_predmeta/13M111ZRM-2019,
poslednji put pristupano: maj 2021.

[7] .Information Security Services Education in Serbia,” Dostupno na:
https://isses.etf.bg.ac.rs/, poslednji put pristupano: maj 2021.

[8] ,Ansible, Dostupno na: https://www.ansible.com/, poslednji put
pristupano: maj 2021.

[9] ,.Spring Boot,“ Dostupno na: https://spring.io/projects/spring-boot,
poslednji put pristupano: maj 2021.

[10] ,,H2 database,“ Dostupno na: https://www.h2database.com
/html/main.html, poslednji put pristupano: maj 2021.

[11] ,,Materialize CSS,* Dostupno na: https://materializecss.com/, poslednji
put pristupano: maj 2021.

[12] ,,AngularJS,“ Dostupno na:
pristupano: maj 2021.

https://owasp.org/www-
put pristupano: maj

https://angularjs.org/, poslednji put

ABSTRACT

During the application development process security

vulnerabilities can occur and remain in application in production
environment. These vulnerabilities can cause confidentiality,
integrity and availability breaches. SQLiTrainer represents a set of
vulnerable applications that can be used to demonstrate different
types of SQLi vulnerabilities. Implementation of the SQLiTrainer
system is given in the paper and the examples on how to use the
system for programmer practical training is proposed. The system
was successfully used for laboratory exercises at the Advanced

RT1.4 Page 5 of §

System and Network Security course at the University of Belgrade,
School of Electrical Engineering.

SQLITRAINER - SYSTEM FOR LEARNING ABOUT
SQLI VULNERABILITY IN APPLICATIONS

Djordje Madic, Zarko Stanisavljevic

Jedno rjesSenje analize 1 prikaza kontrolnih
taCaka definisanih podesavanjem AUTOSAR
nadzornog ¢asovnika

Ivana TeSevi¢, Branko Milosevi¢, Dejan Bokan i Bogdan Pavkovié

Apstrakt— Razvojem automobilske industrije i softvera
unutar nje kao tehni¢ka posljedica javila se potreba za
obaveznom integracijom zastitnih mehanizama u ugradenim
jezgrima operativnog sistema. Jedan od osnovnih
mehanizama za zaStitu sistema jeste nadzorni ¢asovnik (eng.
watchdog, WDG). Ova komponenta ima za cilj da nadgleda
sve ostale komponente pokrenute od strane rasporedivaca i
time omogu¢i bezbjedan rad sistema. Kako je probleme koje
nadzorni c¢asovnik prijavljuje relativno teSko ispratiti i
analizirati u stvarnom sistemu, doslo se do ideje da se oponasa
rad komponente nadzornog ¢asovnika na rafunaru sa istim
ulaznim parametrima kao u Zivom sistemu. U ovom radu je
dato rjeSenje za simulaciju mehanizama nadgledanja sistema
definisane AUTOSAR arhitekture. Simulacijom je omoguéeno
da se minimalizuju odstupanja, predvide greske u sistemu i
olakSa sama analiza. Rad moZe doprinijeti brZem razvoju
sistema jer omogucava da se prije implementacije predvide
greSke Kkoje ¢e se desiti u sistemu.

Kljuéne rije¢i— AUTOSAR, WDG, WdgM, Wadglf,
nadgledanje krajnjih rokova, logicki nadzor, nadgledanje u
realnom vremenu, najduze vrijeme izvrsenja(WCET).

I. UvoD

AUTOMOBILSKA industrija je grana industrije koja se
sveobuhvatno razvija u posljednjoj deceniji. Dizajn vozila
u automobilskoj industriji tradicionalno se oslanja na
diskretne hardverske komponente (elektronske upravljacke
jedinice - ECU), sa vrlo malo potrebnog softvera. Sa
poboljsanjem automobilske industrije, softver za nju se
razvijao. Danas je softverski dio prevladao hardver[1][2] .
Softverske komponente postale su komplikovanije i
zahtjevnije od hardverskih komponenti. Danas automobili
nude mnogo vise moguénosti, ukljuéujuéi i autonomne
funkcije pri voznji[1l]. Postoji pet nivoa automatizacije
voznje, dok je industrija trenutno na tre¢em nivou,
ocekujuci da ¢e dosti¢i nivo Eetiri i pet do 2025. godine[3].
Vozaéi ¢e moci bezbjedno da skrenu paznju sa voznje, npr.
gledati film ili ¢itati knjigu.

Cinjenica je da je sve vise dobavljada u ovoj grani
industrije, pa se pojavila potreba za standardizacijom
proizvodnje softvera. Da bi se udovoljilo ovom zahtjevu,
stvorena je platforma AUTOSAR (eng. Automotive Open
System Architecture) [1].

Kako se ova industrija sve vise §iri i kako rastu softverski
zahtjevi povecava se 1 potreba za raznim alatima za
odrzavanje bezbjednosti sistema. Ovakvi sistemi moraju
podlijegati raznim testovima i konstantno se nadgledati

Ivana Te$evi¢, RT-RK Institute for Computer Based Systems, Novi
Sad, Srbija ('e-mail: ivana.tesevic@rt-rk.com)

Branko Milosevi¢, RT-RK Institute for Computer Based Systems, Novi
Sad, Srbija (e-mail: branko.milosevic@rt-rk.com).

RT1.5 Page 1 of 6

kako bi se u potpunosti otklonila moguénost greske, jer i
najmanja greska moze imati fatalne posljedice.

Nadzorni ¢asovnik je jedna od komponenti koja za cilj
ima nadzor cijelog sistema. Ova komponenta kao takva
sama po sebi mora imati maksimalni kvalitet koda i
podlijegati najve¢im provjerama. Bilo kakva greska
primijecena od strane WDG komponente bic¢e ispracena
reakcijom gasenja cijelog sistema. Ovakav vid zastite u
industriji otezava testiranje, predvidanje ali i pronalazenje
greSke u toku rada. Zato se javila potreba da se prikaze
jedno rjeSenje za oponasanje sistema kako bi se moglo
predvidjeti i upoznati sa greSkama i nacinima na koji dolazi
do njih.

Ovaj rad prikazuje jedno rjeSenje analize i prikaza
kontrolnih tacaka definisanih podeSavanjem AUTOSAR
nadzornog ¢asovnika. Prikazace se simulacija poremecaja u
sistemu koji ¢e nadzorni ¢asovnik prepoznati pomocu
nadzornih mehanizama. Namjerno izazivanje poremecaja i
reakcija nadzornog ¢asovnika na te poremecaje doprinijece
lak§em testiranju i predvidanju u stvarnom sistemu.
Pomocu ovog rjeSenja nudi se moguénost koris¢enja
stvarnih ulaznih parametara i testiranje raznih poremecaja i
lanca dogadaja nakon namjerno izazvane greske.
Mogucnost predvidanja i vizualni prikaz sistema nakon
poremecaja jesu glavni doprinos ovog rada. Postojeca
literatura na temu nadzornog Casovnika[5][6]
skoncentrisana je na unaprjedenju mehanizama zastite ili na
nadinu testiranja sistema i ispravnosti sprege nadzornog
casovnika.

Drugo poglavlje ¢e dati teorijske osnove o nacinu rada
svih modula, samom AUTOSAR standardu i vertikali
nadzornog ¢asovnika sa definisanim modulima.

U tre¢em poglavlju bi¢e opisan nacin rada, pristup
rjesenju i podloga za nastavak i samu implementaciju.

U cetvrtom poglavlju su opisani moduli, dato je
programsko rjeSenje i sami postupci implementacije.

U petom poglavlju su prikazani rezultati rada, nacin
testiranja, kao i svrha samog rjeSenja.

Il. AUTOSAR STANDARD
Osnovan 2003. godine, AUTOSAR predstavlja
medunarodno razvojno partnerstvo stranaka iz

automobilske industrije. Cilj ove saradnje bio je stvaranje i
uspostavljanje otvorene i standardizovane softverske
arhitekture za osnovne elektronske jedinice autonomnog
vozila nazvane ECU.

Bogdan Pavkovi¢, RT-RK Institute for Computer Based Systems, Novi
Sad, Srbija (e-mail: bogdan.pavkovic@rt-rk.com)

Dejan Bokan, RT-RK Institute for Computer Based Systems, Novi Sad,
Srbija (e-mail: dejan.bokan@rt-rk.com).

mailto:ivana.tesevic@rt-rk.com

AUTOSAR standard daje set specifikacija koje opisuju
funkcionalnosti softverskih modula i realizuje zajednicke
metode daljeg razvoja na osnovu standardizovanog

formata[1]. Arhitektura ovog standarda, odnosno
AUTOSAR modela, na najviSem nivou apstrakcije
prepoznaje tri razliite softverske cjeline[4] (Slika 1.):

Aplikativni sloj

Izvrsno okruzenje (RTE)

xxx Interface
ext. Drv

SI. 1. AUTOSAR model [1]

* Osnovni softver (eng. Basic software module, BSW)-
ovaj sloj se sastoji od modula koji su neophodni za
funkcionisanje viseg softverskog sloja. Slojevi od kojih se
sastoji osnovni softver su: sloj apstrakcije ECU, slozeni
upravljacki programi, sloj apstrakcije mikrokontrolera (eng.
MCAL).

* Izvr$no okruzenje(eng. Runtime environment, RTE)-
realizuje komunikaciju izmedu softverskih komponenti i
osnovnog softvera.

*Aplikativni sloj(eng. Application Layer)-funkcionalnost
elektronskih kontrolnih jedinica je implementirana u obliku
pojedinaénih softverskih komponenti.

A. Nadzorni casovnik

Za automobilske sigurnosne sisteme kriti¢no je pitanje
zadovoljavanja zahtjeva u realnom vremenu na
deterministicki nacin. Da bi se udovoljilo vremenskim
ograniCenjima, razvijeni su razli¢iti mehanizmi pracenja,
kao $to su nadzorni hardver ECU jedinice[7], nadgledanje
krajnjih rokova[8][9], nadgledanje vremena izvrSenja O.
Ovakav vid nadzora kreiran je kako bi se osigurao tacan
raspored zadatakaO .

Vertikalu nadzornog ¢asovnika u AUTOSAR slojevitoj
arhitekturi ¢ine rukovodilac nadzornog ¢asovnika(nalazi se
u servisnom sloju eng. Service Layer), sprega nadzornog
casovnika(smjestena u ECU sloju apstrakcije) i upravljac
nadzornog casovnika(smjeSten u sloju apstrakcije
mikrokontrolera)[12] Ovi moduli pruzaju usluge za
pracenje vremena i ispravnosti izvrenja entiteta u aplikaciji
i osnovnom softveru.

B. Rukovodilac nadzornog casovnika

Rukovodilac nadzornog ¢asovnika (eng. watchdog
manager, WdgM) je osnovni softverski modul u servisnom
nivou koji nadgleda tok programa[13]. Kada se otkrije
narusavanje unaprijed definisanih vremenskih ili logickih

RT1.5 Page 2 of 6

ograni¢enja u programskom toku, potrebno je evidentirati
gresku i pre¢i u bezbjedno stanje nakon vremenskog
kasnjenja. Sigurno stanje se postize ponovnim pokretanjem
ili izostavljanjem aktiviranja modula nadzornog ¢asovnika.

Po AUTOSAR definiciji, tacke u kontroli toka
nadgledanog entiteta gdje se aktivnost prijavljuje
rukovodiocu nadzornog ¢asovnika su kontrolne tacke.

Polja koja opisuju kontrolnu tacku su:

* ID kontrolne tacke

* Lokalni pocetak, lokalni kraj

* Globalni pocetak, globalni kraj

Lokalni prelazi predstavljaju prelaze izmedu dvije
kontrolne tac¢ke unutar istog nadgledanog entiteta.

Globalni prelazi su prelazi izmedu dvije kontrolne tacke
koje pripadaju razli¢itim entitetima.

Nadgledani entitet predstavljen je kontrolnim tatkama
kojih moze biti jedna ili viSe. Svaki nadgledani entitet moze
imati jedno ime i jedno stanje.

Kada se govori o mehanizmima nadgledanja u WdgM
modulu pominju se tri tipa nadgledanja[14]:

* Nadgledanje u realnom vremenu (eng. Alive
Supervision) — prati frekvenciju izvrSavanja odredenog
softverskog dijela. To znaci da rukovodilac provjerava da li
se nadgledani entitet javlja suvise Cesto ili suvise rijetko.

* Nadgledanje krajnjih rokova (eng. Deadline
Supervision) — nadgleda vrijeme potrebno za izvr$avanje
nadgledanog entiteta. Glavna svrha je provjera
vremenskog, dinamic¢kog ponasanja entiteta.

* Logi¢ki nadzor (eng. Logical Supervision/Program Flow
check) — nadgleda tok izvr§avanja u programu.

Dva su kljucna pojma koja treba pomenuti kada je u
pitanju nadgledanje i reakcija na greske, a to su vrijeme
otkrivanja greske i vrijeme reakcije na gresku.

Vrijeme otkrivanja greske (eng. Fault Detection) traje od
pojave greske do trenutka kada je ta greska otkrivena i
prijavljena sistemu.

Vrijeme reakcije na gresku (eng. Fault Reaction) traje od
trenutka otkrivanja greske do ponovnog pokretanja
sistema. WdgM reakcija na gresku:

* Obavjestenje iz funkcije povratnog poziva

* Ponovno pokretanje sistema

* Stopiranje okidanja nadzornog ¢asovnika

C. Sprega nadzornog casovnika

Sprega nadzornog ¢asovnika (Wdglf) je dio ECU
apstraktnog sloja. Uvijek se nalazi ispod rukovodioca i
iznad upravljada nadzornog ¢asovnika. Sprega komunicira
sa upravljackim programima ispod. Implementacija sprege
zavisi od broja upravljaca[14].

D. Upravija¢ nadzornog casovnika

Upravlja¢ je zaduzen za pristup samoj periferiji

direktno[15] (unutrasnjem i spoljaSnjem nadzornom

¢asovniku) i nalazi se u sloju apstrakcije mikrokontrolera.

Modul za spoljasnji nadzorni Easovnik koristi druge
module za pristup spoljnom uredaju.

Aplikacije
Bswsloj Y WdgM korisnicki APT
r . .
Sistemski API
Vertikala
nadzornog
¢asovnika
Hardverski
zavisan dio

Software
" Hardware i —_

Sl. 2 Slojevita struktura WDG 1

I1l. KONCEPT RJESENJA

Ukljucen nadzorni ¢asovnik u stvarnom sistemu moze
stvarati velike probleme prilikom analiziranja nekog
problema. Stalno gaSenje i ponovno pokretanje jedan su od
pokazatelja zaSto je to tako. Kako bi se nastavila analiza
neke greske na projektima se obi¢no podlijeze gasenju
nadzornog c¢asovnika i nakon toga se nastavlja sa
analiziranjem. Ovaj rad predstavlja jedan pomo¢ni alat
prilikom te analize koji je omogu¢io da pomoc¢u komandne
linije unese zeljeni poremecaj i isprati lanac dogadaja koji
slijede nakon njega.

Na osnovu ve¢ generisanog operativnog sistema
odradeno je parsiranje redoslijeda zadataka i AUTOSAR
generisane konfiguracije za stek modul nadzornog
Casovnika. Parsirani podaci bili su neophodni za graficki
prikaz rasporedivaca. Graficka predstava kontrolnih tacaka
odradena je tako da se vodilo ra¢una o redoslijedu, kao i
koja je kontrolna tacka dodijeljena kom zadatku. Pomenuti
graficki prikaz omoguéava da se jednostavno uodi
poremecaj, tako da je graficki prikaz jedan od osnovnih
alata koji su koristeni prilikom analize i testiranja. Ulazni
parametri za parsiranje su definisani u csv i arxml formatu
(SE WCET, SE period, WCET neto, WCET abs).

RT1.5 Page 3 of 6

Slede¢i korak jeste simuliranje nadgledanja sistema
definisane AUTOSAR arhitekture. Osnovni cilj ovog
koraka jeste da prikaze $to pribliznije slijed dogadaja i
greSaka na raCunaru, kao §to je ocCekivano i u stvarnom
sistemu. Glavna razlika je ta Sto greske koje vidimo na
ra¢unaru nemaju nikakvu bezbjednosnu posljedicu po
izvrSenje, ve¢ sluze iskljucivo u svrhu analize i rezultirace
ispisima i informativnim porukama, umjesto gaSenjem
sistema.

Nakon implementacije grafi¢kog prikaza i simulacije
mehanizama, pristupa se analizi sistema, pracenju
ponasanja sistema pod uticajima raznih poremecaja koji su
namjerno izazvani i koji se odnose na mehanizme
nadgledanja. Namjernim izazivanjem gre$aka olakSava se
analiziranje istih, ocekivanih u procesu rada na stvarnom
projektu. Data je mogucnost da se predvide razli¢iti lanci
dogadaja, kao i da se smanji vrijeme koje bi bilo potroseno
na pokuSaje analize problema uslijed stalnog gasenja
sistema.

xml, csv

parsiranje,
sortiranje,
generisanje

¥
WdgM
inicijalizacija
CP_Reached
MainFunction

l

generisanje)
nove xml
datoteke

A
novi xml

A

vizuelni prikaz
html->json

Sl. 3 Dijagram rjesenja

A. Rukovodilac nadzornog sistema u visejezgarnom
sistemu

Rukovodilac moze biti koriSten u jednojezgarnim i
viSejezgarnim sistemima. U ovom radu obraden je
rukovodilac u viSejezgarnom sistemu.

Svaka instanca treba da bude nezavisna jedna od druge i
mora biti inicijalizovana njenom sopstvenom
konfiguracijom. Poziv Main funkcije je odvojen. U
stvarnom sistemu se softverske komponente izvr$avaju
paralelno i vremenski nezavisno. Svako jezgro ima svoje
sopstveno vrijeme.

- <CORES>
- <CORE>
<ID>0</ID>
- <GENERAL-DATA>
<NUMBER-OF-TICKS>320</NUMBER-OF-TICKS>
<MACROTICK unit="us">250</MACROTICK>
- <TASKS>
- <TASK>

<ID>1156</ID>
<NAME>Task_SchM_NonCritical_C0</NAME>
<PRIORITY>170</PRIORITY>
<RANK>1</RANK>
<PERIOD unit="us">5000</PERIOD>
<WCET unit="us">400</WCET>

</TASK>

- <TASK>

<ID>1147</ID>
<NAME:>RE_BapFreigabe</NAME>
<PRIORITY>105</PRIORITY>
<RANK>1</RANK>
<PERIOD unit="us">10000</PERIOD>
<WCET unit="us">100</WCET>

</TASK>

<TASK>
<ID>1148</ID>
<NAME>RE_BapTask</NAME>
<PRIORITY>105</PRIORITY>
<RANK>2</RANK>
<PERIOD unit="us">10000</PERIOD>
<WCET unit="us">100</WCET>

</TASK>

Sl 4. Isjecak iz arxml fajla

B. Sortiranje kontrolnih tacaka prema rasporedu

Parametri koji su znacajni i koji opisuju izvrSenje sistema
u vremenu su zadati u xml datoteci, a potrebni entiteti su u
csv datoteci. Ove dvije ulazne datoteke moraju biti
medusobno povezane i predstavljaju jednu cjelinu.
Parsiranjem ovih datoteka dobijeni su svi podaci potrebni
za simulaciju nadgledanja. Ti parametri su: naziv, perioda,
trajanje, vrijeme pocetka, prioritet i ID. Isjecak iz arxml
fajla je prikazan na Sl 4.

Nakon izvladenja pomenutih podataka sve kontrolne
tacke sortirane su po vremenu i po prioritetu. Kontrolna
taCka koja ima manji prioritet ¢e biti prekinuta ako se u toku
njenog trajanja javi neka druga tacka veceg prioriteta.

Nakon sortiranja sve kontrolne tacke krecu sa izvrSenjem,
bas kao u stvarnom sistemu, istim redoslijedom kako je
zahtijevano u ulaznoj datoteci i po prioritetu. Ono §to je
takode bilo bitno prikazati jeste vrijeme trajanja koje je
oponasano na osnovu ulaznih informacija.

C. Simulacija nadgledanja

Nakon uspjesno obavljene inicijalizacije, sortiranja i
prozivanja kontrolnih tacaka potrebno je simulirati rad
prethodno opisanih nac¢ina nadgledanja.

Rukovodilac Main je sastavni dio izvrSenja i on se
prozove po zadatom intervalu od 10 milisekundi i tada se
vrsi provjera nadgledanje u realnom vremenu, nadgledanje
krajnjih rokova, logicki nadzor.

Vrijeme u sistemu nadzornog ¢asovnika je predstavljeno
u tikovima. Potrebno je simulirati vrijeme tako da odgovara
vremenu iz stvarnog sistema.

Na osnovu tog vremena se provjeravaju nadgledanja.
Provjeru nadgledanja u realnom vremenu treba obaviti tako
da se u slucaju da se kontrolna tacka ne javi u ocekivanom
vremenskom intervalu na konzoli dobijemo ispis o gresci
koja se desila.

IV. PROGRAMSKO RJESENJE

A. Parsiranje rasporeda i sortiranje

Za ulazne podatke iskori§¢ene su xml i csv datoteke iz
stvarnog sistema. Parsiranje je radeno u programskom
jeziku Python, svi podaci koji su izvuceni iz tih datoteka su

RT1.5 Page 4 of 6

generisani 1 uradeno je
WdgM_CheckpointReached().
Osnovni problem koji se javio prije prozivanja ove funkcije
bio je sortiranje kontrolnih tacaka prema rasporedu.
Sortiranje je takode odradeno u programskom jeziku
Python i koristene su funkcije:

expiry_points() - funkcija koja sortira podatke koji su
izvuceni iz ulaznih datoteka parsiranjem. Sortira kontrolne
tacke po vremenu njihovog javljanja i po jezgrima.

epriority_sort() - Prethodno sortirana lista po vremenu
javljanja se sortira i po prioritetima . Ako se desi da dvije
kontrolne tacke pocinju istovremeno prednost ¢e imati
tacka sa ve¢im prioritetom, tacka manjeg prioriteta ostaje
da ceka svoje red. Entitet moze biti prekinut i u toku
izvrSenja, ako se desi da je doslo do javljanja izvrSioca sa
veéim prioritetom, trenutni entitet ostaje u stanju ¢ekanja
sve dok mu se ne signalizira da je prioritetniji entitet zavrsio
sa radom.

Nakon sortiranja je generisano kojim se redoslijedom vrsi
pozivanje WdgM_CheckpointReached() funkcije.

prozivanje funkcije

B. Implementacija rukovodioca

Prvi korak koji je odraden jeste postupak inicijalizacije.
Svaki zadatak inicijalizovan je pomocu funkcije
WdgM_Init().

U stvarnom sistemu WDG zadatak ponavlja se kruzno na
svakih 10 milisekundi. To zna¢i da se poziv funkcije
WdgM_MainFunction() ponavlja svakih 10 milisekundi.
Ova funkcija ima klju¢nu ulogu jer se u njoj vrse provjere
ispravnosti. Trajanje jednog ciklusa naziva se hiper period,
Na osnovu trenutnih ulaznih parametara koji su obradeni u
ovom primjeru koji ¢e biti opisan hiper period je 80
milisekundi i nakon toga se zavrSava jedan ciklus nadzora.
Nakon izvr§enja WdgM_MainFunction() o¢ekuje se neka
od reakcija rukovodioca.

*Ako dode do greske u nadgledanju u realnom vremenu
greSka C¢e biti detektovana na kraju nadgledanog
referentnog ciklusa (eng. Alive supervision reference
cycle).

U slucaju nadgledanja programskog toka ako dode do
greSke ona C¢e biti detektovana na kraju svakog
nadgledanog ciklusa.

*Ako je greSka u nadgledanju krajnjih rokova ona ¢e biti
detektovana na kraju svakog nadgledanog ciklusa,
nastavak krSenja ovog vida nadgledanja detektuje se na
kraju svakog krajnji rok nadgledanog entiteta.

Ponasanje sistema nakon uocavanja neke od pomenutih
greSaka zavisi od konfiguracije i tipa poremecaja.

V. PROVJERA ISPRAVNOSTI

A. Opis testiranja

U svrhu testiranja koriSteni su ulazni parametri sa
stvarnog sistema. Ovakav pristup omogucio je poredenje sa
stvarnim sistemskim greSkama i utvrditi ispravnost samog
rada.

Kako je stvarni sistem ¢iji si ulazni parametri iskoris¢eni
sadrzao 3 jezgra, a ona u sistemu rade u paraleli. U ovom
rade sva tri jezgra su testirana istovremeno i softverski
spojena u jednu cjelinu, prikazan je njihov paralelizam. Na
raunaru se pomo¢u komandne linije prati ispis rezultata,
kao rezultat testiranja dobijaju se poruke o prekr$ajima.

Prilikom pokretanja radi se inicijalizacija sistema.

Korisnik treba da odabere jezgro na kome ¢e nanijeti
poremecaj kao i vrstu poremecaja koju Zeli, promjena
WCET vremena ili greska u nadgledanju u realnom
vremenu.

Ako je u sistemu sve proSlo bez greske prilikom
izvravanja rukovodioca prozvacée se TriggerWindow
funkcija na osnovu ¢ega je testirana ispravnost. Vizualni
prikaz sistema bez greske dat je na S1.5

B. Poremecaj nastao promjenom WCET vremena

Najgore vrijeme izvrSenja predstavlja ukupno vrijeme
koje je dato jednom zadatku da se izvrSi. Vrijednost ovog
parametra predstavljena je sa dva termina bruto i neto
WCET. Kada je rije¢ o ukupnom bruto vremenu mozemo
re¢i da je to vrijeme koje protekne od pocetka do kraja
zadatka sa uracunatim svim prekidima od strane prioritetnih
zadataka. Dok je neto WCET vrijeme od pocetka do kraja
ali predstavlja samo sabrane vremenske trenutke u kojima
je aktivan dati zadatak.

Vrijednost WCET vremena koja je konfigurisana za
odredeni nadgledani entitet i data u rasporedu ocekivana je
vrijednost u sistemu sa kojom svi nadzori rade ispravno.
Nakon $to se napravi neka promjena WCET vremena i
ispisivanja poruka o ispravnosti sistema generiSe se nova
datoteka arxml Kkoja predstavlja ulazni parametar za
vizualizaciju sistema. Ako je neka promjena unesena na
grafickom prikazu promijenjena kontrolna tacka mijenja
boju sto se vidi na SI 5. Greska u sistemu vidljiva je na slici
gdje su crvenom bojom markirani izvrSioci kod kojih je
prijavljena greska. Kao rezultat na komandnoj liniji dobije

o Name CoreID Period A v

216 RComTXf 0 B0[ms] v

27 RComT(7 0 80[ms] vy

REyeQCom20ms_em

REyeQComd0ms
240 REyeQComa0ms 0 80 [ms] v
243 RFoDSlave_Main 0 B0[ms] v
253 RLCSMCydlic 0 B0 [ms] v
35 RZFASRecorderAPHMain 0 40 [ms] v
1147 RE_BapFreigabe 0 10[ms] v
1148 RE_BapTack 0 10{ms] v
1150 RioHwABOM_Main 0 10[ms] v

se poruka o svim prekrSajima koje je izazvala promjena
WCET vremena na Zeljenom entitetu.

Na osnovu vizualizacije omoguceno je lakSe pracenje
desavanja u sistemu, nacin na koji se nakon bilo koje
promjene izmijeSaju Kkontrolne tacke. Simulirana je
vremenska osa i kontrolne tacke u vremenu.

C. Poremecaj u nadgledanju realnog vremena

Kada se nanese ovaj vid poremecaja u sistemu dolazi do
situacije u kojoj se odredena kontrolna tacka ne prozove.
Tada sistem detektuje gresku u nadgledanju u realnom
vremenu. Primjer iz tabele takode pokazuje gresku nad
RCtApDSC koja ima period 20 milisekundi. MoZemo uociti
da je doslo do problema kada je rukovodilac prepoznao da
se u prvih 20 milisekundi nije javila ova kontrolna tacka, a
mehanizam nadzora u realnom vremenu ocekivao je da ¢e
do¢i do njenog javljanja. Nakon otkrivanja problema brojac¢
se nije uvecao i kao status vracena je vrijednost “nije
uspjelo”(eng. FAILED).

Kada se poveéa WCET u ovom sluéaju nad nadgledanim
entitetom pod nazivom ReyeQCom20ms koji je prikazan u
tabeli (T 1.) desi se poremecaj u prvih 10 milisekundi.
Ocekivana vrijednost je 2.7 milisekundi jer je ovo
nadgledani entitet koji je niskog prioriteta i isprekidan je od
strane ostalih koji imaju veéi prioritet. Prilikom testiranja
promijenili smo vrijednost na 3 milisekunde. Zbog
poremecaja na jednoj kontrolnoj tacki i greske u
nadgledanju krajnjeg roka u prvih 10 milisekundi ocita se
greska, ali se prozove i funkcija TriggerWindow.

et WM g gl

perioda
riioca

izvriioci koji
prekidaju
REyeQCom20ms

Sl. 5 Greske na jezgru 0 nakon promjene WCET vremena nadgledanog entiteta ReyeQCom20ms

entitet zbog veceg prioriteta, pri ¢emu ¢e svaki od pomenutih
prekinuti izvrSenje. trenutnog. Puna linija predstavlja izvrSenje
ReyeQCom20ms dok je isprekidanim poljima predstavljen

Na S1 5 moze se uociti kako ¢e ReyeQCom20ms zadatak imati
uticaj na sistem kada se njemu nanese vremenski poremeca;.
Takode primjetna je lista izvrSilaca koji prekidaju pomenuti

RT1.5 Page 5 of 6

period kada je posmatrani entitet u pozadini i ¢eka na izvrSenje

zadatka sa veéim prioritetom.

jezgra
poremeca)

JEZGRO 0

JEZGRO 1

JEZGRO 2

sistem beg poremecaja

TriggerWindow
(za svaki zadatak koji
pripada tom jezgru)

TriggerWindow
(za svaki zadatak koji
pripada tom jezgru)

TriggerWindow
(za svaki zadatak koji
pripada tom jezgru)

greska na kontrolnoj
tacki ReyeQCom 20ms
WCET=3ms

ReveQCom20ms
Execution flow
violation

TriggerWindow
(za svaki zadatak koji
pripada tom jezgru)

TriggerWindow
(za svaki zadatak koji
pripada tom jezgru)

TriggerWindow

TriggerWindow
(za svaki zadatak koji
pripada tom jezgru)

TriggerWindow
(za svaki zadatak koji
pripada tom jezgru)

RBAQMI0ms TriggerWindow TriggerWindow

Execution flow (za svaki zadatak koji (2a svaki zadatak koji

ERROR pripada tom jezgru) pripada tom jezgru)
Alive monitoring RCiApDSC TriggerWindow TriggerWindow
greska nad Execution flow (za svaki zadatak koji (za svaki zadatak koji
RCtApDSC ERROR pripada tom jezgru) pripada tom jezgru)

[SetReserReasone

T 1. Ponaanje sistema nakon poremeéaja 1

VI. ZAKLJUCAK

U okviru ovog rada prikazano je rjeSenje i nacin pracenja
poremecaja prijavljenih od strane nadzornog ¢asovnika. Ceste
su situacije da se u radu na realnoj platformi nailazi na
poteskoée po pitanju ocekivanog ponasanja hardvera na
odredene zahtjeve iz softvera. Kada govorimo o samom
nadzornom ¢asovniku i reakciji fizickog upravljac¢a nekada sa
sigurno$¢u ne mozemo da tvrdimo Sta je uzrok okidanja greske
i gaSenja sistema. Sigurnosno gaSenje moze zna¢ajno usporiti
proces analiziranja nekog problema koji sam po sebi ne mora
biti vezan iskljuéivo za nadzorni casovnik. Takav vid
poteskoca je moguce pratiti samo iskljucenjem upravljaca.
Simulacijom je omoguceno da se minimalizuju ta odstupanja,
predvide greske u sistemu i olakSa analiza sistema. Greska koja
se desi na jednoj kontrolnoj tacki moze da prijavi gresku tek na
sledec¢oj kontrolnoj tacki koja je u redu. Rad omogucava da se
isprati i predvidi takav vid prekrsaja.

Kao $to je prethodno pomenuto za ovaj rad je koriSten ve¢
postojeci raspored zadataka koji sam po sebi predstavlja
preduslov za pocetak simulacije. Bududi rad obuhvatice
unaprjedenje postojeceg rjeSenja simulacijom operativnog
sistema, gdje ¢e se voditi racuna i o simulaciji rasporedivanja
zadataka kako bi se poremecaj mogao nanijeti direktno u
rasporedivanju i ispratiti cijeli proces. Ovaj vid unaprjedenja
znacajno bi mogao poboljsati analizu i predvidanje gresaka.

LITERATURA

[1] AUTOSAR, “Layered Software Architecture,” [Online],
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf., 2017-12-08
[Accessed July 2021]

[2] B. Catalin-Virgil, F. Ioan and F. Heininger, “A new trend in automotive
software: AUTOSAR concept” SACI, IEEE 8th International
Symposium, Timisoara, Romania, May 2013.

[3] Techemergence, “The Self-Driving Car Timeline —Predictions from the
Top 11 Global Automakers®, 2018.

[4] H. Fennel et al. “Achievements and exploitation of the AUTOSAR

development partnership “ SAE Technical Paper Series 2006-21-0019,
SAE International, October 2006,[Accessed July 2021]

RT1.5 Page 6 of 6

[5] Mazen Ahmed, Mona Safar, “Formal Verification of AUTOSAR
Watchdog Manager Module Using Symbolic Execution”, IEEE 30th
International Conference on Microelectronics, 2018

[6] Mazen Ahmed, Mona Safar, “Symbolic Execution based Verification of
Compliance with the 1SO 26262 Functional Safety Standard ”, IEEE
14th International Conference on Design & Technology of Integrated
Systems In Nanoscale Era, 2019

[7]1 J. Ganssle, “Watching the Watchdog”, Embedded World, 2003.

[8] AUTOSAR, "Specification of Communication" [Online],
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-
2/AUTOSAR_SWS_COM.pdf [Accessed July 2021]

[9] Michael Kunz, “OSEK OS”, March 18, 2009, http://www.uni-
obuda.hu/users/schuster.gyorgy/rtos/lOSEK.pdf [Accessed July 2021]

[10] The AUTOSAR Consortium, “AUTOSAR Specification of Operating
System ”, pp. 33-35, 2006.

[11] Nahmsuk Oh, P. Shirvani, E. McCluskey, “Control-Flow Checking by
Software Signatures”, IEEE Transaction on Reliability, vol. 51, Mar-
2002

[12] Texas Instruments MCUSW, “Wdg Design Document “ [Online],

http://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-

jacinto7/latest/exports/docs/mcusw/mcal_drv/docs/drv_docs/design_wd

g_top.html [Accessed July 2021]

[13] AUTOSAR, “AUTOSAR SWS Watchdog Manager* [Online],
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
3/AUTOSAR_SWS_WatchdogManager.pdf , 2017-12-08 [Accessed
July 2021]

[14] AUTOSAR, “ Specification of Watchdog Interface*

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
3/AUTOSAR_SWS_Watchdoglnterface.pdf, [Accessed July 2021]
[15] AUTOSAR, “Specification of Watchdog Driver “[Online]

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
3/AUTOSAR_SWS_WatchdogDriver.pdf , [Accessed July 2021]

ABSTRACT

With the development of the automotive industry and software
within it, as a technical consequence, there was a need for mandatory
integration of protection mechanisms in the embedded cores of the
operating system. One of the basic mechanisms for system protection
is the watchdog. This component aims to monitor all other components
initiated by the scheduler and thus enable the safe operation of the
system. As the problems reported by Watchdog are relatively difficult
to track and analyze in a real system, the idea came up to simulate the
operation of the Watchdog component on a computer with the same
input parameters as in a living system. This paper provides a solution
for simulating the system monitoring mechanisms of the defined
AUTOSAR architecture. The simulation makes it possible to
minimize deviations, predict errors in the system and facilitate the
analysis itself. Work can contribute to faster system development
because it allows to predict errors that will occur in the system before
implementation.

ONE SOLUTION
DISPLYING CHECKPOINTS
WATCHDOG CONFIGURATION

Ivana Tesevi¢, Branko MiloSevi¢ Dejan Bokan, Bogdan Pavkovi¢

FOR ANALYZING AND
IN THE AUTOSAR

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_SWS_COM.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_SWS_COM.pdf
http://www.uni-obuda.hu/users/schuster.gyorgy/rtos/OSEK.pdf
http://www.uni-obuda.hu/users/schuster.gyorgy/rtos/OSEK.pdf
http://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/latest/exports/docs/mcusw/mcal_drv/docs/drv_docs/design_wdg_top.html
http://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/latest/exports/docs/mcusw/mcal_drv/docs/drv_docs/design_wdg_top.html
http://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/latest/exports/docs/mcusw/mcal_drv/docs/drv_docs/design_wdg_top.html
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogManager.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogManager.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogInterface.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogInterface.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogDriver.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogDriver.pdf

Implementation of Smooth Streaming protocol
through a generalized software framework

Miroslav Susa , llija Basi¢evi¢, Senior Member, IEEE

Abstract—Adaptive streaming is a technology for transmitting
multimedia content over a network such as the Internet. This way
the content is available at any time which has brought big
changes. One of the many streaming technologies is Smooth
Streaming. In addition to the transmission of content via one of
the protocols, it is necessary to ensure its reproduction. In this
paper, the implementation of the Smooth Streaming protocol
within a single media player is presented. The implementation
was performed through a generalized software framework, which
will also be discussed. The role of the framework is to facilitate
the integration of the remaining adaptive streaming protocols
into the media player.

Index Term—adaptive streaming; content playback; Smooth
Streaming;

I. INTRODUCTION

The fourth industrial revolution brought many changes in
terms of consuming multimedia content. When it comes to
content transfer, the most important innovation is Streaming
technology. Streaming makes it easier for users to access
content whenever and at any time they want, which previous
technologies could not provide. In the field of television, new
technology is completely taking over the market from the
traditional way of content broadcasting[1].

As a consequence of the development of a new way of data
transfer, standards have emerged according to which this
transfer will be performed. Some of the best known and most
prevalent today are the MPEG-DASH and Smooth Streaming
standards. In addition to the transmission of the content itself, itis
necessary to ensure its reproduction.

This paper presents an implementation of the Smooth
Streaming protocol, the creation of a generalized software
framework for managing adaptive streaming protocols, as well
as the integration of the software framework with the Smooth
Streaming protocol and a media player for content playback.

The rest of the paper is organized in the following order:
Section |1 discusses streaming technology and its types. Section
111 shows the architecture of the media player on which the work
solution is implemented. Section 1V defines a programmatic
framework for managing adaptive streaming protocols. Section
V discusses creating a library for the Smooth Streaming protocol.
Section VI shows the architecture of the media player after
applying the solution. Section V11 deals with the validation of

Miroslav Susa — RT-RK Institute for Computer Based Systems, Novi Sad,
Serbia (e-mail: miroslav.susa@ rt-rk.com).

Ilija Basicevi¢ — Faculty of Technical Sciences, University of Novi Sad, Trg
Dositeja Obradovica 6, 21000 Novi Sad, Serbia (e-mail: ilibas@uns.ac.rs).

RTI1.1 Page 1 of 5

the solution and the results. Section VIII provides a conclusion
on the work.
Il. STREAMING

Streaming is a technique of continuous transmission of video
and audio material via wired or wireless internet connection.
Before the advent of streaming, playback of content from the
Internet was possible in two ways. The first way is to upload
the complete file to the device and only then is playback
possible. Another way is to use a progressive download.

A. Progressive streaming

Progressive download allows you to play content while
downloading it to your device [2]. Downloading is done
regularly, which means that not only the selected part of the file
can be downloaded, but the complete one. Any part of the
downloaded content can be played as desired. The content
transmitted in this way is of fixed quality and resolution. In
other words, only one video file can be uploaded. Since
different content resolutions require better or worse internet
traffic, in a situation where the flow is poor, progressive
downloads will often lead to transmission interruptions. In
addition, the content will be displayed differently on different
devices.

Higher resolution files take up more memory space, and the
file transfer speed depends on the internet flow which tells us
how much data the user can receive in a unit of time. If the flowis
poor and the video has a higher resolution, part of it will not be
able to be transmitted in its entirety and playback will be
delayed. In addition to downtime, progressive downloads also
cause the problem of presenting videos on devices with
different screen resolutions. For example, when playing a video
that is 720p resolution, on a screen with 1080p resolution, the
image will be stretched and pixelated.

B. Adaptive streaming

Adaptive streaming is a streaming technology based on the
HTTP (HyperText Transfer Protocol) protocol. The benefit of
using HTTP technology is the unhindered passage through the
firewall and NAT (Network Address Translation) devices that
remap IP (Internet Protocol) addresses. In addition, the
complete implementation of HTTP logic is on the side of the
content seeker, which reduces the need for a continuous
connection between the provider and the service provider.

Adaptive streaming, instead of a complete file, transmits and
plays its parts for a few seconds [3]. We call such parts of a file
its segments. Since the content is divided into segments, any
part of it can be added as desired. Just before the segment
expires, the next one to be played is delivered. After moving on
to the next segment, the previous one is deleted, and the

process takes place until the complete content expires. This
gives the impression of continuous playback of content.
Information about all video and audio files and their segments,
as well as details of the need for their transfer and playback can
be found in the manifest file.

s Client
Manifest request !
¢_,,<_,_,,_,“,_
Manifest response
>
Segment request
P B
Segment response
Segment request]
¢,_,A,,,,,“,_,“

Fig. 1. File exchange between client and server during adaptive streaming

Adaptive streaming solves the problems of progressive
download [4]. Files of different resolutions are created for the
same content. Depending on the size of the client's screen, a file
segment of the appropriate resolution is provided.

Video Screen
resolution: N resolution
1920 x 1080 — 1920 1080

px
N
1280 x 720 =5 I:L 1280 x 720
) 4
px D>
A
> ¢ o
854 x 480 E © E 854).'4u0
= px
pXx
B D
2 426 x 240
426 x 240 px
px

Fig. 2. Display video resolution selection for different screen resolutions.

In the typical communication scenario between a client and a
server using adaptive streaming the client first sends a request
for a manifest and receives it in response from the server. The
client then sends requests for fragments which the server
delivers.

I1l. MEDIA PLAYER ARHITECTURE BEFORE PROTOCOL
IMPLEMENTATION

IWedia Player (IWP) is a library written in the C ++
programming language that aims to provide a high-level player
interface. The player allows you to play audio and video
content. It is used as a part of an application written for the
Android platform and provides it with a user interface.

RTI1.1 Page 2 of 5

Android app

IWedia player

IWedia MPEG-DASH 1Wedia Utility
library library

- Fig. 3. Display of player architecture before implementing the solution.

In order for the player to enable the MPEG-DASH streaming
protocol, an IWP-DASH library was created. In addition to
defining the elements of this streaming protocol within the
dash library, the logic for adaptive streaming has been
implemented, which is closely related to the dash protocol.
Components shared between other IWedia libraries such as the
player and dash are housed in the IWedia utils library.

IV. SOFTWARE FRAMEWORK FOR MANAGING ADAPTIVE
STREAMING PROTOCOLS

When it became necessary for the media player to support, in
addition to the MPEG-DASH protocol other adaptive
streaming protocols as well, the implementation logic had to be
generalized and displaced from the dash library.

The goal of the adaptive streaming protocol management
framework is to provide the media player with an interface
through which to obtain content for playback. All protocols
aim to transfer content and regardless of their complexity, we
can see numerous similarities between them. Since MPEG-
DASH is an official international standard, it is the most
developed and provides the most opportunities during
implementation [5]. All other standards can be viewed as its
subset.

The software framework can be divided into four logical units
that have a role in downloading manifests, segments, adapting
to network conditions and creating an entrance to the library.

Module for manifest
download

— [|Adaptation_set < IPeriod

A

IManifest <

IRepresentation_base| —IRepresentation_stream | | i|
: J i) ! | IManifest_loader

A 4

IAdaptation_stream

—>» |Representation
>

'

I1Segment

IManifest_parser

Module for segment
download

Mldd[e input Iaver

IManager ‘

| [IRepresentation_selector| e —

Module for adapting
. tO net» OfK condmons

F|g 4. Generalized software framework solution architecture.

A. Module for manifest download

Manifest, as mentioned, is the central document for gathering
information on the content to be transmitted. It is available on
the server along with the provided content. The type of
manifest can be dynamic, if we broadcast live content, or static,
if the content is downloaded on demand. To stream live
content, the manifest needs to be delivered periodically because
the content is constantly changing.

To provide a manifest, URI (Uniform Resource ldentifier)
from which it can be downloaded is required. The download is
performed with the help of a previously implemented download
class, which needs to be provided with data about the speed,
number of attempts and download time of the manifest. As a
result of successful delivery, a string with the contents of the
manifest is obtained. After it is downloaded, the manifest is
parsed.

At the level of libraries that implement the standard, it is
necessary to implement interfaces that represent the manifest
and the factory for creating the manifest.

B. Module for segment download

Within period elements of the manifest, that contain the
initial time and duration of the content, there are adaptation
elements. Their primary purpose is to provide information
about the type of stream being transmitted. Inside the
adaptation element are elements that represent the stream. They
contain data on the flow rate required to download the stream in
a certain quality as well as information on the segments that
need to be downloaded. At the stream type level, a structure is
created that will download the segments.

Libraries of specific protocols that implement the created
interfaces define the form of stream representation as well as
the form of segments. The representation form creates
segments based on a given start time, carries information about
the number of available segments, as well as the broadcast time
period provided by the representation.

Segment download control is defined in this software
framework. The time period in which the download will be
performed is determined, the representation within which the
segments will be downloaded is selected, the ordinal number of
the next segment to be created is calculated and the creation of
the segment is initiated.

C. Module for adapting to network conditions

The network adaptation module is key to performing
adaptive streaming. Depending on the speed of the user's
Internet flow, it is necessary to correct the representation of the
stream being downloaded. The factor that influences the choice
of representation, in addition to the flow rate, is the type of
content that is downloaded. For the purpose of selecting a
representation, a selector is created that stores all available
representations and, based on the current flow and type of
content, selects one of them to be played. After the download,
the number of bits downloaded, as well as the time period
required for the download, are forwarded to the flow rate meter.
Based on the obtained parameters, the meter calculates the
current flow rate that is available when initializing the next
download.

RTI1.1 Page 3 of 5

Middle input layer

As part of the software framework, a manager has been
created to manage the processes. Its presence is necessary in the
media player that uses the library. The task of the manager is to
initiate the loading of the manifest when it comes to streaming
on demand or perform periodic loading of the manifest if a live
broadcast is performed, as well as the interruption of these
operations. In addition, the manager creates a program
representation of the adaptation stream that has the ability to
further manipulate stream representations and segments.

D. Software framework integration with the media player

In order to enable the reproduction of content by adaptive
streaming protocols, it is necessary to integrate the software
framework with media player. The integration is done by
adding a component that has access to the software framework
manager. In this way, the processes realized by the software
framework are initiated, such as taking over the manifest and
adding segments. The ultimate goal of process initiation is to
obtain segments and prepare them for reproduction.

Within the media player, there is also logic for determining
the adaptive streaming protocol that will be used, as well as
factories that will, depending on the selected protocol, create a
component that has access to the software framework.

V. SMOOTH STREAMING LIBRARY

The Smooth Streaming library is a C ++ implementation of
the Microsoft Smooth Streaming protocol used by the IWedia
player to play content. The library consists of "ismc™ and "abr"
modules. The Ismc part of the library was named after the
extension of the Smooth Streaming protocol manifest client.
Within this part, the manifest is parsed and elements and
attributes representing the data collected by parsing are
realized. Abr part of the library represents the implementation
of a software framework for managing adaptive streaming
protocols.

Smooth Sireaming
fibrary

ISMC ABR

Fig. 5. Smooth Streaming Library Components.

A. Library creation

In order to implement the protocol, it is necessary to parse
the protocol manifest and present its elements within the
library. In addition, it is necessary to provide the types of
content exchange messages defined by this transport protocol,
which are: manifest request, manifest response, segment
request and segment response.

1) Manifest request

A manifest request is sent to obtain a manifest containing all
the necessary information to reproduce the content. In order to
send this request, a URI to the manifest is required as well as
information on which extension of the manifest file is

expected. Manifest extensions differ in whether it is a server
manifest that has an ism extension or a client manifest whose
extension is ismc.
2) Manifest response

The manifest response is obtained in the form of an ismc file
with metadata related to the playback of the content. The file isa
well-formed XML (Extensible Markup Language) and consists
of the following elements: SmoothStreamingMedia, Protection,
Streamindex, QualityLevel and StreamFragment. All of the
above elements are presented within the library as classes, and
their correlations are clearly visible and described below.

A 4

ISmooth_streaming_media IStream_index

v A4

IProtection [Quality_level

v

IProtection_header IStream_fragment <

Fig. 6. Smooth Streaming library solution architecture.

a) SmoothStreamingMedia

SmoothStreamingMedia is a root element that contains all
the other elements of the manifest. The direct descendants of
this element are the StreamlIndex and Protection elements. Its
attributes carry information about the main and secondary
versions of the manifest as well as whether the manifest
describes live or on-demand content. Within the attribute, the
duration of the content described in the manifest is also defined.

SmoothStreamingMedia is implemented within the library so
that its creation requires URI of manifest as well as xml filesin
string format. The string is then parsed using the sub-element
names and attributes listed as constants.

a) Protection

Protection is an xml element that includes the metadata
needed to play protected content. It contains information on the
unique identification of the security system used on the given
content, as well as the encoded data that the system uses to
enable the reproduction of the content to authorized users.

b) StreamIndex

StreamIndex is the most important element within a manifest
because it contains metadata for playing a specific stream. This
means that the element provides information about the type of
content that is transmitted by a particular stream, that is,
whether it is an audio, video or text stream. Based on the stream
type, the availability of attributes within an element changes.
Only in the case of video, there is information about the
maximum available content resolution that is available, as well
as the recommended playback resolution. The number of
qualities, segments, as well as the duration of the stream are
available within this element.

b) QualityLevel

The QualityLevel element carries metadata about the playback
of a specific track within the stream. Depending on the type of
stream in which it is located, its attributes differ. For video
within the video stream, the required resolution attributes as
well as parameters specific to a particular media format are

RTI1.1 Page 4 of 5

required. When it comes to audio recording within the audio
stream, in addition to the previously mentioned attributes, we
also have data on the number of channels of the audio tape,
sampling rate, sample size, limits for optimizing audio
decoding and identification of media format used. The
attributes that each record contains are those that carry
information about the unique identification of each record and
the download speed required to retrieve a particular record.

C) StreamFragment

The StreamFragment element contains metadata about a set
of related segments in the stream. Its attributes carry
information about the start time of the segment, its duration, the
order in a series of segments as well as the possibility of
repetition. For a segment to be valid, it must contain either a
duration attribute or a start time attribute. A series of segments
is called adjacent if the start time of any segment, with the
exception of the first, is equal to the sum of the start time and
the duration of its predecessor.

3) Segment request

A segment request is created to retrieve the desired segment
from the server. To create it, it takes URI to the desired
segment, its bitrate, the name of the stream within which the
fragment is located, the start time of the desired stream, as well
as the type of response that the client expects from the server.

4) Segment response

A segment response is a response that is received after
sending a request to obtain a segment. The answer can be
complete or partial. If the answer is complete it contains media
and segment metadata, while partial responses contain only
media or metadata.

B. Framework implementation

In the Smooth streaming library it is necessary to implement
two of the four modules of the framework and they are: Module
for manifest download and Module for segment download.

2) Implementation of the module for manifest download

As mentioned earlier, it is necessary to implement the

manifest factory interface as well as the manifest interface.

a) IManifest interface

IManifest methods gather the necessary information that each
manifest should have, namely: whether the manifest is live or on-
demand, the duration of the manifest, the minimum time required
to load the manifest, as well as adding the manifesto period. All
data can only be obtained by parsing the manifest.

b) IManifest_factory

The manifest creation factory contains only one method that
instantiates a class that implements the IManifest interface. It
forwards manifest uri and the contents of the manifest that is
necessary to parse.

3) Implementation of the module for segment download

Module for segment download defines the necessary logic to
supply the parsed element data, as well as the logic for creating
segments.

a) IRepresentation
Interface methods obtain, from the QualityLevel element, data

described in the part of the paper with the same name. All data is
present in the node and is very easy to obtain.

b) |Adaptation_set

The 1Adaptation_set interface is composed from set of
methods that retrieve data from the Stream_index element of the
library. All methods return the present attributes or sub-elements

of a given element.

C) ISegment

This interface is defined by a set of methods for retrieving the
Stream_fragment element attribute with the exception of the
get_uri method. The get uri method calculates the uri to a given
segment that is different from the manifest uri

d) IRepresentation.

The role of the IRepresentation interface is to create
segments, add the total number of segments, add the duration of
all segments and find the segment with a given index

The number of segments is obtained when initializing the
class of this interface by going through all segments and taking
into account their repeat attribute which tells how many times a
given segment is repeated.

During the process of calculating segments, the total duration
of all segments can be easily obtained. The timestamp of the
first and last segment is taken, or their length and repeat tag if
the timestamp is not available.

A segment with a given index is supplied by going through
all available segments, taking their duration and repeat attribute,
calculating the index of each segment and returning the
resulting one. The limitation of this method is to pass an index
that is not less than zero and that is not greater than the total
number of segments.

V1. MEDIAPLAYER ARHITECTURE AFTER PROTOCOL
IMPLEMENTATION

By removing the definition of adaptive streaming protocol
from the dash library and generalizing it, a software framework
for managing adaptive streaming protocols is obtained. This
makes it easier to use and add new adaptive streaming
protocols such as the Smooth Streaming protocol. In addition,
their integration with the player is facilitated.

Android app

IWedia player

abr instantiating

abr
implementation

abr

implementation abrderition

IWedia MPEG-DASH
library

IWedia Utility
library

Smooth Streaming
library

Fig. 7. Display of player architecture after solution implementation.

VII. TESTING

A. Description of the test environment

The environment for testing of this solution comprises
Smooth Streaming content that can be accessed via the
network, an application for playing content, as well as an
Android P development board on which the application will be
launched.

The content playback application is written in the Java
programming language for the Android platform. It provides a
simple user interface from which content playback can be
controlled, and uses the IWedia player library interface for
playback itself.

RTI1.1 Page 5 of 5

Content preparation, implementation of the Smooth
Streaming library and software framework, as well as their
integration with the media player are described in the previous
chapters. The Android P development board connects to the
same network from which the prepared content is available to it,
and the Android application is installed and launched on it. With
this step, the test environment is ready and testing can begin.

B. Testing procedure

After installing the Android application on the board and
launching it, you get access to the list of all available streams.
Clicking on the desired stream starts playback. Playback can be
interrupted, paused or restarted at any time.

C. Test results

As stated, by clicking on the desired stream, in this case on
the stream belonging to the group of Smooth Streaming streams,
playback starts. The start of content playback always takes place
at a lower resolution until the user's internet flow is determined.
After that, if it is determined that the conditions are met,
playback continues at higher resolutions, which tells us that the
SmoothStreaming protocol has been successfully implemented.

Selecting one of the available streams that are transmitted by
other adaptive streaming protocols results in content playback.
Successful playback start shows that the generalized software
framework has been correctly implemented.

VIII.

Within this paper, a solution for integration of Smooth
Streaming standards for broadcasting content is described. Also,
a generalized program framework has been implemented, which
enables easier integration of the remaining standards.

The protocol library and software framework are written in
C++. In this way, speed and flexibility are achieved. Like the
media player in which they are implemented, they can be used
on both Android and Linux platforms.

The integration framework in the media player enables easier
integration of existing, as well as the protocols that may arise in
the future which can be seen as a subset of the MPEG-DASH
protocol.

CONCLUSION

ACKNOWLEDGMENT

On this occasion, | would like to thank my colleague Nikola
Spirié on the provided support.
REFERENCES

Nenad Lovcevic, Jelena Simic, Miroslav Dimitraskovic and llija
Basicevic “Modul za prijem i obradu JSON komandi u programskoj
podrsci digitalnog TV prijemnika” 61st IcEtran conference in Kladovo,
Serbia, June 5 — 8, 2017.

Stefan Lederer, Christopher Mueller,Christian Timmerer, Hermann
Hellwagner “Adaptive Multimedia Streaming in Information-Centric
Networks” IEEE Network, November 2014.

Ilija Basi¢evi¢, Nenad Lovcevié¢, Nenad Soski¢, Milan A&anski “Internet
as Infrastructure for Digital Television” 62st IcEtran conference in Pali¢,
Serbia, June 11 — 14, 2018.

Rubem Pereira, Ella Pereira “Dynamic Adaptive Streaming over HTTP
and Progressive Download: Comparative Considerations”, IEEE 28th
International Conference on Advanced Information Networking and
Applications Workshops (WAINA) - Victoria, Canada, May 1 2014
Sunho Seo; Younghwan Shin; Jusik Yun; Wonsik Yang; Jong-Moon
Chung “Adaptive high-resolution image transmission method using
MPEG-DASH” International Conference on Information and
Communication Technology Convergence (ICTC) Jeju, Korea (South),
October 18-20, 2017.

(1

(2]

(3]

(4]

(5]

Implementation of the GDPR Compliant
Data Handling for Smart Home Solution

Sandra Bugarin, Sandra Ivanovi¢, Marija Anti¢

Abstract—The amount of personal data collected and shared in
the Internet of Things (loT) is causing increasing concerns
regarding the user privacy in loT. The recently introduced
General Data Protection Regulation (GDPR) is a legal framework
that sets guidelines for the collection and processing of personal
information and aims to strengthen user rights. In order to comply
with the GDPR requirements, the existing smart home system is
extended with the cloud service, responsible for user consent
management and appropriate data handling. The architecture of
the solution, as well as the results of functional and performance
testing are presented in this paper.

Index Terms— GDPR; smart home automation; 10T

l. INTRODUCTION

The users surfing the web are under a risk of privacy
violation, as the websites are collecting data about them and
may be sharing it with third party services. Recently, the
General Data Protection Regulation (GDPR) has entered into
force, with the aim to protect the user privacy, and allow them
better control over the collected data and the scenarios it is used
in [1]. According to GDPR, the services are required to inform
the users about the types of data collected and the purpose of
this action, so the users can choose to engage only with websites
and services that do not violate their privacy, or opt out of the
use of their information for particular purposes.

While the data collected by the websites usually serves only
marketing purposes, and is not necessary for the normal
operation of the website, the problem of GDPR compliance in
Internet of Things (IoT) solutions is of a more complex nature
[2]. Namely, 10T systems typically connect multiple devices
owned by a single user, and allow them to perform a certain
function together. Therefore, the exchange of data is in the
essence of l0T. On the other hand, there exists a tendency in the
I0T solutions to collect more data than actually needed for the
normal system operation, as it may become useful in the future
scenarios [3], [4]. This data should be carefully stored and
protected, as well as anonymized [5], and the users should be
provided with the mechanisms to inspect or delete the collected
data at any time [6]. Also, it is necessary to be transparent about
the ways data is processed, to inform the users timely when the
privacy policies change, and to allow

Sandra Bugarin is with OBLO Living, Narodnog fronta 21a, Novi Sad,
Serbia (e-mail: sandra.bugarin@ obloliving.com).

Sandra Ivanovi¢ is with the Faculty of Technical Sciences, University of
Novi Sad, Serbia (e-mail: sandra.ivanovic@rt-rk.uns.ac.rs).

Marija Anti¢ is with the Faculty of Technical Sciences, University of Novi
Sad, Serbia (e-mail: marija.antic@rt-rk.uns.ac.rs).

RTI1.2 Page 1 of 5

them to opt out of the service if they do not agree to the changes.

Studies have been conducted that show that the user attitude
towards data collection depends on multiple factors, such as the
environment the data is related to (home, office, traffic), types
of data collected (video, photo, sensory data, voice), who has
access to it (government, businesses), as well as the purpose of
data collection (safety, convenience, marketing) [7]. Smart
home users are willing to allow data collection as long as it is
used only within the system, for the purpose of connectivity and
convenience [8], but seem not aware of the possible privacy
issues associated with machine learning and potentially
sensitive information that can be revealed by data analytics [9].
This information should be communicated through the privacy
policy and terms of use, in a manner that is transparent and clear
to the user, and explains why certain types of data are needed
for the normal operation of the system [10].

In this paper, we extend the existing smart home solution
with the cloud service responsible for GDPR-compliant data
handling. This service allows administrators to handle privacy
policy updates, and the users to request the export or deletion
of personal data, as well as the deletion of the user account.
First, we introduce the smart home solution architecture in
Section Il. Then, in Section Il the operation of the GDPR
service is explained, while the results of functional and
performance testing are presented in Section IV and Section V.

Il. SMART HOME SYSTEM ARCHITECTURE

The smart home solution we extend is comprised of a
gateway, client applications (Android, iOS and web) and cloud
services.

The gateway is a key component in the smart home because
it acts as a bridge between clients and smart devices in the smart
home system. Gateway’s main purpose is to pull together all
compatible devices into a universal platform. This allows
applying control scenarios to all of them while being agnostic
of the actual communication interface — ZigBee, ZWave, and
IP nodes are seamlessly integrated into one unified device/node
network. On top of this core functionality gateway implements
network API’s for client applications, mechanism to define and
execute rules, advanced control over the home zones, firmware
upgrade, backup/restore, etc.

@)

i Gateway

8

Fig. 1. Smart home system architecture.

Client applications provide the user interface for system
provisioning, configuration and management. They enable
users to access their home gateway in local network or
remotely over the cloud. On the other hand, the cloud is
responsible for user and gateway identity management,
mirroring the smart home gateway configuration and data,
allowing remote access for the client applications, historical
data collection and analytics.

For certain functionalities of the system to be enabled, the
user needs to provide the address of the household, i.e. their
geolocation [11]. Also, phone number and email are needed
for the purpose of smart notifications. Additionally, the
system collects and stores the state changes of all devices, in
order to provide the users with the possibility to inspect the
way certain device types have been used in the previous
period [12]. Also, the information about the local loT
network is stored for diagnostics purposes. All of these
entries represent the data that should be treated according to
GDPR.

I11. GDPR-COMPLIANT DATA HANDLING

To comply with the GDPR requirements, the microservice
is created within the smart home solution cloud, which
enhances the system with the following functionalities:

» Update of Privacy Policy and Terms of Service

» Export of Personal Data,

+ Deletion of User Account

In this section, the details about the service implementation
will be presented. All of the cloud services are highly
available, and GDPR service is no exception. The simplified
architecture is presented in Fig. 2. Multiple instances of the
service implemented in Node.JS are running on the
environment. They share the long-term MongoDB data
storage, as well as the temporary Redis storage. Also, the
shared cloud storage disk is available to all services that need
to store large files, not suitable for MongoDB database. To

RTI1.2 Page 2 of 5

control the load and orchestrate tasks within the environment,
RabbitMQ is used.

GDPR
NGNIX

\ - -
|

|

|

| Strat Strat Strat

GDPR | GDPR GDPR GDPR

|

|

J ! L J L J

(f
I I
I I
I I
| strat | Strat
I |
I I
I I
L 1

@
9

Fig.2. Highly available GDPR service.

A. Update of Privacy Policy and Terms of Service

The Privacy Policy should help users to understand what
information is collected, for which purpose, and how users can
update, export, and delete their information. Information about
privacy policy and terms of service is the part of registration
process, so all new users have to read it, and agree in order to
register their smart home account.

User Cloud

Login Req

PP andiior TOS Mot Accepled:

Acoept PP and TOS

O

Accept PP and TOS—————————P)

n User Logier

Fig. 3. Privacy policy acceptance upon login.

The existing users that have not read the new privacy policy
well be prompted to read it and agree to it after logging onto
web or mobile applications, as presented in Fig. 3. Until they
agree to new privacy policy, users will not be able to use the
applications. Gateways connected to user's account will be
deactivated and prevented from sending any new sensory
information to the smart home cloud.

Users can reactivate their account and gateways if they
accept new privacy policy on login, or if they click on the link
to new privacy policy that has been emailed to them.

B. Personal Data Export

As already said, personal data consists of user’s personal
profile information, such as name, email, phone contact,
geolocation and address of the household. It also includes the
state history of the end devices in the system, gateway backups
and local 10T network history logs, which are stored for the
purpose of diagnostics. Therefore, the exported data contains
three groups of JSON files. The first group contains the data
from the user's profile, the second one represents the snapshot
of the gateway's current state, while the third one represents the
usage history of all devices that have been connected to user's
gateway(s).

The data export service will run on demand, under control of
administrator. It performs the following tasks:

» Database crawl for personal data,

« Compression of this data to a ZIP archive, which is
temporarily stored in the cloud, until the user downloads it,

» Deletion of outdated personal data

The collection and deletion of all data for an individual user
can be started by the administrator, upon a request from the user
(Fig. 4). Administrators can start or stop data export task that
have not been completed, and delete completed export tasks and
data file associated with them if they are older than 15 days.
Also, they can monitor the progress of currently running data
collection tasks. Administrators are not able to view the
contents of the exported data files or to remove data export
tasks that still haven’t completed.

User Cloud Administrator

Make an export task request—]

[¢———Acknowledgement email

Email notification for admin—3

[«——pPerform export data task:

[€«—Export data complete email

Data download

Export link delete

Fig. 4. Export data flow

When the user makes a personal data export request, they will
be notified via email that their request has been acknowledged.
A similar notification will be sent to the administrator, with the
link that allow to monitor that export task. When the export task
has been completed, another notification will be sent, this time
with a HTML link to data export file. Download link will be
available for the next 15 days. After this period, the export task
and the associated export data file will be removed.

RTI1.2 Page 3 of 5

By default, only single process per backbone instance is
allowed to execute data collection and compression tasks.
Reason for this is intense 1/0 and CPU utilization (for DB crawl
and data compression, respectively). Every process will be
given a certain amount of time to complete it (e.g. 5 minutes)
by placing the key-value pair in redis with the same expiration
time. Given that database and redis are the only shared state
between backbone instances, they can be used for tracking of
task progression: if one of the instances that is running
collection task crashes or restarts, time for task completion will
expire and this task will fail.

C. User Account Deletion

At any time, a user can request to delete their account.
Administrators are obliged to fulfil this request, by performing
the account deletion operation via the administrative portal —
Fig. 5. During this process, all of the gateways assigned to the
user will be un-assigned from the user account, and all personal
data from the cloud will be deleted.

User Cloud

Administrator

Delete Account Request————|

Mark Profile for Deletion

—Delete Account Request Nofification——»|

Delete Users Account:

Fig. 5. Account deletion flow

However, the device usage data will be kept for analytics
purposes. This data is in anonymized state, which means that it
does not contain any information that can be traced to the
original user.

IV. FUNCTIONAL VERIFICATION

A. Privacy Policy Acceptance and Modification

During the process of account creation, the user is asked to
agree to the terms of service and the privacy policy.

The administrator can upload the new privacy policy and
terms of service documents using the web portal for system
administration — Fig. 6.

Fig. 6. Privacy policy and terms of service update.

articular to its

CANCEL

Fig. 7. Modal dialog prompting the user to accept new privacy policy.

On next login attempt, every user will be prompted to accept
new privacy policy and terms of service via modal dialog — Fig.
7. Until they accept, they will not be able to use the applications.

B. Data Export

On the user profile, a button is implemented which allows
them to request the export of personal data. This button is
disabled if another request is already processed. This tab also
contains a link to personal data when collection task is finished
—Fig. 8. Implications are, that a new data export request can be
made after 15 days (guaranteed duration of the valid export
link) plus the time needed to perform the data export request.

sanja tresovic

A

[]

Fig. 8. User requesting personal data export.
From the administrator side, the status of the pending, current

and past data export tasks can be monitored, as in Fig.
9.

Export data tasks list

Email Requested at Stas Action

20472001 09:34:45

I

140042021 133550

Fig. 9. Administrative panel for export task monitoring.

V. PERFORMANCE TESTING

We have tested the implemented solution to asses the average
time needed to prepare the export ZIP file with user data,
depending on the data size. Typically, the size of the exported
data is 5-10 MB, although for the setups with many devices it
can increase up to 30 MB. The time needed for data export is
presented in Fig. 10. It can be observed that the data export can
be performed in less than 10 s for typical setups, while for the

RTI1.2 Page 4 of 5

larger setups the time needed increases to the order of minutes.
However, since the user will be informed by the notification
when this process is finished, the performance of the solution is
acceptable for the practical purposes.

70

60 o>
50

40

30

20

10 PR

0

0 10 20 30 40

Time [s]

Data size [MB]

Fig. 10. Time needed to export data depending on the total size of the data file.

V1. CONCLUSION

In this paper, one implementation of the GDPR-compliant
data handling in smart home solution has been presented. The
cloud service was created, that handles the relevant aspects of
data handling and user consent management, such as the update
of terms of use and privacy policy, data export and account
deletion. The implemented functionality has been verified, and
it has been shown that the times needed for data export are
acceptable. In the future work, this solution will be extended to
allow users the finer granulation over the types of data collected
and services enabled. For example, the users may want to opt
out of the advanced functionalities, based on data analytics and
machine learning, while still wishing to allow the exchange of
data needed for the basic system operation.

ACKNOWLEDGMENT

This research has been supported by the Ministry of
Education, Science and Technological Development through
the project no. 451-03-68/2020-14/200156: “Innovative
scientific and artistic research from the FTS activity domain”.

REFERENCES

[1] A. Tsohou, E. Magkos, H. Mouratidis, G. Chrysoloras, L. Piras, M.
Pavlidis, J. Debussche, M. Rotoloni, B. Gallego-Nicasio Crespo,
“Privacy, security, legal and technology acceptance elicited and
consolidated requirements for a GDPR compliance platform,”
Information and Computer Security, vol. 28, no. 4, pp. 531-553, Oct.
2020

[2] P. Porambage, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov, A. V.
Vasilakos, “The Quest for Privacy in the Internet of Things,” IEEE Cloud
Computing, vol. 3, no. 2, pp. 36-45, Mar. 2016

[3] S. Wachter, “The GDPR and the Internet of Things: a three-step
transparency model,” Law, Innovation and Technology, vol. 10, no. 2, pp.
266-294, Sept. 2018

[4] S. Watcher, “Normative challenges of identification in the Internet of
Things: Privacy, profiling, discrimination, and the GDPR,” Computer
Law & Security Review, vol. 34, no. 3, pp. 436-449, June 2018

[5] C. Perera, R. Ranjan, L. Wang, S. Khan and A. Zomaya, “Big Data
Privacy in the Internet of Things Era,” IT Professional, vol. 17, no. 3, pp.
32-39, May 2015

(6]

[71

(8]

[9]

A. D. Kounoudes, G. M. Kapitsaki, “A mapping of [oT user-centric
privacy preserving approaches to the GDPR,” Internet of Things, vol.
11, no. 100179, Sept. 2020

H. Lee, A. Kobsa, “Understanding user privacy in Internet of Things
environments,” Proc. of World Forum on Internet of Things (WF-10T),
Dec. 2016

Moataz Soliman, Tobi Abiodun, Tarek Hamouda, Jiehan Zhou,
ChungHorng Lung, “Smart Home: Integrating Internet of Things with
Web Services and Cloud Computing,” International Conference on
Cloud Computing Technology and Science, Dec. 2013

S. Zheng, N. Apthorpe, M. Chetty, N. Feamster. “User Perceptions of
Smart Home IoT Privacy”, Proc. of the ACM on Human-Computer.

RTI1.2 Page 5 of 5

[10]

[11]

[12]

Interactiion. vol. 2, no. CSCW, pp. 1-20, Nov. 2018

K. Renaud,L. A. Shepherd, “How to make privacy policies both
GDPRcompliant and usable,” International Conference on Cyber
Situational Awareness, Data Analytics and Assessment (CyberSA), Nov.
2018

M. Mati¢, M. Tuci¢, M. Anti¢, R. Pavlovi¢, “Using online third party
geolocation services to improve smart home user experience,” Serbian
Journal of Electrical Engineering vol. 17, no. 1, pp. 83-94, Feb. 2020

S. Ivanovi¢, M. Anti¢, 1. Papp, N. Jovi¢, “Data Acquisition, Collection
and Storage in Smart Home Solutions,” Proc. of 6th International
Conference on Electrical, Electronic and Computing Engineering
(ICETRAN), May 2019

Combined adaptive load balancing algorithm
for parallel applications

Luka Filipovi¢, Bozo Krstaji¢, Member IEEE, Tomo Popovi¢, Senior Member IEEE

Abstract— Development and improvement of efficient
techniques for parallel task scheduling on multiple cores
processors is one of the key issues encountered in parallel and
distributed computer systems. The purpose of process
distribution improvement in parallel applications is in increased
system performance, reduced application execution time,
reduced losses and increased resource utilization.

This paper presents combined adaptive load balancing
algorithm based on domain decomposition and master-slave
algorithms and its core scheduling adaptive mechanism that
handles load redistribution according obtained and analyzed
data. Selection of distribution algorithm, based on collected
parameters and previously defined conditions, proved to deliver
increased performances and reduced imbalance. Results of
simulations confirm better performance of proposed algorithms
compared to the standard algorithms reviewed in this paper.

Index Terms— parallel programming,
algorithm, tash scheduling, adaptive algorithm.

load balancing

|. INTRODUCTION

Distributed computer systems enables the delivery of
computing resources necessary to solve complex problems
with requirements that exceed the capabilities of the most
powerful personal computers. High-performance computers,
as one of the powerful elements of distributed computer
systems, lead to complex solutions by using computer
simulations enabling progress in all scientific fields. Parallel
processing supports execution of several processes and
instructions simultaneously, with a goal to save time and
execute faster and more efficient complex applications in
scientific and industrial applications. [1] [2].

The focus of many researches in the parallel processing
field is process of finding optimal distribution of tasks in
order to increase efficiency, reduce execution time of parallel
applications and reduce communication time of computer
resources. In order to achieve the highest parallel application
efficiency, it is crucial to optimize the assignment of tasks to
parts of the distributed computer system (cluster nodes and
its CPU cores) and monitor their execution.

The subject of this research was combined adaptive
algorithm (CAA) [3][4], which uses combination the static
and dynamic load balancing algorithms to improve the
performance of independent parallel tasks scheduling without
significantly complicating the whole process. It uses an
adaptive innovative mechanism for choosing load balancing
algorithm for distribution of unexecuted autonomous tasks

"Luka Filipovi¢ is with the University Donja Gorica, Oktoih 2, Podgorica,
Montenegro (e-mail: luka.filipovic@udg.edu.me).

Bozo Krstaji¢ is with the Faculty of electrical engineering, University of
Montenegro, Dzordza Vasingtona bb, Podgorica, Montenegro (e-mail:
bozok@ucg.ac.me).

Tomo Popovi¢ is with the Faculty of Information Systems and
Technologies, University Donja Gorica, Oktoih 2, Podgorica, Montenegro
(e-mail: tomo.popovic@udg.edu.me).

RTI1.3 Page 1 of 5

depending on the segments in which losses are the least and
by limiting the algorithm at times when it causes losses.

11.LOAD BALANCING ALGORITHMS

Load balancing in parallel processing is defined as process
of achieving parallelism by redistributing the load of parallel
segments during the execution of a parallel program [5] [6].
The primary goal of load balancing algorithms is to find the
optimal execution schedule that defines the initial execution
time and the execution order of all tasks that run on a
particular resource. Load balancing of parallel applications is
process of reducing computation time achieved by reducing
communication time, synchronization time between
processes and waiting time due to uneven process distribution
[7].

The imbalance of parallel applications most often occurs
due to uneven load between cores, excessive communication
between cores or waiting of group of cores for others to finish
assigned jobs [8]. In a real distributed environment, resource
load varies over time and it is not always possible to improve
the use of resources that are completely free or equally
loaded. It is not possible to determine or predict the length of
processes that run on separate computers or delays due to
communication between computers. Therefore, there is a
longer execution of the parallel application and a decrease in
resource utilization. The end of the execution of a parallel
application or the beginning of the postprocessing phase
directly depends on the execution time of the part of the
application on the core that is assigned the most process or
the processor with the lowest frequency.

Load balancing algorithms are divided as static and
dynamic, depending on the type of job scheduling. Static load
balancing algorithms have good usability and efficiency on
homogeneous clusters while they execute tasks on all cores
which have similar duration. Performance of programs using
these algorithms is reduced at the end of the runtime without
possibility of rescheduling. One of widely used static
algorithms is domain decomposition algorithm. On the other
side, dynamic algorithms can give better efficiency on
heterogeneous system, but make unnecessary communication
during executing time. The master slave algorithm is a one of
the typical representatives of dynamic algorithms. Domain
decomposition and master-slave algorithms have their
advantages and disadvantages depending on the
characteristics of the resource, the specific parallel
application for which load balancing is performed and the
duration of processes that are executed in parallel [9-11].

mailto:luka.filipovic@udg.edu.me
mailto:bozok@ucg.ac.me
mailto:tomo.popovic@udg.edu.me

Adaptive algorithms are advanced dynamic algorithms
with adaptive strategy for task distribution scheme that is
activated depending on the load change of the distributed
system during operation.

I1l. COMBINED ADAPTIVE LOAD BALANCING ALGORITHM

The combined adaptive algorithm (CAA) is successor an
improved version of combined algorithm (CA) [12]. It
presents an adaptive decision model that selects an adequate
algorithm based on data on the state of the resource on which
the parallel application is running and the duration of finished
tasks.

In the preprocessing phase, as in the CA algorithm, the
input data is divided and tasks are prepared for execution.
Before starting parallel simulations, the analysis of the
distributed resource configuration is performed and the
obtained data are used in the later analysis.

In the parallel processing of the combined adaptive load
balancing algorithm, three execution phases stand out (Figure
1):

[

phase

| phase Il phase

Domain decomposition

Domain decomposition

Master-slave

Algorithm selection

Tmin

Fig 1. Execution phases of the proposed CAA algorithm

In the first phase of the combined adaptive algorithm, the
domain decomposition algorithm is executed. It has the
highest efficiency and the lowest losses in the initial phase of
program execution. The algorithm stops working when the
first (“fastest”) core completes the assigned job (Tmin) and
sends instructions to the other cores to stop working after
completing the task they are processing at that point. The
described procedure reduces the losses of the first execution
phase to a minimum.

In the second phase of the algorithm, based on the amount
and duration of performed tasks, cluster configuration and its
load, an adaptive approach is used to select the algorithm for
the scheduling of the remaining tasks in third phase. Upon
initiating an interrupt at the end of the first phase, each CPU
core sends to a predefined core a data containing the duration
of the performed tasks. The predefined core receives the sent
data and processes them, making an array with the number of
executed tasks for each core and through executed and
unexecuted tasks and selects the algorithm to be executed in
the third phase according to the defined decision algorithm.
The decision on the algorithm in third phase is made on the
basis of the following parameters:

o the homogeneity of allocated resources,
e the total number of assigned cores,

RTI1.3 Page 2 of 5

e the numbers of completed tasks for each core
individually and
o the execution time of each task individually.

The homogeneity of the allocated resources (the
examination of whether they can be considered homogeneous
or heterogeneous) is performed by comparing the
performance values of the allocated nodes of the distributed
resources. A measure of the performance of an individual
resource can be core frequency, node memory or node
network speed. Depending on the architecture of the
distributed system and the type of tasks, one or more node
performance measures can be taken. In the presented
research, the core frequency (Hz) was used as a measure of
the node performance of the distributed system.

The total number of assigned cores is defined when the
application is started.

The number of completed tasks per core represents the part
of the total number of tasks performed up to the moment Tmin,
when the first core performed the assigned tasks and initiated
the interrupt, for each core separately. The data is expressed
as a sequence whose number of elements is equal to the
number of assigned cores, and the elements are the numbers
of completed tasks for each core individually. The total
number and type of tasks depends on the parallel application
being executed and the input data, and the division is done
before the parallel processing.

The execution time of each individual task is a matrix that
contains the data on which core the task was executed and the
duration of each task (ms) that was completed.

Based on the above parameters, the conditions for selection
of an adequate distribution algorithm in the third phase can
be defined. These conditions are defined by variables U; that
have binary values. Thus, the variable U; takes the value 1 if
the i-th condition is met, and otherwise U; takes the value 0.

The first and eliminatory condition (Ue) for the selection of
the distribution algorithm is the condition that the remaining
number of tasks is less than or equal to the number of
available cores. If the conditions Ue (Ue = 1) are met, the DD
algorithm is selected for execution in the third phase, ie each
of the remaining tasks is assigned one core for execution.

If the eliminator condition is not met (Ue = 0), the choice
of algorithm is made based on a combination of the following
conditions:

e U; - cluster homogeneity condition: this condition is
fulfilled (U.=1) if CPU cores of the same or
approximate operating clock are assigned, ie. if the
standard deviation of the operating clock of all cores
is less than the set value;

e U, - number of cores condition: this condition is
fulfilled (U, = 1) if the number of cores is less than a
predefined number of cores, ie if the losses of the
master core in the MS algorithm cannot be ignored,;

e U; - condition of uniformity of the number of
performed tasks: this condition is fulfilled (Us = 1) if
the number of performed tasks for each core is
approximate, ie. if the value of the standard deviation
of the number of completed tasks per core is less than
the predetermined value;

¢ U, - condition of uniformity of duration of performed
tasks: this condition is fulfilled (U, = 1) if the duration
of performed tasks per core is approximate, ie. the

value of the standard deviation of the execution time
of each task per core is less than the predefined value.

The decision algorithm checks the fulfillment of conditions
that depend on the values of the parameters. Choice of the
algorithm itself adapts to the current performance of the
allocated resources and the state of the performed tasks in the
first phase. Thus, the proposed adaptive algorithm determines
whether the domain decomposition or master-slave algorithm
will be executed in the next phase based on the fulfillment of
the defined conditions according to the principle: the more
conditions are met, it determines the choice of DD algorithm
in the third phase and vice versa.

In order to enable additional adaptation of the decision
algorithm to a specific application and distributed system,
each of the conditions can be weighted with real coefficients
Ki, Ki€ [0,1] which enables the exclusion of some conditions
or assigning greater or lesser importance to some of the
conditions. This does not apply to an eliminatory condition
that is considered independently of the other conditions. The
coefficients K; are assigned a maximum value of 1 if this
condition is fully taken into account, while K; = 0 excludes
the influence of this condition from the influence on the
choice of algorithm. Coefficients should be defined
separately for each application and distributed resource
depending on previously obtained results and experiences.

Finally, based on the above conditions, we can define the
decision function on the basis of which we select the
algorithm in the third phase:

U=Y%,KixUi. (1)

The threshold value of the decision function U should also
be defined, on the basis of which one or another algorithm is
selected for the third phase (DD or MS). Since the maximum
of the function U is achieved by the fulfillment of the
conditions K;*U; and that determines the choice of the DD
algorithm, then half of the maximum value of the function U
is taken as the threshold value, ie

z‘l. .
p=2=C (2)

Therefore, if it’s satisfied
U=P ®)

it is necessary to select the DD algorithm in the third phase
or the MS algorithm if condition is not satisfied.

Figure 2. shows a schema of the decision making process
for the selection of algorithm in second phase. As already
mentioned, based on the presented parameters, defined
conditions and coefficients, the algorithm for the distribution
of tasks in the third phase is selected.

RTI1.3 Page 3 of 5

L

Input parameters for decision
making, coefficients Ki

——
<

>
o

111

¢

END

Fig 2. Scheme of the decision making process for the selection of algorithm
in Phase 11

The selected algorithm (DD or MS) is executed in the
third phase.

If the DD algorithm is selected, each core receives a
portion of the list of unfinished tasks. Each core gets assigned
one of the remaining tasks to solve if the remaining number
of tasks is less than or equal to the available number of cores
(condition Ue). Otherwise, the number of assigned tasks for
each core is determined in proportion to the number of tasks
completed in the first phase on each core separately.

In the case of selecting the MS algorithm, the core that
performed the analysis in the second phase is determined as
the master core. It contains information with a list of all
unfinished tasks that are assigned to slave cores for execution
in the third phase of the algorithm.

The proposed CAA algorithm will increase efficiency and
shorten the execution time of parts of a parallel application in
the third phase according to the interruption of the execution
of the first phase, the analysis of the state of resources, the
adaptation from the second phase and the redistribution of
tasks.

The efficiency of the CAA algorithm has been improved
due to process reallocation, reduced kernel latency for new
instructions, and improved resource utilization by adapting
the allocation to the distributed system architecture and
application-specific. Therefore, the execution time of the
proposed algorithm will be shorter than the execution time of
the standard DD algorithm if measured under the same
conditions. The CAA algorithm is similar to the CA
algorithm in the case of deciding that a dynamic process

allocation along with the MS algorithm is required in the third
stage.

The disadvantages of the proposed CAA algorithm are the
interruption of task execution at the end of the first phase and
the duration of adaptation in the second phase. Interrupting
the execution of tasks in the first phase may increase the
duration of this phase if there are one or more tasks whose
duration is significantly longer than the duration of other
tasks. This phenomenon would cause an increase in the
duration of the first phase, which may affect the performance
of the entire algorithm. In that case, the efficiency would be
the same as with the classical DD algorithm. The second
phase, due to its short duration, cannot significantly affect the
overall efficiency of the parallel application.

The proposed CAA works as a DD algorithm during the
period of its maximum efficiency and stops working when its
efficiency starts to decline. The proposed adaptive algorithm
will have a significantly better performance than the domain
decomposition algorithm in the case when the basic algorithm
has low efficiency due to interruptions and redistribution of
tasks.

The CAA algorithm will have better performance than the
MS algorithm because the MS algorithm does not execute
tasks on the master core and generates more communication
losses than the proposed CAA algorithm. The MS algorithm
will have lower efficiency than the proposed algorithm
because it starts as a DD algorithm and redistributes and
selects the algorithm for execution based on parameters in
order to achieve better use of resources and efficiency.

In case of large losses during third phase, it is possible to
re-initiate the interruption and repetition of the decision
algorithm, ie adaptation based on new parameters, re-
selection of the algorithm and its start to get the best use of
resources.

IV. THE ANALYSIS OF SIMULATION RESULTS

For the purposes of research and testing of the subject
algorithms, a parallel version of the crossbar commutator
performance simulator (CQ) [13] was used, as a numerically
demanding example of a parallel application with several
independent processes. The algorithms were tested on
different distributed computing environments and run under
different resource loads. Each simulation was performed ten
or more times and the averaged results of the execution time
are presented here. The performance of the combined
adaptive algorithm was verified on the example of a 16-port
CQ simulator with 1,000,000 requests and 3072 generated
tasks. Simulations performed on the Paradox HPC cluster of
the Institute of Physics in Belgrade. At the time of the
simulation, the cluster consisted of 106 computing nodes
based on two octa-core Xeon 2.6GHz processors with 32GB
of RAM and NVIDIA® Tesla ™ M2090 cards. The
performance of the combined adaptive algorithm is compared
with the performance of the algorithms that make it up.
Simulations were performed on 16, 32, 64 and 128 cores. The
input files were copied to the nodes on which the simulations
were run in the preprocessing phase, thus reducing the impact
of communication between the nodes.

In the presented simulations, the value of standard
deviation 10% of the average value of the core operating
clock was used for condition U;. A threshold of 32 cores is
defined for condition U,. For conditions Uz and U,, the value

RTI1.3 Page 4 of 5

of the standard deviation is 25%. The coefficients used in
these simulations are K; = 0, K, = 1, K3 = 1 and K4 = 0.5.
Priority in decision making is given to the number of cores on
which the simulation is performed and the number of
performed tasks per core. A lower priority was given to the
duration of the tasks, and due to the coefficient K; = 0, the
influence of cluster homogeneity was not taken into account.
The average results of parallel application execution with
DD, MS and CAA algorithm for different number of used
cores are shown in Figure 3.

Simulation time using 16-128 cores

seconds

i
I

Figure 3. Average execution time of simulations using DD, MS and CAA
algorithms on 16-128 cores

The combined adaptive algorithm completed simulations
faster than the domain decomposition and master-slave
algorithms in all conditions. The best results and the greatest
benefits due to the redistribution of tasks were determined in
cases of performing simulations on a number of cores. The
simulations showed the longest execution time with the
master-slave algorithm, especially on a small number of cores
due to its previously described shortcomings.

The domain decomposition algorithm performed
simulations faster than the master-slave algorithm. The input
data was transferred before the simulations and most tasks
were performed at approximately the same time, as shown in
Figure 3. Therefore, the static distribution proved to be
sufficient and the domain decomposition algorithm showed
better performance than the master-slave algorithm.

Savings [%] between CAA and other alg.

21,9
)01 18,8
16,3
r I - I I I

CPU cores

Figure 4. Savings during algorithm execution and comparison between
combined algorithm and domain decomposition and master slave

Figure 4 shows the execution time savings between the
combined adaptive algorithm and the algorithms that make it
up. The domain decomposition algorithm required more time
than the combined adaptive algorithm due to the static
distribution throughout the execution process. The difference
between the combined adaptive and domain decomposition
algorithms ranges from 1.7% to 8.2%. The biggest difference
was recorded when executing the application on 128 cores.

The differences between the combined adaptive algorithm
and the master-slave algorithms are due to the loss of the
master-slave algorithm due to the distribution of tasks and
communication between cores during the entire program
execution process. The execution time difference between the
combined adaptive and master-slave algorithms ranges from
15.5% to 21.9%. The inability to execute tasks on the master
core produced losses during execution on a smaller number
of cores. Increased communication between cores throughout
the execution of the simulation caused the largest difference
between the results listed on 128 cores.

Chosen algorithm in third phase

CPU cores

Figure 5. Selected algorithm in the third phase of CAA

Figure 5. shows the results of the selection of the algorithm
in the second phase according to the received and analyzed
data and the decisions made at the end of the second phase.
The domain decomposition algorithm was chosen in most
cases when the simulation was performed on 16 cores,
because the execution was detected on less than 32 cores and
an even number of tasks that needed to be redistributed. On
the other hand, master-slave was chosen in cases of
simulations on 32 or more cores because the decision
algorithm from the second phase based on parameters
discovered the number of available cores, different number
and duration of performed tasks and selected this dynamic
algorithm for the third phase.

V.CONCLUSION

The paper presents an original adaptive load balancing
algorithm for parallel applications that combines the
operation of static and dynamic algorithms. Domain
decomposition and master slave algorithms were used on the
basis for the proposed algorithm, as one of the most common
algorithms in practice. As none of the algorithms provides
good results in a wide range of applications and types of
distributed systems, the following research was based on the
idea of combining the mentioned algorithms in order to
improve the parallelization performance without
complication of the algorithm. Based on the identified
advantages and disadvantages of standard algorithms, a

RTI1.3 Page 5 of 5

combined adaptive algorithm is proposed. The idea of
combined algorithms is to work in the phases when composite
algorithms have the best performance. The advantages of the
proposed solution are following:

e improved parallel application efficiency and cluster
utilization in relation to basic algorithms due to task
redistribution and reduced execution time;

e parameters and conditions for the selection of
algorithms have been identified according to the
status of resources and the point of execution of the
application and determine a more adequate static or
dynamic distribution of the process by an adaptive
strategy

¢ weighting coefficients (K;) adjust the adaptive load
balancing algorithm and parallel application to the
infrastructure

e applicability of the proposed adaptive part of the
decision algorithm is possible in any load balancing
algorithm and

e the proposed algorithm is applicable to all parallel
applications consisting of several independent tasks.

The paper presents the results of executing domain
decomposition, master-slave, combined and combined
adaptive algorithm on different computer resources with the
help of numerically demanding parallel application of CQ
simulator. Comparison of the results of simulations with
different loads and configurations of distributed resources
confirms the better performance of the proposed algorithm in
relation to the basic algorithms considered in the paper.

ACKNOWLEDGMENT

This research is supported in part by the EuroCC project,
grant agreement grant agreement 951732 EuroCC-H2020-
JTI-EuroHPC-2019-2.

REFERENCES

[1] S. Tanenbaum and M. van Steen, Distributed Systems: Principles and
Paradigms, 2nd Edition, Pearson Education. Inc., 2007.

[2] B. Barney, Introduction to Parallel Computing, Lawrence Livermore
National, 2012.

[3] L. Filipovic, “Combined adaptive load balancing algorithm for
parallelization of applications”, PhD thesis, University of Montenegro,
Faculty of Electrical engineering, 2019.

[4] L. Filipovic and B. Krstajic, "Combined load balancing algorithm in
distributed computing environment," Information Technology and
Control, vol. 45, no. 3, pp. 261-266, 2016.

[5] H. D. Karatza and R. C. Hilzer, "Parallel Job Scheduling in
Homogeneous Distributed Systems," Simulation, vol. 79, 2003.

[6] J.Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan and C.-W. Tseng,
"Dynamic Load Balancing of Unbalanced Computations Using
Message Passing," in Parallel and Distributed Processing Symposium,
2007, IPDPS 2007, IEEE International, Long Beach, CA, USA, 2007.

[7] T. Rauber and G. Riinger, Parallel Programming for Multicore and
Cluster Systems, Springer, 2010.

[8] D. Thiébaut, Parallel Programming in C for the Transputer, 1995.

[9] V. Sarkar. Partitioning and Scheduling Parallel Programs for
Multiprocessors. MIT Press, 1989.

[10] W. D. Gropp. Parallel Computing and Domain Decom-position. In:
Fifth Conference on Domain Decompo-sition Methods for Partial
Differential Equations, 1990, pp. 249-361.

[11] S. Sahni. Scheduling Master-Slave Multiprocessor Systems. IEEE
Transactions on Computers, 1996, Vol. 45, No. 10, 1195-1199.

[12] L. Filipovic, B. Krstajic. Modified master-slave algorithm for load
balancing in parallel applications. ETF Journal of Electrical
Engineering, 2014, Vol. 20, No. 1, 74-83.

[13] M. Radonjic and I. Radusinovic, "CQ Switch Performance Analysis
from the Point of Buffer Size and Scheduling Algorithms," in Proc. of
20th Telecommunication Forum TELFOR 2012, 2012

A Tool for Sentence Syntax Structure Markup
for The Serbian Language

Teodora Pordevi¢, Suzana Stojkovi¢ University of Nis, Faculty of Electronic Engineering

Abstract— Syntax analysis is an important part of natural
language processing. The biggest challenge to defining a natural
language syntax analyzer is the inability to define unambiguous
formal grammars that describe the language. Because of this,
rule-based syntax analyzers need to be enhanced using statistics
to allow us to predict which syntax tree is most likely. In order
to do this, a corpus of tagged sentences in the target language is
needed. The creation of this corpus is long and tedious work.
Because of this, this paper implements a visual tool for creating
such a corpus for the Serbian language. A component of this tool
is the syntax analyzer, which generates all the possible syntax
trees based on the defined grammar such that an expert may
choose one of them. The expert may also create entirely new
syntax trees.

Index Terms—Natural language processing (NLP); Syntax
analysis; CYK; Annotated syntactic corpora; Serbian language

I. INTRODUCTION

Natural language processing is a branch of computer
science that teaches computers to understand and manipulate
human language. Natural language processing is a
combination of computer science, linguistics and machine
learning. Many NLP techniques are already developed and
applied for the English language but applying those
techniques to different languages can be quite a challenge.
Serbian language is under-researched in the context of natural
language processing. Since the Serbian language and the
English language do not belong to the same language group,
many approaches designed for the English language need to
be significantly modified in order to be used in the Serbian
language or cannot be used at all.

Syntax analysis or parsing, in general, is the process of
analyzing character strings according to the rules of a given
formal grammar. It is typically encountered in fields of
natural languages, computer languages or data structures. In
Natural language processing, syntax analysis is one of the
most important phases because it builds a great foundation to
natural language understanding. Syntax analysis decides
whether a sentence written in natural language conforms to
the rules of a formal grammar and thus whether a sentence is
valid or not. Designing a quality syntax parser is extremely
significant for designing a semantical analyzer, since syntax
parsing precedes semantic analysis. Also, syntax analysis has
its own role in Rule-based Machine Translation, Information
Extraction, Question Answering systems, etc.

Teodora Pordevi¢ is with the Faculty of Electronic Engineering,
University of Ni§, Aleksandra Medvedeva 14, 18000 Nis, Serbia (e-mail:
teodora.djordjevic@elfak.ni.ac.rs).

Suzana Stojkovi¢ is with the Faculty of Electronic Engineering,
University of Ni§, Aleksandra Medvedeva 14, 18000 Nis, Serbia (e-mail:
suzana.stojkovic@elfak.ni.ac.rs).

RTI1.4 Page 1 of 5

This paper describes designing a graphic tool for syntax
analysis of the Serbian language based on the syntax analyzer
designed in [1]. This tool is implemented as a web application
that can analyze and visualize sentences using the
implemented parser. It also enables the user to draw
completely new syntax trees and save them.

II. RELATED WORK

In linguistics, a corpus usually represents a collection of
texts. The main purpose of a corpus is to be used as a tool in
language study. In order to study and analyze language data,
having a corpus is essential.

The English language is most widely researched language
and thus the largest number of corpora exists for the English
language.

Corpora contain texts that are sourced from natural
contexts in order to be as close to the natural language as
possible. There are many types of corpora that are used in
natural language processing such as reference corpora, which
are fairly balanced sets of texts that accurately describe a
standard language, or specialized corpora which contain texts
from a particular area, such as movie reviews, magazine texts,
etc. A very important category of corpora are annotated
corpora which contain additional information such as part of
speech tags, lemmas, metadata, additional tags, etc.
Annotated corpora can thus be used in supervised learning
scenarios when attempting to infer this additional data based
on the text given.

There are many publicly available corpora online for
various languages. These corpora can be accessed either
directly online via web browser, through specialized APIs to
search the corpora, or can also be downloaded in their
entirety.

Most modern language processing is done using
computers. This means that modern corpora must be
electronically readable documents. The first such document
for the English language was The Brown Corpus of Standard
American English [2]. This corpus consists of one million
words of American English texts printed in 1961. In order to
ensure high quality and to make the corpus useful for a wide
range of applications, the corpus compiled texts from 15
different categories. Keeping in mind the huge increase in
processing power, as well as that the Internet generates more
linguistical data than ever before, this corpus is now
considered small.

An example of a modern corpus of the English language
that is quite big is the Corpus of Contemporary American
English (COCA) [3]. COCA is probably the most widely used
corpus of English, with over one billion words. Many corpora
for the English language can be found at [4].

Besides the English language many other languages of the
world are being researched in the field of syntax and semantic

2 - forwarding input sentence to parser

The Notation tool

Syntax analyser - Python

Frontend

4 A
POS Tagger ‘ U1
. I v
3 - forwarding tags to parser l
(A 1 - input sentence 8 - sending confirmed trees
CYK Parser
7 - syntax trees
\. I J
4 - for ing trees to "
N o Backend H
e N : —
N === === Server 11 - saving trees-
Postprocessor Database
\ ' J o
5 - forwarding verified trees E
: '
9 - transform confirmed trees
Reduction companent 10 - forward transformed trees
' Transform component ‘

6 - reduced tree:

Fig. 1. The Architecture of Notation tool

analysis and are thus being compiled into language specific
corpora. One such corpus is the Quranic Arabic Corpus [5],
which is an annotated linguistic document, that shows the
Arabic grammar, syntax and morphology for each word in the
Quran. The research paper [6] describes a specialized
annotated corpus for the Chinese language, used for
analyzing clinical texts. This corpus is annotated with part-
of-speech tags, syntactic tags, entities, assertions, and
relations.

For the Serbian language, given that it is spoken by only
12 million people in the world as a first language, there is not
a large number of corpora such as English or Chinese. In the
last few years, there has been development of open, freely
available resources and technologies for computer processing
of texts in the Serbian language. This includes annotated
language corpora and some of the corpora are listed below.

1. SETimes.SR [7] — it is based on the SETimes parallel
corpus of newspaper articles. This is a manually
annotated corpus of texts written in the standard
Serbian language. This corpus is used for training and
evaluation of computer models on a number of natural
language processing problems. It contains 3891
sentences. The SETimes.SR corpus is annotated using
morphosyntactic notation, lemmas, syntactic
dependencies, and named entities.

2. srWac [8] - the Serbian web corpus, which was built
by crawling the .rs top-level domain in 2014. It
contains 555 million tokens and over 25 million
sentences arranged in about 1.3 million documents.

3. MULTEXT-East [9] - is a multilingual dataset for
language research. This project consists of mainly
Central and Eastern European languages, including
Serbian.

RTI1.4 Page 2 of 5

4. ReLDI-NormTagNER-sr 2.1 [10] - is a manually
annotated corpus of Serbian tweets. It is meant for use
in the fields of tokenization, sentence segmentation,
word normalization, —morphosyntactic tagging,
lemmatization and named entity recognition of non-
standard Serbian.

As mentioned earlier, there is a corpus that has marked
dependency syntax at the sentence level, but there is still no
corpus for the Serbian language that contains fully marked
syntax trees. Precisely for this reason, the idea arose to create
such a tool that will enable the creation of a corpus of
syntactic trees for the Serbian language.

There are some visualization tools for drawing syntax
trees, but they are mostly limited to inputting a syntax tree,
and then getting a visualization of that tree. The tools which
expect user to enter syntax trees and then visualize it are
shown here [11, 12]. The tool where the user can draw syntax
tree from scratch is TreeForm [13]. This tool offers wide
palette of elements that can be drawn in order to create a
syntax tree. There are several simpler solutions than
TreeForm, such as [14][15]. All these tools are only intended
for visualizing syntax trees. They do not support using a
syntax parser in the background, which would generate
syntax trees based on the entered sentence as suggested in this

paper.

III. THE FUNCTIONALITY OF THE NOTATION TOOL

A. Syntax Analyzer

The parser that was created in [1] achieved excellent
performance and performed real-time parsing. This parser
consists of three components:

1. POS Tagger — when a sentence is forwarded to the
syntax analyzer it is necessary to extract POS tags
first, because a syntax analyzer can only recognize
tags, not actual words. This tagger is explained in
detail in [1]. The tagger returns tags that have special
meaning. For example, some of the valid tags are ‘nn’
(noun in nominative), ‘vm’ (main verb), ‘sI’
(preposition in front of locative). Every POS of the
Serbian language has its own abbreviation, where
every letter has its own meaning. These tags are then
forwarded to syntax analyzer, and later displayed in
syntax trees above actual words of the sentence.

2. CYK Parser — this parser is implemented to achieve
optimal performances while analyzing sentences.
Also, this parser, as defined in [1], is capable of
recognizing all the syntax trees, like the parser in
NLTK [16], but with significantly reduced parsing
time.

3. Postprocessor — this layer is added because the
number of syntax trees that are generated based on
grammar designed for CYK Parser was large. To
reduce this number, a series of rules is defined. These
rules eliminate syntax trees that aren’t consistent with
Serbian grammar. The postprocessing phase reduced
the number of syntax trees by 54%.

The problem with this syntax analyzer, despite adding a
postprocessing phase, is that it generated multiple trees for a
single sentence. In order to solve this problem, it is necessary
to add statistics that will enable to generate only one syntax
tree as a result of a syntax analysis. To be able to implement
statistical parsing, it is necessary to have a corpus of marked
sentences, which is not the case for the Serbian language. For
this reason, the idea of creating a visual tool arose. This tool
will enable simple drawing and visualization of syntax trees
and thus lead to the generation of a corpus of marked
sentences that will be used further.

The notation tool works as follows:

1. The user enters the sentence they want to tag

2. The sentence is forwarded for processing to a parser that
returns the resulting syntax trees

3. The syntax trees are displayed to the user

4. The user can choose one of the following options:

e Select the correct tree,

e Change the tree that is the most similar to the
correct tree - by adding nodes, changing the node
name, deleting nodes, and switching places with
nodes, or

e Create a new tree in case all the suggested trees
are wrong

5. The correct tree is uploaded and stored in the database.

The architecture of the implemented system is shown in
Figure 1.

The new component of the syntax analyzer is called
reduction component. This component is added specifically
for this tool.

The grammar created for the Serbian language contains a
huge number of rules because the Serbian language is very
complex. Considering that due to the implementation of the
CYK algorithm, it was also necessary to transform the
grammar so that it would be in Chomsky's normal form, a
large number of auxiliary shifts were introduced. The syntax
tree created in this way was too large to be displayed to the

RTI1.4 Page 3 of 5

user of any system and this is the reason for introducing a
reduction component.

This component aims to transform the syntax tree so that it
no longer contains auxiliary rules, as well as that it does not
contain shifts that have been introduced to make syntax
analysis simpler and more robust.

The goal of reduction is to transform the syntax tree,
generated by using a more complex grammar, into a simpler
tree, corresponding to a simpler grammar. The main purpose
for introducing the reduction component is to visualize the
trees in a way that domain experts would expect by
abstracting away implementation details. Also, reduced
syntax trees are smaller and easier to display. After
confirming the final tree for input sentence, it is necessary to
return syntax tree to original form. This is achieved by using
transform component. This component accepts syntax tree in
simpler grammar and transforms that tree to original
grammar. The transformed tree is then forwarded to backend
application and saved in a database.

Figures 2 and 3 show how a part of the syntax tree looks
with and without reduction. The reduced syntax tree is
significantly smaller and thus much easier to display. An
entire syntax tree without reduction would be impossible to
fit in the page of the notation tool. The syntagm shown in
figures 2 and 3 is “Moja divna drugarica”, meaning “my

wonderful friend” in Serbian.
{ s

‘ RecenicniClanovi
e —
‘ RecenicniClan
. —
| Subjekat

|GramatickiSubjekat

R
‘ImenickaSintagmaN
. A
IS -~ Nrpo:
! ' = '
AtributiN GlavniClanN
v v v
AtributN AtributiN ImenicaN |
—

(
;'.PridevskaZamenicaN

4
A 4

PridevN ‘ drugarica

divna

Fig. 2. Part of the syntax tree without reduction

| |

GramatickiSubjekat

|

ImenickaSintagma

—

Atribut Atribut GlavniClan

| | |

| oo | wn | m |

! | !
‘ Moja ’ | divna ‘ ‘ drugarica ‘

Fig. 3. Part of the syntax tree with reduction

B. The Notation Tool

This component is implemented as a web application so
that users can use it as easily as possible. This approach was
chosen to avoid any installation. The application itself is
divided into three parts:

1. Frontend
2. Backend

3. Database.
The role of the Frontend is to enable:

1. Entering a sentence whose analysis should be
performed

2. Displaying of all syntax trees generated by the
parser

3. Selecting a syntax tree that is correct - the user can
view a list of all syntax trees that the parser returned
and check the one that is correct. This sends a
request to the server with the intention to save that
tree in the database.

4. Syntax tree modification - if the syntax tree is not
completely correct, but with a few minor changes it
could become correct, the tool offers the possibility
to make the following syntax tree changes:

e adding a new node - it is necessary to select the node
to which we want to add a new descendant and select
the name that will be in that node. After interacting
with the component, the tree structure is
automatically updated to display the changes.

e deleting a node - if it is necessary to remove a node,
the tool offers the option to select that node and then
delete it.

e renaming a node - if the tree structure is adequate
and an element is incorrectly recognized and it has
the wrong name, the tool allows the user to rename
that node.

e swapping nodes - this option exists in case the nodes
are correctly recognized but they have been
misplaced. It is possible to swap the places of these
nodes, but only if they have the same parent. This
option was introduced because a new node is always
added to the end of the list of children, and if the
node is deleted, a new node should be added in its
place. Since the new node is always added as the last
child, this functionality allows the user to place the
node in any arbitrary position.

5. Drawing a completely new tree - the tool offers
space for drawing a new tree, where on one side of
the control there is a list of possible nodes and
arrows for connecting nodes, and on the other side
there is a space for drawing - canvas. It is possible
to transfer nodes from the palette to the drawing
space, as well as to connect these nodes with arrows.
When nodes are added and names are populated, the
tool offers the ability to make a tree structure out of
these nodes, as well as to send that tree further to the
server to be stored in the database.

6. Sending a tree to the database — within the tool
there is a service whose methods are called to
interact with the server.

The role of the backend application is to enable:

RTI1.4 Page 4 of 5

1. Route for frontend application where a sentence
can be analyzed — when a frontend application
sends GET request the backend application forwards
this sentence to the syntax analyzer described
earlier. This syntax analyzer is written in Python, so
it is necessary to call Python script which returns
generated syntax trees for given input.

2. Route for saving the chosen tree in the database
— when an expert reviewed the syntax trees and
chose or drew the correct one. This syntax tree is
saved along with tags and sentence that has been
analyzed.

IV. THE EXAMPLES OF THE NOTATION TOOL

Sintaksna analiza Pocetna Analizirajte recenice

Dobrodosli!

Ovaj alat korist analizrane recenice iskljuéivo u nauéne she.

Fig. 4. Welcome page

Figure 4 shows the welcome page. There is a start analysis
button that a user can click, and this will open a form for
entering the sentence.

Sintaksna analiza Pocetna Anaizijte recenice

Unesite recenicu:

Fig. 5. Enter sentence form

Figure 5 shows a form where the user can enter a sentence
for syntax analysis. That sentence is forwarded to the backend
application. The backend application sends the sentence to
the syntax analyzer by calling Python scripts.

The drawing of syntax trees was implemented using the
canvas element in HTML and Canvas API in JavaScript.
Below are shown pictures of different options which this tool
offers.

Nazad Novarecenica Sagradite novo stablo Potvrdite stablo

Fig. 6. One of the syntax trees that parser generated

Figure 6 shows the result that parser returned. As can be
seen there are three syntax trees generated for this

sentence. The second syntax tree is shown in figure 4. The

start symbol of the grammar is S, the level below S

represents syntactic structures. After that, there are POS

tags that tagger returned and finally words of the sentence.

The menu above the drawn syntax tree has three options:

1. Interrupting the current analysis and analyzing a new
sentence (leads to the form where the sentence is
entered),

2. A page where it is possible to build a completely new
tree for the current sentence,

3. Confirmation of the current tree - forwarding the
selected tree by sending a POST request to the server,
where the syntax tree is sent as the request body, after
which the syntax tree for the entered sentence is stored
in the database.

Potvrdite stablo

Nazad Novarecenica Sagradite novo stablo

PriloskaOdredba

Promenite ime Obrisite ¢vor Dodajte cvor

Da li ste sigurni da Zelite da obrisete cvor PriloskaOdredba?

Da

[ne

Fig. 7. Node removal

Figure 7 displays the menu for deletion of a node. First, it
is necessary to select the node that is going to be altered. The
selected node is colored black to stand out from other nodes.
After node selection, the application opens the menu where
the user can add a new node to the selected one, change the
selected node’s name or delete the selected node. Figure 7
shows that option for deletion is chosen. If the user wants to
rename the node, it is necessary to select the rename option
from the displayed menu. After that, the user needs to enter a
new node name and confirm it. The third option in the menu
is to add a new node. When a node to which a new node is
added is selected, it is necessary to enter a name for the new
node to be added.

Vrsta reéi

— 00k

Fig. 8. Drawing syntax tree using canvas

RTI1.4 Page 5 of 5

Figure 8 shows the canvas where the user can draw a
syntax tree from scratch.

V. CONCLUSION

The notation tool has been carefully created so that it has
the simplest interface with the intention of being used
primarily by domain experts - philologists. By using this tool,
users are able to tag sentences in the simplest possible way,
and thus quickly and efficiently create a corpus for the
Serbian language.

After launching this site on the web, it is necessary to hire
a set of domain experts who will tag sentences using the tool
and create a corpus of sentences. After collecting a sufficient
number of sentences, it is expected that these sentences will
be used to further improve the Serbian language parser.

ACKNOWLEDGMENT

This work has been supported by the Ministry of
Education, Science and Technological Development of the
Republic of Serbia.

REFERENCES

[1] T.DPordevie, S. Stojkovi¢: "Different Approaches in Serbian Language
Parsing using Context-free Grammars", Proceedings of 7th
International Conference on Electrical, Electronic and Computing
Engineering IcCETRAN, Etno-Selo Stani8i¢i, Bosnia and Herzegovina
(Online conference), pp. 588-591, September 28-30. 2020.

[2] N.W. Francis, H. Kucera, “Brown Corpus Manual” , Technical report,
Department of Linguistics, Brown University, Providence, Rhode
Island, US, 1979.

[31 M. Davies, The Corpus of Contemporary American English,
2008, www.english-corpora.org/coca/, 13.06.2021.

[4] English Corpora, https://www.english-corpora.org, 12.06.2021.
[5] The Quranic Arabic Corpus, https://corpus.quran.com, 10.06.2021.

[6] B.He,B.Dong, Y. Guan,J. Yang, Z. Yang, Q. Yang, J. Cheng, C. Qu,
“Building a comprehensive syntactic and semantic corpus of Chinese
clinical texts”, Journal of Biomedical Informatics, vol. 69, pp. 203-217,
2017.

[71 V.Batanovi¢, N. Ljubesi¢, T. Samardzi¢, “SETimes.SR — A Reference
Training Corpus of Serbian”, Conference on Language Technologies
& Digital Humanities, Ljubljana, Slovenia, pp. 11-17, 2018.

[8] N. Ljubesi¢, F. Klubicka, “{bs,hr,sr} WaC - Web Corpora of Bosnian,
Croatian and Serbian”, Proceedings of the 9th Web as Corpus
Workshop (WaC-9), Gothenburg, Sveden, pp. 29-35, April, 26. 2014.

[97 MULTEXT-East,
https://www.clarin.si/repository/xmlui/handle/11356/1041
10.06.2021.

[10] ReLDI-NormTagNER-sr 2.1,
https://www.clarin.si/repository/xmlui/handle/11356/1240.
05.06.2021.

[11] Syntax tree generator, http://mshang.ca/syntree/, 26.07.2021.

[12] phpSyntaxTree, http://www.tycho.iel.unicamp.br/phpsyntaxtree/?,
26.07.2021.

[13] TreeForm, https://sourceforge.net/projects/treeform/, 26.07.2021.

[14] Trees, https://www.ling.upenn.edu/~kroch/gifdir/Trees3-
animation.GIF, 27.07.2021.

[15] Linguistic Tree Constructor,
https://Itc.sourceforge.io/screenshots.html, 27.07.2021.

[16] S.Bird, E. Klein, E. Loper, Natural Language Processing with Python,
Sebastopol, USA, O'Reilly Media, 2009

Modeling the ATP tour matches:
A social networks analysis approach

Balsa Knezevi¢, Milo§ Obradovi¢, Predrag Obradovi¢, and Marko Misi¢, Member, |IEEE

Abstract—Professional men’s tennis is a demanding sport
which greatly benefits from various approaches to performance
analysis. More specifically, a complex network theory can be
used to model and explain the dynamics of players and
tournaments, based on the recorded matches. In this paper,
played matches are used to model a social interaction between
players. Several undirected weighted networks are constructed
to model the ATP tour matches from 2018 to 2020. Moreover, the
three most dominant players on the tour (the “Big Three”) were
observed and analyzed using ego networks approach. The chosen
time frame further allowed for the exploration of impact of
COVID-19 on the dynamics of the ATP tour. Different network
properties were explored, such as small world phenomenon,
core-periphery model applicability, community structure, and
the rich club phenomenon. Our results based on network theory
approach showed that analyzed networks expose similar
topological properties, despite the lower numbers of tournaments
held in the year 2020.

Index Terms—collaboration network analysis; community
detection; ego networks; men’s tennis; network modelling.

. INTRODUCTION

Computational analysis of the results of sports
competitions, as well as the performance of teams and
individual athletes, has long been present in various sports.
The development of data science and artificial intelligence, as
well as the possibility of processing large amounts of data,
have enabled new approaches to analyze the performance of
both teams and individual players. In addition to traditional
statistical methods, new methods have been developed, such
as collaboration analysis and various prediction techniques.

Several methods based on network science were
successfully applied to the analysis of team performance in
collective sports, such as football [1][2], basketball [3], and
water polo [4]. Furthermore, applications in individual sports
are known, such as men's [5][6][7] and women's tennis [8],
boxing [9], chess [10], cricket [11], etc. The goal of this paper
is to further explore the usage of complex network analysis
methodology in the field of men’s tennis.

Balsa Knezevi¢ is with the University of Belgrade - School of Electrical
Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
balsa.knezevic@etf.bg.ac.rs).

Milo§ Obradovi¢ is with the University of Belgrade - School of Electrical
Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
miobra@etf.bg.ac.rs).

Predrag Obradovi¢ is with the University of Belgrade - School of
Electrical Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia
(e-mail: predrag.obradovic@etf.bg.ac.rs).

Marko Misi¢ is with the University of Belgrade - School of Electrical
Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
marko.misic@etf.bg.ac.rs).

RTI1.5 Page 1 of 5

The world of tennis tournaments is a complex system that
consists mainly of players, the tournaments they play and the
matches they have played in those tournaments. Inherently,
such a system is very convenient to model with an appropriate
collaboration network. Most often, such a system is modeled
by players representing the nodes of the network, while the
matches that the players play are in some way depicted by the
edges in the network.

In this paper, the state of men’s professional tennis in the
three years from 2018 to 2020 is modeled and analyzed.
Similar analyses have already been done in the past for men’s
tennis in singles [5][7] and doubles [6]. In the meantime, great
changes have taken place in the world of tennis. That
primarily refers to more than a decade of domination of tennis
players from the so-called "Big Three"™ to which Roger
Federer, Rafael Nadal, and Novak Djokovic belong.
Moreover, the COVID-19 virus pandemic affected the holding
of tournaments in 2020, while tennis tournaments in 2018 and
2019 took place regularly. This allowed for comparative
analysis and additional remarks on the impact of the COVID-
19 virus pandemic. Therefore, various research methods have
been applied in the paper, such as quantitative and qualitative
analysis of the collaboration network, community detection,
analysis of ego networks of members of the "Big Three", data
visualization, etc.

The paper is divided into several sections. The second
section describes the studied data sets and provides an
overview of the used methodology. The third section presents
the results of the research which are then discussed.
Appropriate quantitative and qualitative analyses of the data,
as well as the produced visualizations, are given. The last
section provides guidelines for future work and a brief
conclusion.

Il. DATA SETS AND METHODOLOGY OF ANALYSIS

This section presents the primary dataset and
transformations performed on it in order to construct the
dataset used for analysis. Furthermore, this section contains
the methodology of analysis.

A. Data sets

This paper analyzes the results of men’s singles matches
played on the ATP tour in the period from 2018 to 2020.
Although data from earlier years are available, this timeframe
was chosen with the intent to include years 2018 and 2019
which are two consecutive years with regularly held
tournament seasons, and the year 2020 which was influenced
by the epidemic of COVID-19 disease. Thus, it is possible to

mailto:balsa.knezevic@etf.bg.ac.rs
mailto:miobra@etf.bg.ac.rs
mailto:predrag.obradovic@etf.bg.ac.rs
mailto:marko.misic@etf.bg.ac.rs

determine the influence of pandemics, as the dataset includes
both the influenced data points and the two years of regular
tennis seasons used as reference points.

The match data was taken on 12/22/2020 from a repository
maintained by Jeff Sackman [12] and forms the primary data
set for analysis. At the time of analysis, the tennis season for
2020 was completed. The primary data set consists of files
containing data on matches in singles competition in the
specified period, a list of all players ever ranked on the ATP
list, data on the ranking of active tennis players on the ATP
list in the period from 2010 to 2020. Match data contains
information about the tournament, players, match results with
statistics, and the performance of both players during the
match. According to the author, the primary data set is largely
refined and complete, but there may be certain inconsistencies
or incompleteness where the data was not available.

The primary data set contains data on 7117 matches in the
specified period. In addition, the data set contains data on
54,975 players who at some point during the observed period
had at least 1 point on the ATP list. If several players have the
same number of points, then they can share the same ranking
on the ATP list, depending on other parameters.

The secondary data set was formed based on the primary
dataset, as a refined and cleaned version of it. The data
cleaning was performed according to the needs and goals of
the research. During the process of cleaning and refinement,
some data not necessary for the research itself was
intentionally omitted, such as data on players who did not
play any matches in the observed period, certain contradictory
data, as well as redundant information (columns) that were not
used in the analysis. The final secondary data set included
data on 7117 matches, as well as data on 581 players.

B. Methodology of analysis

Firstly, a thorough statistical analysis of the dataset was
conducted. Analyzed properties include the average number
of tennis matches in certain years, the average number of
tournaments in which tennis players participate, and the
ranking of tennis players depending on the number of matches
or tournaments played. Most interesting results are presented
in the following section. Following the statistical analysis, the
refined data set of tennis players and their mutual matches
were used to create multiple collaboration networks. These
networks were then further studied using methods of complex
network theory.

Tennis tournaments are grouped in a season that lasts for a
whole year. Therefore, three independent networks were
constructed, each holding data for a specific year (N-18, N-19,
N-20). Additionally, to allow the analysis of the whole data
set, the three networks were aggregated into N-T. The four
networks together are referred to as N-series networks.

As per common practice in the field of social network
analysis, the network is represented through a set of nodes
that describe the actors within the social network and the
edges that represent social relations. In the case of networks
used in this paper, the nodes of the network are tennis players
who played at least one official ATP match in the analyzed

RTI1.5 Page 2 of 5

period. The two tennis players are connected if they have
played at least one official ATP match. The weight of the
edge represents the number of matches that the tennis players
played with each other. The networks are undirected.

In addition to networks representing all players and
matches, the ego networks of the members of the "Big Three"
were constructed for each year. These consist of prominent
ego nodes, their direct connections with the neighbors, as well
as the mutual connections of the neighbors. Furthermore,
these three ego networks were unified, and then aggregated
They were used to analyze the core-periphery property and the
topology of the core of the N-series networks.

Community detection was performed by the Louvain
method over the entire network, as well as over the aggregated
ego network. For this purpose, a set of filtered and reduced
networks was constructed. Clustering strength was evaluated,
and the rich club phenomenon was examined.

Python programming language was used to collect and
refine data, model the network, and calculate specific metrics
using the NetworkX package [13] for network analysis. Gephi
[14] was used to visualize and determine network metrics.

I1l. RESULTS

This section presents the results of the research. The first
subsection explores the basic properties of N-series networks,
while the rest explores the derived ego networks and
community detection.

A. Basic properties of N-series networks

A statistical analysis of networks N-18, N-19, N-20, and N-
T was conducted. Basic quantifiable features of those
networks are presented in Table 1. As expected, the number of
tournaments and matches held in 2020 is significantly lower
due to the pandemic. This is further reflected in the weighted
and unweighted degrees of nodes. However, looking only at
the statistical data does not give the whole picture, as it would
lead one to believe that year 2020 was significantly different
from the previous two years. Only after applying the complex
network theory methods discussed below one can give a
proper conclusion about the impact of COVID-19 on the
dynamics of the observed data sets.

TABLE |
METRICS OF CONSTRUCTED N-SERIES NETWORKS

N-18 N-19 N-20 N-T
Players (nodes) 419 364 345 581
Edges 2489 2378 1325 5330
Matches 2974 2696 1447 7117
Tournaments total 138 123 67 328
Tournaments hard surface 81 80 46 207
Tournaments clay surface 47 34 20 101
Tournaments grass surface 10 9 1 20
Avg. weighted degree 13.79 | 15.28 8.39 24.50
Avg. unweighted degree 11.88 | 13.07 7.68 18.35
Network density 0.03 0.04 0.02 0.03
Avg. shortest path length 3.13 3.04 3.18 3.23
Diameter 11 9 9 10
Avg. clustering coefficient | 0.17 0.19 0.14 0.26

Networks N-18, N-19, and N-20 have an exceptionally low
density and a relatively low average shortest path length.
Given the low average local clustering coefficient, the
networks do not express the small-world property. This is in
contrast with previous works in the field [15], but the
discrepancies come from a completely different network
model. These observations also stand for the aggregated
network N-T, as the aggregation does not significantly
increase the density nor strengthen the clustering.

Another interesting observation can be made about the
average weighted and unweighted degrees. As shown in Table
1, the relative difference between weighted and unweighted
degrees is small for networks N-18, N-19, and N-20. This
shows that an average pair of tennis players rarely meet more
than one time per season. Similarly, in the aggregate network
N-T, the annual expected number of matches played by a pair
of players is lower than 2. Given the bracket organization of
tennis tournaments and loser-go-home policy, only the best
players are expected to play multiple matches in a tournament.
This leads to the probability of two players meeting in a
tournament being quite low, even if they both play in the
tournament. In addition, a low annual number of tournaments
leads to a low number of annual matches and further
decreases the possibility of two players meeting.

A further discussion on this topic can be made when
tournament seeding is taken into consideration. The
probability of the first and second seed in a tournament gets
further artificially lowered, as they are seeded in opposite
sides of the bracket and are unable to meet before the finals. If
a pair of players is consistently seeded with the top two seeds,
this can lead to a measurable decrease in the weight of the
edge connecting them.

B. Analysis of ego networks

Looking only at the average number of matches played
does not show the whole picture and unravel the true topology
of the constructed networks. Therefore, a distribution of the
number of matches played during the observed period has
been calculated and is shown in Fig. 1. As can be seen, many
players have only played one or two matches and are thus
very isolated, suggesting a core-periphery topology.

year: 2018-2020

160

= = =
(=] [-
= = =

Fregquency
3

40
20
] -llI-IIIL TN PR TR L T

0 20 0 &0 80 100 120
number of matches
Fig. 1. Distribution of the number of matches played during the three years
from 2018 to 2020. The distribution largely resembles a Pareto distribution.

RTI1.5 Page 3 of 5

Fig. 2. EGO-T, a unified ego network of the “Big Three” for the period from
2018 to 2020. The size of the node represents weighted node degree and
nodes are colored based on clustering.

As stated in the section about methodology, to check if N-
18, N-19, N-20, and N-T networks follow the core-periphery
model and unravel the topology of the cores of specified
networks, several ego networks centered around the members
of “Big Three” were constructed. Annual ego networks of
Djokovic, Nadal, and Federer were then unified into EGO-18,
EGO-19, and EGO-20. Together with these ego networks,
their aggregated network EGO-T, shown in Fig. 2, was built.

Clustering the EGO-T network using the Louvain method
[16] and tuning the resolution to give 3 clusters reveals a very
interesting phenomenon. The original ego nodes bind stronger
to some of the other nodes in the network than between
themselves. This is in concert with the aforementioned
observation about the bracket system and seeding principles
influencing the edge weights on the very top of the ATP list.

Exploring the number of nodes and edges of N-series
networks included in EGO-series networks can help us
explore the properties of the core of N series networks. These
statistics are therefore shown in Table 2.

TABLE Il
METRICS OF EGO-SERIES NETWORKS
EGO-18 | EGO-19 | EGO-20 | EGO-T
Nodes 81 88 57 136
Nodes covered 19.33% | 24.17% | 16.50% 23.4%
Edges 691 744 202 2563
Edges covered 27.76% | 31.28% | 15.24% | 48.08%

Given the percentage of all players and matches included in
EGO-series networks, it is obvious that even EGO-T which
aggregates other EGO networks and enhances the core
property can not be considered a core by itself. Further
exploring this topic, the Rombach core finding algorithm [17]
was applied to find cores of N-18, N-19, N-20, and N-T,
giving cores with 234, 200, 193, and 315 players,
respectively. These cores are much larger than EGO series
networks and include most of the players.

However, a remark has to be made about the EGO-T
network and the percentage of matches included in it. Even
though EGO-T is more than two times smaller than the core
of N-T, it includes 48.08% of all matches recorded in N-T,

which is an astounding amount. This means that matches
between the players from EGO-T represent nearly half of all
the ATP matches played from 2018 and 2020 and could be
used to study some phenomena on a smaller, but
representative, group of players, without drastically
compromising the number of matches included in the data.

C. Community detection and the rich club phenomenon

To discover a more fine-grained structure in the constructed
networks, in addition to exploring network cores, the Louvain
method was used once again to find communities in N-18, N-
19, N-20, and N-T. Before running the Louvain method, all
nodes with degrees lower than 3 were removed from N-18, N-
19, and N-20 to avoid the formation of forced and unnatural
clusters due to modularity optimization. Characteristics of
these reduced networks, aptly named R-18, R-19, and R-20 (R
standing for “reduced”), are shown in Table 3. Moreover, a
similar procedure was applied to N-T, removing all players
with less than 5 matches during the three years, giving us R-T,
a reduced network of total aggregated data.

TABLE Il
METRICS OF R SERIES (REDUCED) NETWORKS

R-18 R-19 R-20 R-T
Nodes 244 203 181 287
Nodes retained 58.23% | 55.77% | 52.46% | 49.40%
Edges 2292 2190 1159 4889
Edges retained 92.09% | 92.09% | 87.47% | 91.73%
Communities 9 6 8 7
Avg. clustering coeff. 0.22 0.24 0.18 0.32

The process of node removal is validated by looking at the
percentage of nodes and edges retained in the reduced
networks. As we can see in Table 3, 49.40% of players played
91.73% of matches during the observed three-year period.
This phenomenon can also be seen in Figure 1. As the
distribution of the number of matches loosely follows a Pareto
distribution, it is to be expected that a rich-club phenomenon
can express itself when considering the number of matches as
“wealth”. This is somewhat validated by looking at EGO-T,
as it consists of a small group of players which bind strongly
to each other and monopolize the number of matches over the
observed period.

Communities formed by the Louvain modularity clustering
are grouped by average rating during the period. This is to be
expected, as players of similar ratings choose to play and
qualify for the same class of tournaments and are more likely
to meet each other. However, the clustering is still not
strongly expressed, as can be seen from the average local
clustering coefficients.

IVV. CONCLUSION

Studying interactions of men’s tennis players proved to be
interesting in several aspects. Motivated by the available data,
several undirected weighted networks with node metadata
were constructed, analyzed, and characterized and multiple
common phenomena in the field of complex network theory
were explored. Those include small world phenomenon, core-
periphery model applicability, community detection, and the

RTI1.5 Page 4 of 5

rich club phenomenon. In addition, the authors’ own
experience with the topic helped explain many of the observed
properties and the given explanations are one of the biggest
results of this paper, as they give a much better understanding
of the dynamics of men’s tennis and are a result of social
network analysis and network theory approach to the problem.

In addition, provided network models clearly show an
impact of the COVID-19 pandemic on the tennis world,
through a smaller number of matches and participants.
However, the network theory methodology applied in this
paper also shows that the topological properties of the data
(such as clustering properties, rich club and small-world
phenomena, core-periphery property) stay largely the same,
which could not be inhered by naive statistical analysis of the
primary data set.

This paper and the constructed networks form a strong
basis for further exploration of the topic, including the
analysis of mixing patterns in the data depending on the
ratings of players, geographical locations of tournaments,
affiliations of players, etc. Furthermore, the data in network
form is much more suitable for solving some regularly asked
questions in the field, such as ranking and match outcome
prediction using graph convolutional networks or graph
attention models. Lastly, the provided networks are an ideal
model for the problem of choosing the representatives of the
international tennis community, touching upon the problem of
choosing the dominating set of the graph.

ACKNOWLEDGMENT

This work has been partially funded by the Ministry of
Education, Science, and Technological Development of the
Republic of Serbia. Grant numbers 11144009 and TR32047.

REFERENCES

[1] T. Grund, “Network structure and team performance: The case of
English Premier League soccer teams”, Social Networks, 34(4), pp.682-
690, 2012.

[2] J. Gama, M. Couceiro, G. Dias, V. Vaz, “Small-world networks in
professional football: conceptual model and data”, European Journal of
Human Movement, 35, 85-113, 2015.

[31 F. M. Clemente, F. M. L. Martins, D. Kalamaras, R. S. Mendes.
“Network analysis in basketball: Inspecting the prominent players using
centrality metrics”, Journal of Physical Education and Sport, 15(2),
212, 2015.

[4] P. Passos, K. Davids, D. Aradjo, N. Paz, J. Minguéns, J. Mendes,
“Networks as a novel tool for studying team ball sports as complex
social systems”, Journal of Science and Medicine in Sport, 14(2), 170-
176, 2011.

[5] F. Radicchi, “Who is the best player ever? A complex network analysis
of the history of professional tennis”, PloS one, 6(2), €17249, 2011.

[6] K. Breznik, “Revealing the best doubles teams and players in tennis
history”, International Journal of Performance Analysis in Sport, 15(3),
1213-1226, 2015.

[7] U. Michieli, “Complex Network Analysis of Men Single ATP Tennis
Matches”, arXiv preprint arXiv:1804.08138, 2018.

[8] M. Kosti¢, D. Draskovi¢, “Complex Network Analysis of Women's
Singles Tennis Matches”, Telecommunications Forum (TELFOR),
Belgrade, Serbia pp. 1-4, IEEE, 2020.

[91 A. G. Tennant, C. M. Smith, J. E. Chen C, “Who was the greatest of all-
time? A historical analysis by a complex network of professional
boxing”, Journal of Complex Networks, 8(1), cnaa009, 2020.

[10]

[11]

[12]

[13]

[14]

N. Almeira, A. L. Schaigorodsky, J. 1. Perotti, O. V. Billoni, “Structure
constrained by metadata in networks of chess players”, Scientific
reports, 7(1), 1-10, 2017.

S. Mukherjee, “Identifying the greatest team and captain—A complex
network approach to cricket matches”, Physica A: Statistical Mechanics
and its Applications, 391(23), 6066-6076, 2012.

J. Sackmann, Repository tennis_atp, available on:
https://github.com/JeffSackmann, accessed: 22.12.2020.

A. A. Hagberg, D. A. Schult, P. J. Swart, “Exploring network structure,
dynamics, and function using NetworkX”, Proceedings of the 7th
Python in Science Conference (SciPy2008), Pasadena, CA USA, pp.
11-15, August, 2008.

M. Bastian, S. Heymann, M. Jacomy, (2009, March). “Gephi: an open
source software for exploring and manipulating networks”, Proceedings

RTI1.5 Page 5 of 5

[15]

[16]

[17]

of the International AAAI Conference on Web and Social Media, vol. 3,
no. 1, 2009.

H. Situngkir, “Small world network of athletes: Graph representation of
the world professional tennis player”, Available at SSRN 1001917,
2007.

V. D. Blondel, J. L. Guillaume, R. Lambiotte, E. Lefebvre, “Fast
unfolding of communities in large networks”, Journal of statistical
mechanics: theory and experiment, (10), P10008, 2008.

M. P. Rombach, M. A. Porter, J. H. Fowler, P. J. Mucha, “Core-
periphery structure in networks”, SIAM Journal on Applied
mathematics, 74(1), 167-190, 2014.

https://github.com/JeffSackmann

File system performance comparison of native
operating system and Docker container-based
virtualization

Borislav Pordevi¢, Member, IEEE, Darko Gojak, Nikola Davidovi¢ and Valentina Timéenko,
Member, IEEE

Abstract - This paper aims to examine and compare the file
system capabilities of container virtualization and the native
host. Different virtualization categories are mentioned with a
focus on OS level types. We have described the importance of
container virtualization and its contribution to virtualization
popularization. Also, the paper contains a detailed description of
the Docker container-based virtualization, its mode of operation,
as well as the advantages and disadvantages it possesses. Since
the main purpose of this work is to measure the host and Docker
file system throughput, one of the best open-source benchmarks
is chosen and presented - FileBench, through which all tests were
performed. With a practical example, we have shown the file
system performance comparisons considering Docker containers
and host physical machine.

Keywords - Docker; containers; virtualization; benchmark;
FileBench; file system; performance; comparison.

1. INTRODUCTION

There is rapid development in the IT industry, while
hardware and software are changing daily. Hardware
development is accompanied by software solutions that aim to
make the most efficient use of performance. We strive for
solutions that will meet today's standards, asking ourselves
what the best use is and how to optimize the available
resources so that the requirements and user needs are met.

Some of the most important characteristics in hardware
manufacturing are the development costs and time [1]. The
above brings us to one of the indispensable topics of today in
the IT world - virtualization.

The question is whether virtualization is a better solution
and how cost-effective it is, whether it is possible to achieve
the desired results with virtualization, and what the limitations
are.

There are several varieties of virtualization types, and it can
be said for all of these varieties to be usable, with some being
more simplified, that is, less decomposed than others. One of

Borislav Pordevi¢ — Institute Mihailo Pupin, Volgina 15, 11000 Belgrade,
Serbia, (borislav.djordjevic@pupin.rs)

Darko Gojak — VISER, School of Electrical and Computer Engineering of
Applied Studies, Belgrade, Serbia (darkogojak@gmail.com)

Nikola Davidovi¢ — University of East Sarajevo, Faculty of Electrical
Engineering, Vuka Karadzica 30, 71123 East Sarajevo, RS, BiH,
(nikola.davidovic@etf.unssa.rs.ba)

Valentina Timcenko - Institute Mihailo Pupin, School of Electrical
Engineering, Belgrade, Serbia (valentina.timcenko@pupin.rs)

RTI2.1 Page 1 of 6

the variations is that virtualization can be divided into eight
types: hardware virtualization, network virtualization, storage
virtualization, memory virtualization, software virtualization,
OS level virtualization, data virtualization, and desktop
virtualization.

The type of virtualization covered in this paper is "OS level
virtualization", whose instances are sometimes called
containers. One of the most common associations when
mentioning container instances is the well-known Docker [2].
In this paper, the Docker container’s file system is examined
and compared with the host file system performance.

As the popularity of container virtualization has been
growing over time, so have questions about the performance
of this type of virtualization. It is hard to talk about container
virtualization without mentioning the increasingly prevalent
Docker. The ease of installation and use, as well as simplicity
of containers management, made Docker a good candidate for
file system testing. Another benefit of using it is that Docker
containers are lightweight, time savers (it takes less than a
minute to build one instance) and besides that, they are
consuming a small amount of disk space, so those instances
will not affect the host significantly.

Thus, in this paper, the response of the file system of the
native operating system and Docker container-based
virtualization was researched, and then a comparison of the
obtained results was made.

II. RELATED WORK, OBJECTIVE, AND MOTIVATION

As hardware is developing fast today, in terms of storage
size, its response speed, as well as processing power, there is
an inevitable question about the efficient use of physical
machines, which are in most cases underused, or their full
potential is not reached [3]. In this regard, scientific research
deals with the consideration of further efficiency
enhancements possibilities and the mentioned issues.

There is a growing debate about whether virtual solutions
are always better and whether they can be expected to largely
compete with physical machines [4], [5]. As a big part of the
hardware resources in many cases remain unused, there is a
lot of room left for the possibility of implementing virtual
instances and consideration of the most optimal use.

As the main goal of this paper is to compare the
performance of the file systems, with equal settings and the
same conditions of the benchmark used for host and Docker

containers, we resorted to the method of comparative analysis
through FileBench workloads, where four were selected,
namely: fileserver, webserver, varmail and randomfileaccess.
In our opinion, these are some of the best options for file
systems workload testing procedures.

After setting the hypothesis, where it was expected that the
physical machine dominates in all fields of given loads
comparing to the containers, we proceeded with the
application of the experimental method and obtained results
that fully justified the assumptions. Based on the comparative
analysis method, the obtained results confirmed the initial
estimates and expectations, which is proved through the given
equations as well as through workloads.

For better understanding and a clearer picture of the
container's service capacity, measurements were also
performed by increasing the number of Docker instances that
worked in parallel, starting from one, until reaching four
instances, where all of those were used simultaneously. The
decrease of their power was observed and examined.

III. HosT OS AND DOCKER

To install the Ubuntu 20.04 operating system on the host, in
this case with hardware characteristics shown in Tables 1 and
2, 1024 MiB of RAM is required at least. With Desktop
image, which is the most common, there is the ability to try
Ubuntu without changing the current computer system. There
is also a Server install image that can be only permanently
installed on the machine, but without a graphical user
interface.

Experienced users are increasingly opting for Ubuntu when
it comes to container operations. We can say that the most
important item for security, performance, and quality is the
Linux kernel, which always has the latest versions of the
kernel accompanied by up-to-date security features. All of the
above-mentioned is the reason why the world's largest cloud
operators opt for Ubuntu operating system to run their
containers [6].

Most users will agree and say that Docker became
synonymous with container technology, as it had the greatest
impact on popularization. But container technology is not a
new term, it has been built into Linux in LXC form for more
than ten years, and similar virtualization at the operational
level systems was offered by: FreeBSD jails, AIX Workload
Partitions, and Solaris Containers [7].

Unlike hypervisor virtualization, container virtualization
does not have a hypervisor that would be used as a layer of
abstraction, isolation of operating systems and applications
from the host operating system. There are two types of
hypervisors: type 1, which is mounted directly on the
hardware, whereas, on the other hand, we can say that the
Docker engine is like type 2, which depends on the host
operating system, where the Docker container would be in the
virtual machine role (Figure 1) [8].

RTI2.1 Page 2 of 6

APPLICATIDNS

APPLICATIONS

APPLICATIONS

BINS / LIBS BINS / LIBS BINS / LIBS

HOST OPERATING 5YSTEM

PHYSICAL OR VIRTUAL MACHINE

Fig. 1. Docker container-based virtualization

There is a belief that container virtualization is less secure
compared with hypervisor virtualization because if
weaknesses can be found in the host's kernel on which the
containers are located, it could allow intrusion into the
containers. The same can be said for the hypervisor, but since
the hypervisor provides far less functionality than the Linux
kernel (which usually implements file systems, networking,
application process controls, etc.) it leaves much less space for
attack. In recent years, great efforts have been made to
develop software to improve container security. For example,
Docker and other container systems now include a signing
infrastructure that allows administrators to sign container
images to prevent the deployment of unreliable containers [9].

Below is a simple description of docker client-server
architecture. Docker client communicates through REST API,
over network interface or UNIX sockets with Docker daemon
which does building, running and distributing containers
(Figure 2) [10]. It is not mandatory that Docker daemon has to
run on the same operating system as the Docker client, which
can also be connected to a remote daemon [11].

docker build DOCKER DEAMON UBUNTU

CENTOS

docker pull

CONTAINER1 UBUNTU
docker run REDIS
CONTAINER2 REDIS
NGINX
CONTAINER3

CONTAINER &

Fig. 2. Docker architecture

Some Linux distributions are designed for running
containers and Docker such as Project Atomic [12], Photon
0OS, RancherOS, etc. [13]. Since 2016, Docker containers
have also been able to run on Windows operating system and
managed from any Docker client or through Microsoft
PowerShell [14].

Docker can also work on popular cloud platforms [15],
including Amazon Web Services, Google Compute Engine,
Microsoft Azure, Rackspace, etc. [16].

IV. HYPOTHESIS OF EXPECTED BEHAVIOUR

To make it easier to understand how the results were
obtained, the following formulas were derived:

Tygrp =Tig + Top + Ty + Ty &)

In equation 1, the TwkKLD notation stands for the total
processing time for each workload. This is followed by a
random - 7RR and a sequential - TSR reading time, while the
TRW notation indicates the random write time, and 75w stands
for sequential write time. The following formula represents
the expected file system access time for each individual
workload:

T, =T

D1R+TMETA+TFL+TFB+T/+THK (2)

w

The Tw notation above represents the total time required to
complete all operations on the ongoing workload. The
following notations represent the time required to complete all
operations related to: directory - 7DIR, metadata - TMETA, free
list - TFL, file block - TFB, journaling - TFJ and house-keeping
- THK. There are two candidates for file system performances
that are covered in this paper and they are:

1. native HostOS

2. native HostOS + Docker engine + containers

1. The Ubuntu 20.04 operating system is installed on the
host with its default file system, and since the Docker
containers are running on it, the native host will play a major
role in terms of file system performance. For a better
comparison with the host, Ubuntu image is pulled and run on
all four container instances. Thus, benchmark and the host file
system characteristics depend on the time needed to process
benchmark-generated workload, and are noted in the
following formula as 7w:

T, (nHost)= f(Bench,hOS _FS) 3)

2. The docker engine has the biggest impact on
performance after the host and its file system where everything
takes place. As mentioned, HostOS, Docker engine, and
containers run on the host file system, except for Docker
volumes and self-storage. The benchmark, the host file system
characteristics, and Docker engine mapping depend on the

RTI2.1 Page 3 of 6

time needed to process benchmark-generated workload, in the
following formula noted as 7w:

Ty (DOCKER) = f(Bench,D _engine,hOS FS)(4)

The obtained performance results of the file system of the host
and Docker container were predicted by the given formulas.
So, as expected, the host was in the lead through all
workloads, which was confirmed by the calculation from
equation 3. There are small differences in throughput in all
segments between the single running container and the host.
This lag in the performance of the container was caused by the
Docker engine, which was also confirmed by equation 4.
After monitoring the throughput of these instances, the
following conclusion was made:

Single Docker container is slightly behind the host
performances by all measurements, while for any increase of
containers running in parallel by one instance, the
deterioration in throughput power should be expected.

V. TEST CONFIGURATION AND BENCHMARK APPLICATION

There are various tools, benchmarks that can measure
performance in order to examine the capabilities of physical
machines as well as the capabilities of virtual solutions. Some
benchmark tools are open-source, while others are
commercial solutions. Depending on the purpose of the tests,
we can opt for one of the most adequate tools. For these
measurements, a FileBench is chosen as one of the most
suitable benchmarks.

FileBench is a storage and file system benchmark. It uses
its own Workload Model Language (WML) that can allow I/O
specification of application behavior. It is one of the best-
known open-source tools, which, unlike most of the tools that
mainly rely on predefined workloads (which cannot be
changed in most cases), allows workload modifications as
well as adaptation to the specificities of the purpose for which
the testing is performed.

Installing a FileBench benchmark is quite simple after
downloading the software package. However, on Ubuntu, it
requires a few more commands than on Centos operating
system, for instance, where it is possible to install it with a
simple "yum install filebench" command. Additionally, there
is a difference in the installation of the benchmark between
two versions covered in this paper. In the first part of the
installation, as the configuration files are not included in the
repo, they have to be created. Therefore, for the last stable
version, it is necessary to run the following commands if they
are not installed, respectively: libtoolize, aclocal, autoheader,
automake, --add-missing, autoconf.

The second part of the installation requires the installed
gcc, flex and bison in order to run FileBench [17]. This part is
the same as in the 1.5-alpha3 version, except that in this
version it is the only step and it involves running the
following commands, respectively: ./configure, make, make
install.

In order to measure as accurately as possible and to obtain
as better results as possible, Ubuntu 20.04 operating system
was installed on the host (hardware shown in Tables 1 and 2)
only for this file system test purpose, which after the
installation of the benchmark had no other applications that
could disrupt the operation of this tool in any way. Also,
containers had nothing but installed FileBench.

After everything is set, there is still one thing left to do and
that is disabling ASLR (address space layout randomization)
by changing the value of randomize va space to “0” (zero),
otherwise, the workloads will be blocked in the stage of
running.

TABLE I
HARDWARE CONFIGURATION OF THE HOST

Component Characteristics
Processor AMD Ryzen 5 3600X, 3.8GHz -
4.4GHz, 6 Core, 12 Thread
Cache L1 Cache 384KB, L2 Cache 3MB, L3
Cache 32MB
Memory 16Gb DDR4, 3200MHz
SSD Kingston A2000 SA2000M8/500GB
Motherboard GIGABYTE B450M DS3H
TABLE II
SSD characteristics
Capacity 500GB
DRAM DDR4
Interface NVMe™ PCle Gen 3.0 x 4 Lanes
Form factor | M.2 2280
NAND 3D TLC
Sequential
Read/Write | P to 2.200/2.000MB/s
Random 4K
Read/Write up to 180.000/200.000 IOPS

VI. TESTS AND RESULTS

Each measurement was done in three rounds per host and
per each container instance, after which the average value was
taken for results. The obtained measurements of individual
container performances were then compared with the results
obtained while testing the host. The throughput of each
container was observed in cases when only one container
instance was started, when two instances were running in
parallel, and when three and then four containers were
running at the same time.

File system performance tests were conducted on the latest
stable version of FileBench - 1.4.9.1 and 1.5-alpha3 version
where throughput was measured in MB/s. For the purposes of
this experiment, four of the over fifty predefined workloads
were selected. On both versions, the performance of the
filesystem was tested via three workloads that were used to
emulate applications, namely: fileserver, webserver and
varmail. On the last stable version, an additional workload
was included - radnomfileaccess. The following is a brief

RTI2.1 Page 4 of 6

description of workloads that were used and covered with
formulas (1) and (2): Fileserver — It mimics the elementary
I/O activity of a file server. It performs a sequence of creating,
deleting, adding, reading, writing, and attribute operations on
a directory tree; Webserver - Mimics elementary /O activity
of a web server. Produces an open-read-close sequence on
multiple files in a directory tree, plus appends a log file;
Varmail - Imitates elementary I/O activity of a mail server
that saves each e-mail in an isolated file (/var/ mail/server). It
contains a set of multiple threads of the following operations
in a particular directory: create-add-sync, read-add-sync, read,
and delete; Randomfileaccess - Uses random variables that are
user-defined entities, and these entities are formulated by a
random distribution that is used to select a random value that
is returned with each use [18].

It is hard not to mention virtual clusters when Docker
containers are used. Testing could take on a completely
different dimension if any container orchestration platforms
such as Kubernetes were used, where containers would
combine and pool their serving powers [19]. But the purpose
of these tests was to compare the file system performance of
the host and individual container.

The parameters shown in Tables 3 and 5 are set with
default values. The values for the four specified parameters
(number of files - nfiles, average file width, and size -
(meandirwidth, meanfilesize), as well as the number of
threads - nthreads) are the same in both versions of the
benchmark. The time for executing each of the workloads is
set to 60 seconds, which is the default value for most of the
predefined workloads.

TABLE III
PARAMETERS OF THE SOURCE CODE *.F FILES (1.4.9.1 VERSION)

Workload Fileserver Webserver | Varmail RFA
(runtime 60s)
nfiles 10.000 1.000 1.000 10.000
meandirwidth 20 20 1.000.000 | 20
meanfilesize 128k 16k 16k Random
nthreads 50 100 16 5
TABLE IV
BENCHMARK RESULTS (MB/S), 1.4.9.1 VERSION
Instance Fileserver Webserver Varmail RFA
Host 3866.6 1001.5 1874 19081.8
1 container 3746.1 962.8 180 18190.1
2 containers 1764.4 695.9 158.3 9438.5
3 containers 1170.5 528.5 137.2 5300.7
4 containers 651.7 458.8 117.2 3809.8
Fileserver

Throughput in MB/s

4000
® Host
3000
1764.4 ® 1 container

2000 11705 2 container:

pros: -
1000 I 651.7 3 containers
= g ® 4 containers
o
Host 1 2 3 B

container contalners containers containers

Fig. 3. Fileserver test results from Table 4

Webserver
Throughput in MB/s
1500
001 5 962.8 | Host
1000 | 1 container
523 3 458 B ® 2 containers
500 3 containers
W 4 containers
Host
container containers containers containers
Fig. 4. Webserver test results from Table 4
Varmail
Throughput in MB/s
‘IE? .|
200 158.3 [}
1373 B Host
150 72 ® 1 container
100 W 2 containers
50 3 containers
o ® 4 containers
Host

container containers containers containers

Fig. 5. Varmail test results from Table 4

Randomfileaccess Throughput in MB/s

90818 1310901
| Host
94385

container containers containers containers

® 1 container
W 2 containers

3 containers

® 4 containers

Fig. 6. Randomfileaccess test results from Table 4
A. Measurements performed on version 1.4.9.1

The host had better performance in all four categories
which is shown in Table 4. The obtained results were proved
by formulas (3) and (4). Starting with the fileserver
environment, there is a small throughput difference of 3 % in
favor of the host compared to a single container. Then, as
expected, by increasing the number of containers by one, the
serviceability also decreases, so that the performance of the
two running containers drops by more than twice, i.e. 54%.
Performance with three running containers deteriorated by
70% and with four instances the results showed it to be 83%
(Figure 3).

For webserver tests, the results are as follows. The
throughput at the host instance is 4% higher when compared
to a single running container, while for two running containers
that gap is 30%. With three and four containers in running
state, we can see the degradation of 47% and 54%,
respectively (Figure 4).

In the case of varmail environment, the single running
container has lower performances by 4%, two containers by
16%, and three and four containers by 27% and 37%
compared to the host (Figure 5).

RTI2.1 Page 5 of 6

The randomfileaccess workload also had poorer container
results, showing performance declines of 5, 51, 72, and 80%
when having 1, 2, 3, and 4 containers in running state,
respectively (Figure 6).

TABLE V
PARAMETERS OF THE SOURCE CODE *.F FILES (1.5-ALPHA3 VERSION)

Workload Fileserver Webserver Varmail
(runtime 60s)
nfiles 10.000 1.000 1.000
meandirwidth 20 20 1.000.000
meanfilesize 128k 16k 16k
nthreads 50 100 16

TABLE VI

BENCHMARK RESULTS (MB/S), 1.5-ALPHA3 VERSION

Instance Fileserver Webserver Varmail
Host 4072.6 3333.8 163.5
1 container 4007.1 3080.1 133.4
2 containers 1696.7 1563.5 111.2
3 containers 704.6 1160.8 88.5
4 containers 451.4 952.6 76
Fileserver
Throughput in MB/s
3000 0726 4007.1
4000 W Host
3000 ® 1 container
® 2 containers
2000
1000 704.6 451.4 3 containers
B 4 containers
0
Host 1 2 3 -

container

containers containers containers

Fig. 7. Fileserver test results from Table 6
r
Webserver Throughput in MB/s

4000
m Host

3000
| 1 container

2000

m 2 containers

1000 3 containers

' 1160.8 952.6

Host 1 2 3 B
container containers containers containers

B 4 containers

Fig. 8. Webserver test results from Table 6

Varmail
Throughput in MB/s

133.4 m Host

1112

' 83‘SI 76

containers

1 contalner
m 2 containers

3 containers

container

B 4 containers

containers containers

Fig. 9. Varmail test results from Table 6

B. Measurements performed on version 1.5-alpha3

Within a FileBench version 1.5-alpha3, the expected results
were obtained, which is verified by formulas (3) and (4). As
well as in the latest stable version the host dominates (Table
6). In the fileserver case, a single container performance does
not significantly differ from the host and it is lower by 2%,
while for two container instances in running state the drop is
much bigger, 58%. For three and four instances it is 83% and
89%, respectively per container (Figure 7).

With webserver workload tests we have a throughput
deterioration comparing to host, namely 8% for a single
container, 53% in the case of two instances, 65% for three
running containers, and 71% per instance in the case of four
containers running (Figure 8).

As for varmail, the host throughput is higher by 18%
compared to a single container, while for two instances there
is gap of 32% per instance, it is 46% for three instances and
54% for all four containers (Figure 9).

VII. CONCLUSION

According to the shown tests, the host had better
performance in all segments compared to Docker containers
which justifies the hypothesis. During performance
monitoring through all four workloads, a slight differences in
throughput between the host and single container is
noticeable. As we can see in the obtained measurement
results, the increase of the number of container instances
decreases their service power, which also differs from
workload to workload. Those are expected results, and
accordingly, depending on the load, we can determine
whether containers are suitable and if they will meet the
requirements for which container instances were originally
intended.

This is only a small segment in testing the host and Docker
container capabilities, as there are over forty predefined tests
left, as well as many variations of modifying existing and
writing your own workloads that can be processed. Since
FileBench workloads can be easily managed it leaves a lot of
room for future measurements and comparisons with the
results of other benchmarks that are not so flexible in terms of
tests.

Today, it is known that hardware development is
increasingly focusing on multi-core solutions that can process
many instructions in a very short time. That leaves plenty of
room for further processing of power and resources, which is
suitable for the normal and smooth operation of virtual
solutions. Virtualization is not always the answer to
everything, for some purposes virtualization simply does not
achieve the desired results so in that case, the only choice is a
physical machine. But in most cases, security, productivity,
and cost-reducing benefits outweigh all problems, and
therefore Docker virtual solutions and virtualization, in
general, are increasingly gaining in popularity.

RTI2.1 Page 6 of 6

ACKNOWLEDGMENT

The work presented in this paper has partially been funded
by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia.

LITERATURE

[1] C. Walls, “Hardware and software development; what’s the cost?,”
2018 [online]:
https://www.embeddedcomputing.com/technology/software-and-
os/hardware-and-software-development-what-s-the-cost

[2] IBM Cloud Team, IBM Cloud. Containers vs. VMs: What’s the
difference? IBM, 2020. [online]:
https://www.ibm.com/cloud/blog/containers-vs-vms

[3] Spiceworks. The 2020 State of Virtualization Technology, 2019.
[online]: https://www.spiceworks.com/marketing/reports/state-of-
virtualization/

[4] K. Thompson, “Hardware vs. Software development: Similarities and
Differences,” Cprime, 2015. [online]:
https://www.cprime.com/resources/blog/hardware-vs-software-
development-similarities-and-differences/

[5] T. Collins, “Virtual servers vs physical servers: Which is best? 10
March,” Atlantech, 2020. [online]:
https://www.atlantech.net/blog/virtual-servers-vs-physical-servers-
which-is-best

[6] Canonical. Why is Ubuntu #1 OS for containers? Ubuntu, 2018.
[online]: https://ubuntu.com/containers

[71 S. Hogg, “Software Containers: Used More Frequently than Most
Realize,”, Networkworkd, 2014 [online]:
https://www.networkworld.com/article/2226996/software-containers--
used-more-frequently-than-most-realize.html

[8] U. Hiwarale, “Anatomy of Docker,” [online]. 2018 Nov [Accessed 24
February 2021]. Available from: https:/itnext.io/getting-started-with-
docker-1-b4dc83e64389

[9] P. Rubens, “What are containers and why do we need them?,”, Cio,
2017 [online]: https://www.cio.com/article/2924995/what-are-
containers-and-why-do-you-need-them.html

[10] N. Poulton, Docker Deep Dive, JINP Consulting Limited, Lean
Publishing. Leanpub book, 2018.

[11] Docker. Docker overview. [online]:
started/overview/#docker-architecture

[12] SP. Kane, K. Matthias, “Atomic hosts,” in Docker: Up and Running.
2nd ed. O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472;2018.

[13] JM. Scheuermann, “A Comparison of Minimalistic Docker Operating
Systems,” Inovex, 2015. [online]: https://www.inovex.de/blog/docker-a-
comparison-of-minimalistic-operating-systems/

[14] M. Friis, “Build and run your first Docker Windows Server container,”
Docker, 2016. [online]: https://www.docker.com/blog/build-your-first-
docker-windows-server-container/

[15] C. Ward, “The Shortlist of Docker Hosting,” CloudBees, 2016. [online]:
https://www.cloudbees.com/blog/the-shortlist-of-docker-hosting/

[16] J. Turnbull, “Installing Docker,” In The Docker Book. CC BY-NC-ND
3.0;2018.

[17] G. Amvrosiadis, “FileBench,”
https://github.com/filebench/filebench

[18] V. Tarasov, “Predefined personalities. [online]. 2016 Jul [Accessed 24
January 2021]. Available from:
https://github.com/filebench/filebench/wiki/Predefined-personalities

[19] IM. Aidan, H. Sayers, “Using a Kubernetes cluster,” in Docker in
Practice. Manning Publications Co. 20 Baldwin Road PO Box 761
Shelter Island, NY 11964; 2016.

https://docs.docker.com/get-

GitHub, 2016 [online]:

Performance comparison of native host vs. ESXi
hypervisor-based virtualization

Borislav Pordevi¢, Member, IEEE, Srdan Milenkovi¢, Nikola Davidovi¢ and Valentina Tim¢enko, Member,

Abstract — The main objective of this paper is performance
comparison of hypervisor-based virtualization with VMware
ESXi virtual machines and native host machine. From all
performance classes, for the needs of this research we have chosen
the evaluation of the file system performance. The measurements
are carried out under equivalent conditions and by a unique test
method, using the Filebench software, which guarantees equality
and independence from the impact of hardware and operating
system characteristics. As the base operating system we have used
CentOS 7.7 with the latest updates, while ESXi 6.7 was used as the
hypervisor. Performances are compared for the native host
machine and ESXi server with one, two and three virtual
machines (VM) running simultaneously. We have also analysed
the expected behaviours, verified the assumption with Filebench
testing software, and provided the concluding remarks for this
papers research topic.

Key words — Virtualization; Filebench; Hypervisors; ESXi;
VMware; CentOS; Virtual Machines

[.INTRODUCTION

In IT world, the term virtualization refers to the act of
creating a virtual version of something, or it is the process of
creating and running a virtual instance of a computer resource
in a layer abstracted from the actual hardware. It is used to
describe virtual computer hardware platforms, storage devices,
network resources, server infrastructure, etc. We can
experience virtualization in almost all segments of today’s
computer technology. The main idea behind virtualization is a
very simple and came from the corporative approach: the need
to satisfy the increase in the utilization of available hardware
resources, while at the same time reducing the costs of the
infrastructure. Virtualization did exist as a technology even
some 30 years ago, but the hardware of those days could not
exploit the full usage that virtualization brought, so it was
disregarded until progress was made in computer technology
giving to virtualization a new meaning, shaping it to what it
looks today. Nowadays, thanks to this technology it is possible
to run multiple independent operating systems on one physical
server. Some of the benefits that virtualization provides are
primarily related to saving the necessary physical space that
would be needed for the accommodation of the devices and also

Borislav Pordevi¢ — Institute Mihailo Pupin, Volgina 15, 11000 Belgrade,
Serbia, (borislav.djordjevic@pupin.rs)

Srdan Milenkovi¢ - School of Electrical and Computer Engineering of
Applied Studies, Vojvode Stepe 283, 11000 Belgrade, Serbia,
(smilenkovic1992@gmail.com)

RTI2.2 Page 1 of 6

IEEE

the electrical energy consumption that would inevitably be used
for powering such devices. Today, the use of virtualization in a
simple way increases server availability and isolation, making
it one of main reasons why these technologies are so popular
[1]. When using these technologies it is important to mention
that the level of hardware utilization of servers without
virtualization is in the range of 15% of its maximum capacity,
while with the use of virtualization technologies the utilization
raises to more than 70%. These technologies however come
with a price, or to be exact, with the retention or even increasing
availability of resources, while it is realistic to expect a
somewhat lower performance of virtualized systems when
compared to the non-virtualized systems, which is the main
topic of this paper.

There are several virtualization types: virtualization of
hardware, software, desktop, data, network, memory, storage,
etc. We are focused on hardware virtualization. Hardware
virtualization implies the use of a hypervisor, a layer that acts
as a mediator between the host and virtual machine, which is
nothing more than a simulated computing environment that
can, but does not have to be equal to the physical environment
that it simulates. In addition to the classification by the location
of the hypervisor layer, the hardware virtualization also
depends on what type of virtualization is provided, and can be
categorized as: full, hardware-assisted, and paravirtualization.

Full (native) virtualization is a virtualization technique that
completely simulates the underlying hardware. Hardware-
assisted virtualization (Intel VT-x or AMD-V) is platform
virtualization approach that enables efficient full virtualization
using help from hardware capabilities, primarily from host
processors. In this situation, the processor simulates hardware
that does not have to be the same as physical. Paravirtualization
is an enhancement of virtualization technology in which a guest
operating system is modified prior to the installation inside a
virtual machine in order to allow all guest OS within the system
to share resources and successfully collaborate, rather than
attempt to emulate an entire hardware environment [2].

The remainder of this paper will be structured as follows.
Section II provides a brief description of the technologies that
are mentioned in the paper and a short review of related work
for this project. Section III provides the description of the

Nikola Davidovi¢ — University of East Sarajevo, Faculty of Electrical
Engineering, Vuka Karadzica 30, 71123 East Sarajevo, RS, Bosnia and
Herzegovina, (nikola.davidovic@etf.ues.rs.ba)

Valentina Tim¢enko - Institute Mihailo Pupin, School of Electrical

Engineering, Belgrade, Serbia, (valentina.timcenko@pupin.rs)

performance-measuring tool that we have used for this
experiment. In Section IV, we present a short description of the
architecture of the used hypervisor. Section V presents the
hypothesis and methodology used to achieve performance
comparison. In Section VI, we present the test environment and
configuration for the experiment. Test results for our
benchmarks’ tests are presented in Section VII. In Section VIII,
we draw conclusions to the work made in this paper.

IL RELATED WORK AND OBJECTIVE

This paper is primarily devoted to analysis of the
performances of hypervisor-based virtualization with one of the
most commonly used hypervisors. The hypervisor serves as a
layer between the virtual machine’s operating system and the
host’s physical memory, providing data integrity and isolation
of VMs. Thanks to hardware-assisted virtualization which is
accomplished via EPTS (extended page tables, for Intel
chipsets) or RVI (rapid virtualization indexing, for AMD) we
have a large increase of speed compared to software memory
virtualization [3]. The paper considers advantages of using
virtual machines while creating modern network infrastructure;
as well as describes an experiment using common test
environments and programs for measuring and analysis of
hypervisors and their performances. Benchmarking is a popular
approach nowadays for many devices and general I/O
performance analysis, whereas the special attention is put on
the problem of fast input/output support [4-6].

Main contribution of this paper is the examination of the
performances of the native host operating system and
hypervisor-based virtualization of VMware ESXi [7] [8]. As
the technology that was used for this research is relatively new,
there are not many references in literature that research with
similar environments, tools, and test characteristics. The goal
of this paper is to examine the file system performance of the
generated workload through Filebench software tool for: (1)
mail server scenario which is dominated by random read and
random write components; (2) web server scenario where
random read components dominate; (3) file server scenario in
which both random and sequential components are equally
represented; and (4) random file access scenario dominated by
random read component [9].We have set up a model for the file
system performance analysis of the native host and ESXi based
virtual machines. The results of this experiment should give us
a full picture of how the performance of a native machine
compares to the performance of a hypervisor-based virtual
machine.

III. FILEBENCH

Filebench is a software test environment (usually called a
benchmark) used to measure the performance of various parts
of an operating system. What sets Filebench apart from other
benchmarks is the fact that it is equipped with several
predefined workloads, which allows users to easily test their
systems in various forms (most popular forms being a mail
server or a file server) [10]. Presently many benchmarks hard
code the workloads they generate quite rigidly, meaning that a

RTI2.2 Page 2 of 6

user can specify some of the basic workload parameters, but
cannot really control the execution flow of the workload in
detail. Filebench gives its users freedom to define workloads
using a Workload Model Language (WML). WML is mainly
composed of four main parts: fileset, process, thread, and
flowop.

A standard Filebench test is executed in two stages: fileset
pre-allocation and a workload execution. First part of any
workload execution is defining a fileset that it uses. A fileset is
a named collection of files and to define it a user must specify
its name, path, number of files, and a few other optional
attributes that can be included in a filesets creation. After
defining a fileset the next step are the processes in WML that
represent real UNIX processes which are created by Filebench
during the test. Every process is made of one or more threads
representing an actual POSIX threads and every thread
executes a loop of flowops. A single flowop is a representation
of a file system operation that is translated to a system call by
Filebench.

The ending of a WML file usually contains one of two “run”
commands (run and psrun) that tell Filebench to allocate the
defined filesets, prepare the required number of UNIX
processes and threads, and start a cycled flowops execution.
After completing a run, Filebench gives a number of different
metrics, where the most important one for the user is operations
per second. This is the total number of executed flowop
instances (in all processes and threads) divided by the time it
took for a full run of the workload. To generate a workload and
start the measurement of a particular part of the system, one
must execute the filebench -f workload.f command.

IV. ESXi HYPERVISOR

VMware ESXi (Elastic Sky X “integrated”) is a type-1
hypervisor developed by VMware for deploying and serving
virtual machines that was made from its predecessor ESX.
Type-1 hypervisors run directly on the host's hardware to
control the given hardware and to manage guest operating
systems, and for this reason they are mainly called bare
metal hypervisors (Figure 1). A guest operating system runs on
another level above the hypervisor.

Application .

Application Application

HYPERVISOR

Fig. 1.Type-1 (bare metal) hypervisor

VMware ESXi is a hypervisor that runs on the host server
hardware without the underlying operating system. ESXi
provides a virtualization layer that abstracts the CPU, storage,

memory and networking resources of the physical host into
multiple virtual machines. That means that applications
running in virtual machines can access these resources without
direct access to the underlying hardware. VMware refers to the
hypervisor used by VMware ESXi as VMkernel and it receives
requests from virtual machines (as processes that run on top of
it) for resources and presents the requests to the physical
hardware [12-14]. The kernel also provides means for running
all processes on the system, including management
applications and agents as well as virtual machines. It has
control of all hardware devices on the server, and manages
resources for the applications as shown in Figure 2 [15]. The
main processes that run on top of VMkernel are:

. Direct Console User Interface (DCUI) — the low-
level configuration and management interface, accessible
through the console of the server, used primarily for initial
basic configuration.

. The VMM, virtual machine monitor, which is the
process that provides the execution environment for a virtual
machine, as well as a helper process known as VMX. Each
running virtual machine has its own VMM and VMX process.

. Various agents are used to run and enable high-level
VMware Infrastructure management from remote applications.
. The Common Information Model (CIM) system is the

interface that enables hardware-level management from remote
applications via a set of standard APIs.

{ 1)
Cim brolrer| vpxa 5nmp]

\| Third-party |
JCIMpIughs/’ hostd DEUI syslog VMX || VMX |'|JMJ{

| v wm wm
[User world API —
Distributed Virtual Ethernet
Resource VM file system | |adapter andswitch
- 0 [Storage stack | [Nelworl: stack |
J
VMkernel l Device drivers |

Fig.2.VMware ESXi architecture

V. HYPOTHESIS OF EXPECTED BEHAVIOUR

Since we are using a Type-1 hypervisor that works directly
on hardware, the total processing time for each workload 7w can
be described by the following equation:

Tw=Tgr + Trs + Twr + Tws M

where Trsand Trrrepresent sequential and random read time
respectively, while Twyr and Twys represent random and
sequential write time respectively. For every specific workload
we have an expected access time for the file system which
includes five components as shown in following equation:

Tworkroap = Tp+Twu + Tr+Tre+T +Thx (2)

where Tworkroap represents the overall time for finishing all

operations on the current workload, and 7p, Ty, Trz, Trs, T},

Tux represent time needed for completing all operations related

to directory, metadata, free list, file block, journaling and
house-keeping operations in the file system, respectively.

RTI2.2 Page 3 of 6

In this study we have a specific situation where there are two
sides which have identical settings of the operating system
(CentOS) and the file system (XFS), used in the performance
testing: (1) Native machine (hostOS) and (2) ESXi +
VMs(guestOS).

1. Native hostOS: The time to process the generated
workload depends on the benchmark interaction with the
hostOS file system and also the characteristic of the file system.
Total time to process the workload, Twmarive) is defined as:

Tw(native) =f(benchmark, hostOS_FS) 3)

2. ESXi + VMs(guestOS): The time to process the
generated workload (Twsxyy) in this case depends on the
benchmark interaction with guestOS file system, the
characteristic of the file system and the virtualization
processing component of the ESXi hypervisor (ESXi_proc) is
as in the following formula:

TwEsxi)=f(benchmark, guestOS FS, ESXi proc) 4)

Since we use the same settings as the native machine for our
virtual machines, the benchmark interaction and characteristics
of the file system on the guest will be the same as the ones on
the native machine. The virtualization processing component
depends on the virtualization type and hypervisor processing as
in the following formula:

ESXi proc = f (virt_type, hyp_proc) ®)]

In the context of virtualization type, ESXi uses full
virtualization, which is further enhanced with one of the
technologies (depending on hosts’ CPU) for hardware assisted
virtualization. In the context of the hypervisor processing it is
important to consider the delay, which represents the time
required for the hypervisor to receive requests from virtual
hardware of a guest OS and forward them to the hosts' hardware
for proccessing. The delay can be explained as following:
virtual machines generate workload, which passes from a VM
through the hypervisor onto the hosts’ hardware. First the
benchmark application generates the workload which is passed
on for further processing to the hypervisor. The second part
happens inside the hypervisor and is defined as the interaction
between guest workload and VM image file. Generated
workload is passed on the hypervisor, which maps it into
requests for VM large image files. Lastly the hypervisor's
mapping process generates input files as requests for real disk
drivers on the hosts’ hardware. The time needed for generating
those requests depends on the hypervisor’s file system and
caching capabilities.

The expected outcome according to formula (3) is that the
native host will perform better than ours ESXi virtual
machines. Virtual machines have a complex data path, formula
(5), where data must pass through guest OS file system and the
hypervisor onto machine hardware. Therefore, it is expected

that a degradation of the ESXi VM performance will happen
compared to the native host machine, formula (4).

We have investigated a few cases for the this paper: firstly,
the performace of a native host machine, then the performance
of a single ESXi VM running and lastly the performance of
several virtual machine running at the same time. In general,
we expect:

- Native host to perform better when compared to ESXi with one
virtual machine running.

- Running several instances of the ESXi virtual machines,
n*ESXi VMs (n=1,2,3...), should have a significant
performance degradation compared to the native host.

VI. TEST ENVIRONMENT CONFIGURATION

The assumption of an adequate testing is the application of a
single hardware configuration, the same operating system, and
measurement methodology for all test procedures as mentioned
before. The hardware configuration contains all the
components necessary for a modern-day computer, and in this
case, it is a home-based system of the newer generation (Table
1). CentOS version 7.7 is selected as the operating system,
which is currently one of the most popular Linux distribution.

During the installation process we opted for Gnome
graphical interface installation option with essential packages
and programs for a graphical environment. The XFS file system
characteristics and layouts are shown in Table 2. Filebench is a
program designed to measure the performance of file systems
and storages, and it is capable of generating multiple workload
types that simulate environments when using certain
servers/services such as mail, web, file, database, etc. Before
starting tests, we made sure that all available updates were
installed. Each virtual machine was given 4 GB of RAM.

TABLE 1
HARDWARE CONFIGURATION OF THE TEST PC

MB Gigabyte B75SM-D2V
RAM DDR3 1330 MHz, 16 GB
CPU Intel

Model Pentium G860

Cores 2 /2 threads

Speed 3.00 GHz
Cache(L1,L2,L3) 2x32kB; 2x256kB, 3MB
SSD Samsung SSD 860 EVO
Interface SATA 6Gbps

Capacity 250 GB

(O CentOS 7.7.1908.el7

This benchmark behaviour is controlled using files with the
extension *.f that are written in Workload Model Language,
that can be edited in any text editor. The use for individual
measurements involves putting a command from a terminal
with root privileges using the name of the *.f file as an
argument.

RTI2.2 Page 4 of 6

TABLE II

FS LAYOUT
FILE SYSTEM SIZE MOUNT
/DEV/MAPPER/DATA-ROOT 35GB /
/DEV/SDAI 4GB SWAP
/DEV/SDA2 1024 MB /BOOT

VIL.TESTS AND RESULTS

The focus of this paper was to measure the performance of
hard disks and data-flow in one of the more popular
virtualization systems, especially in cases where several
instances of virtual machines are being used. The main idea
was: as the number of instances increases, there is a significant
drop in performance and this drop is constant on any hardware-
software configuration. Benchmark of the host computer
without virtualization was taken as a reference point for file
system performance in these tests.

A number of modified files of the source code fileserver.f,
webserver. f, randomfileaccess.f and varmail.f were used
during the tests, which are thus testing the files, web and the
mail server environments, respectively. The changes were
taken into consideration when setting the benchmark
parameters in a way to provide as realistic as possible
exploitation conditions. And while the location (/ bench), the
I/O block size (iosize = 1M) and the average size of the add-on
(meanappendsize = 16k) are common denominator for all tests,
the parameters such as the number of files (nfiles), the average
depth of the directory (meandirwidth) the average file size
(meanfilesize), cache and the number of threads (nthreads) are
changed on a case-by-case basis (with * .f files). The defined
settings are retained throughout the entire benchmark test and
are displayed in Table 3. For an easier view in the following
table the name of each benchmark workload has been
abbreviated with their initials (file server (FS), web server
(WS), mail server (VMail) and random file access (RFA).

TABLE III
SETTINGS OF THE SOURCE CODE IN THE *.F FILES

FS WS | VMail RFA
nfiles 10.000 | 1.000 1.000 10.000
meandirwidth |20 20 1.000.000 |20
meanfilesize |16k 16k |16k
nthreads 50 100 |16 5
cached false

The duration of each test was 120 seconds, which is also
stated in the *.f files, with the goal of acquiring the most
realistic results. Special attention was paid to keep the OS clean
and the impact of any external subject on system components
was reduced to the minimum. After performing a reference
measurement of the host computer without virtualization, ESXi

was installed and three virtual machines were generated. Tests
were conducted in a way that one virtual machine was first
started and measured, then two and three machines
simultaneously. From the generated data, the final conclusions
were made by calculating the average values of the results.

TABLE IV
BENCHMARK RESULTS (MB/S)

FS WS VMail RFA
Host 401.6 127.9 51.4 7379.5
1VM 230.4 67.6 45.7 3646.0
2VM 122.3 42.8 244 2126.9
3VM 78.2 249 14.8 1498.6

Table 4 shows the data we collected from workloads running
in the test environment (again we used the same abbreviations
like in Table 3). Data from Table 4 are shown on the next few
figures, with remarks on the performance displayed in each. All
of the measures shown in the following figures are displayed in
megabytes per second (MB/s).

127.9

native lvm 2vm 3vm

Fig. 3. Webserver.f workload test results

The characteristics of the webserver.f workload with our
specification (100 threads) is that random reads dominate, there
are some random write components, while the sequential
components are not present. Here we observe that native host
OS performs much better than in the case with one instance of
the ESXi virtual machine (Figure 3). In the case of this
workload, instantiation of more than one ESXi virtual machine
brings some performance degradation but not significant.

RTI2.2 Page 5 of 6

500 // 401.6
400 7
A 300 2304
e
2 200 +~) I 122.3 78.2
s
100 = == =
0 i/./ T T T T
native lvm 2vm 3vm

Fig. 4. Fileserver.f workload test results

The characteristics of the fileserver.f workload with fifty
threads, are that both random and the sequential components
dominate, but there is also a large number of I/O requests and
much heavier data flow. A general notion is that, in the case
for one virtual machine instance, the ESXi is significantly
weaker than in the case of the native host OS. In the case of
fileserver.f workload, when two virtual machines are
instanced, the performance is further degraded by
approximately the same amount as in the previous case (with
one virtual machine). Instancing a third virtual machine brings
very little performance degradation (Figure 4).

6o ¢ >4 45.7
.
L, 401 24.4
2 50 | '
s -_-‘
0 i . e A
native lvm 2vm 3vm

Fig. 5. Varmail.f workload test results

The characteristics of the varmail.f workload with our
specification (16 threads) are that the components of random
read and write are dominating, while the sequential components
are not present, as it is shown in Figure 5. The special
characteristic is that the components of the random write are
synchronous, so each write will end up on the disk. The general
notion for one instance is that performances of ESXi virtual
machine are close to the native host OS. However, synchronous
entries cancel the effects of cashing, so there are minor
differences between native host OS and one instance of ESXi
virtual machine. In the case of varmail.f workload, the
instantiation of more than one ESXi virtual machines does not
bring significant performance degradation.

MB/s

native

Fig. 6. Randomfileaccess.f workload test results

The characteristics of the randomfileaccess.f workload with
five threads are that random reads dominate, while the
sequential components are not present as shown on figure 6.
We set up this workload so that cache would not be used. As
we observe, the native host OS performs significantly better
compared to one instance of ESXi virtual machine running.
After starting second and third instances of ESXi virtual
machines, we were able to observe that performance
degradation is still present but it is not too significant.

The acquired benchmark results are fully expected and in
line with the theoretical assumptions. The ESXi hypervisor and
the hardware assisted full virtualization model show clear
limitations on the data flow, in particular with the increase in
the number of active virtual machines that cause even greater
sharing of processors’ resources and its increased use for
hardware simulation. The addition of new instances of virtual
machines is even more decreasing the achieved data flow,
which means that new virtual machines cannot be added to the
indefinite, as the performance of the whole system degrades per
virtual machine added.

VIIL CONCLUSION

The introduction of virtualization has led to major changes
in the use and deployment of information technology.
Virtualization technology has a significant impact on reducing
hardware investment as well as reducing operating costs, while
also providing many additional benefits other than server
consolidation. The great expansion of cloud computing in
recent years has also contributed to the accelerated
development of virtualization technologies and in the
foreseeable future virtualization will always have an increased
application in information technologies. It is also reasonable to
expect, given the development of information technology
today, that virtualization techniques will continue to improve
and that the performance gap between virtualized systems and
native systems will narrow in the future.

The results of our measurements showed that a native
machine works convincingly better in most cases than a virtual
machine based on ESXi hypervisor and full virtualization, as
we assumed in our hypothesis of expected behaviour. Virtual
machines running on the ESXi hypervisor have lower
performance than a native machine, and in three of the four tests
the performance degradation is approximately 50% when we

RTI2.2 Page 6 of 6

have only one instance of a virtual machine running. The
performance degradation is even greater with the introduction
of more virtual machines. In one of the tests (mail server), the
performance degradation between a native and a single virtual
machine is not large, but with the introduction of new virtual
machines into the test environment, the performance
degradation of virtual machines becomes extremely
pronounced. Future research may include a different approach
where instead of comparing native machine vs. virtualized one,
we compare different types of similarly structured virtualized
machines or systems. With this research, we have proven that
virtual systems still cannot reach the performance of non-
virtualized systems, but as technologies evolve at an
accelerated pace, we hope that in the future the performance of
virtual machines will reach or be equal to regular non-
virtualized machines.

ACKNOWLEDGEMENT

The work presented in this paper has partially been funded by
the Ministry of Education, Science and Technological
Development of the Republic of Serbia.

LITERATURE

[1] C.Jiang, B. Luo, J. Wang, J. Zhang, Y. Wang, W. Shi, “Energy efficiency
comparison of hypervisor,” Proc. 2016 Seventh International Green and
Sustainable Computing Conference (IGSC), pp. 1-8, 2016.

[2] Correia, "Hypervisor based server virtualization" in Encyclopaedia of
information Science and Technology, 1GI Global, 2015, pp. 1182-1187.

[3] W.Huang,J. Liu, B. Abali, D. K. Panda, “A case for high performance
computing with virtual machines,” Proc. of the International Conference
on Supercomputing. ACM, pp. 125-134, 2006.

[4] G. Casale, S. Kraft, D. Krishnamurthy, ”A model of storage I/O
performance interference in virtualized systems,” Proc. of 31st
International Conference on Distributed Computing Systems Workshops,
pp- 34-39,2011.

[5]1 7. Che, Q. He, Q. Gao, D. Huang, “Performance Measuring and
Comparing of Virtual Machine Monitors,” Proc. of 5th International
Conf. Embedded and Ubiquitous Computing. EUC2008, Vol. 2,
Piscataway, NJ, USA, pp. 381-386, 2008.

[6] A. Bhatia and G. Bhattal, "A comparative study of various hypervisors
performance," International Journal of Scientific and Engineering
Research, vol. 7, no. 12, pp. 65-71, 2016.

[71 J.Hwang, S. Zeng, F. Y. Wu, and T. Wood, “A component-based
performance comparison of four hypervisors,” Proc. of 2013 IFIP/IEEE
International Symposium. IEEE, pp. 269-276, 2013.

[8] Pousa, Duarte; Rufino, José, “Evaluation of type-1 hypervisors on
desktop-class virtualization hosts,” IADIS International Journal on
Computer Science and Information Systems. ISSN 1646-3692. 12:2, p.
86-101, 2017.

[9] H.Kazan, L. Perneel, M. Timmermann, “Benchmarking the performance
of Microsoft Hyper-V server, VM Ware ESXi and Xen hypervisors,”
Journal of Emerging Trends in Computing and Information Sciences, vol.
4, no. 12, pp. 922-933, 2013.

Filebench project, Available: https:/github.com/filebench/filebench/wiki
VMware vSphere Documentation: https://docs.vmware.com/en/VMware-
vSphere/index.html

VMware ESXi 6.7 project: https://docs.vmware.com/en/ VM ware-
vSphere/6.7/vsphere-esxi-vcenter-server-67-storage-guide.pdf.pdf
VMware, Inc. white paper. “Virtualization Overview”.
https://www.vmware.com/pdf/virtualization_considerations.pdf

[14] VMware, Inc. white paper. “The Architecture of VMware ESXi,”
p. 3, 2020.
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/t
echpaper/ESXi_architecture.pdf

[10]
[11]

[12]

[13]

ESXi1 and Proxmox: FileSystem Performance
Comparison for Type-1 Hypervisors

Borislav Dordevi¢, Member, IEEE, Valentina Timéenko, Member, IEEE, Nenad Nedeljkovi¢, Nikola
Davidovié¢

Abstract — This paper presents the comparison of two
representatives of type 1 hypervisors: Proxmox VE and VMware
ESXi. Hypervisor acts like a lightweight operating system and
runs directly on the host’s hardware. The measurements are
carried out on the same server and under the equivalent
conditions, with the Linux Ubuntu 20.10 as the guest operating
system using the Filebench 1.5-alphal software. The goal of this
paper is to show an impact of different number of virtual
machines on the performances of various file system and
highlight the best combination. The results have been illustrated
in graphical form.

Keywords — Virtualization; Hypervisor; Proxmox; ESXi;
Filebench; virtual machine

1. INTRODUCTION

The virtualization is considered as one of the most
important topics in IT. It allows a single computer/server to
use multiple operating systems simultaneously. It also helps in
reducing the costs, because they can run multiple different
services on a single server, leading to more efficient server
utilization, easier system maintenance, and reduced hardware.
As the power of a computer unit has significantly increased
since 1960s when the IBM's presented its visionary idea of
virtualization, this solution became popular in system
implementation and maintenance [1].

There are several approaches for virtualization in IT
environments: hardware, software, desktop, data, network,
memory, storage, etc. The hardware virtualization implies the
use of a hypervisor, which is an additional layer that lies
between hardware and operating system (OS) and makes a
slight delay for when accessing the resources for virtualized
environment, providing lower performances when compared
to bare metal or non-virtualized system [2], [3].

Actually, hypervisor is specialized firmware and/or software
installed on single hardware that allows hosting of the VMs.

There are two types of hypervisors (Figure 1): type 1, that
is executed directly on hardware and manages guest OSs

Borislav Pordevi¢ - Institute Mihajlo Pupin, Volgina 15, 11000 Belgrade,
Serbia, (borislav.djordjevic@pupin.rs)

Valentina Timcenko - Institute Mihajlo Pupin, Volgina 15, 11000
Belgrade, Serbia (valentina.timcenko@pupin.rs)

Nenad Nedeljkovi¢ - VISER, School of Electrical and Computer
Enginering of Applied Studies, Belgrade, Serbia
(nedeljkovic Inenad@gmail.com)

Nikola Davidovi¢ — University of East Sarajevo, Faculty of Electrical
Engineering, Vuka Karadzica 30, 71123 East Sarajevo, RS, BiH,
(nikola.davidovic@etf.unssa.rs.ba)

RTI2.3 Page 1 of 6

(ESXi, Proxmox); and type 2 that is executed on the host OS
(VirtualBox, VMware Workstation).

Hypervisor or Virtual Machine Monitor (VMM)

Type1 Type 2
Native (bare metal) Hosted

Hardware Hardware
v ¥
Hypervisor

Hypervisor

Figure 1. Hypervisor types and differences [4]

5 & G

As the type 1 hypervisor has direct access to hardware,
while type 2 hypervisor accesses hardware through host OS,
we assume that type 1 hypervisor provides more scalability,
reliability, and better performance [5].

II. RELATED WORK, OBJECTIVE AND MOTIVATION

This research is focused on the performance comparison of
two type-1 hypervisors and results analysis. Since
virtualization is the primary solution for systems ranging from
small firms to large corporations, the arising question is: what
is the best solution on the market? Some recent research
addresses this issue from different perspectives, mostly
considering VMware, KVM and Hyper-V hypervisors, and
basing the results on Filebench or Bonnie++ [6]. This paper
can provide a new picture of the situation since almost no
research has focused on the Proxmox solution versus a
commercial solution such as ESXi.

The primary goal of this paper is to compare performance
using ESXi and Proxmox hypervisors on identical hardware,
same VM parameters and the same guest OS — Linux Ubuntu
20.10 with ext4 as main file system (FS). Also, the disk we
are testing has contained one of the three FSs: ext4, xfs or
btrfs. Since we have used a Filebench workloads for testing,
our idea was to find the best FS for each test. Selected
workloads are: varmail, webserver and fileserver.

We have defined the mathematical model, measured the
performances and interpreted the obtained results based on the
mathematical model and hypotheses.

III. MATHEMATICAL MODEL

Variable Ty is calculated in accordance with the equation
(1), and shows the total processing time for each workload.

Tw =Trr+Tsr+ Trw + Tsw (1)

Variables Tz and Tsz represent random and sequential read
time, and Tzy and Tsy random and sequential write time.
There is an expected access time for every specific workload
for the FS, which include following components:

Tworkroap = Tpir + Trera + TrL + T7 + Thx (2)

Tworkroap represents the overall time for finishing all
operations on the current workload, 7pz the time needed to
run all directory-related operations, Tyzr4 the time needed to
complete all metadata operations, 77 the time needed to go
through all free lists operations, Trp the time needed to carry
out direct file blocks operations, 7, the time needed to
complete journaling operations and Txg the time needed to run
housekeeping operation within the FS [7].

We have two candidates whose performances we compare:

1. Proxmox + VMs (guest OS).
2. ESXi+ VMs (guest OS).

1. Proxmox + VMs (guest OS): The time to process the
generated workload (Twproxmox) in this case depends on the
benchmark interaction with guestOS FS, the characteristic of
the FS, Virtual Hardware processing and the virtualization
processing component of the Proxmox hypervisor (PVE-proc)
is calculated in accordance to the following formula:

TwiProxmox) = f(BENCH, guestOS-FS, VH-proc, PVE-proc,
hostOS-FS) 3)

2. ESXi + VMs (guest OS): The time to process the
generated workload (Twesyy) in this case depends on the
benchmark interaction with guestOS FS, the characteristic of
the FS, Virtual Hardware processing and the virtualization
processing component of the ESXi hypervisor (ESXi-proc) is
calculated in accordance with the following formula:

Twesxi) = f(BENCH, guestOS-FS, VH-proc, ESXi-proc,
hostOS-FS) 4)

Since we are using the same settings for VMs on both
hypervisors, the virtualization processing component will
depend on the virtualization type and hypervisor processing as
provided in the following formula:

PVE-proc = f (virt_type, hyp_proc) (5)
ESXi-proc = f (virt_type, hyp_proc) (6)

We are predicting the following:
e Based on the practical experience, it is expected that
ESXi will produce better performance.

e Multiple VMs to have a significant performance drop
compared to just one VM.

RTI2.3 Page 2 of 6

IV. FILE SYSTEMS

Linux FS is generally a built-in layer of a Linux OS used to
handle the data management of the storage.

A. EXT4

The ext4 (fourth extended filesystem) is a journaling FS for
Linux, and is developed as the extension of the ext3 [8]. It has
the following characteristics [9]:

e Maximum FS size of up to 1 EB and maximum file size

of nearly 16 TB.

e Hashed B-tree organizes and finds directory entries.

e Online defragmentation tool (e4defrag), which performs

defragmentation of individual files or the whole FS.

e Easily detectable corruptions of files by metadata

checksumming.

B. XFS

XFS is a high-performance journaling FS created by Silicon
Graphics, Inc (SGI) in the last decade of 20 century [10]. It
has the following characteristics [9]:

e Maximum FS size and maximum file size of nearly 8
EB.

o B+ tree organizes and finds directory entries.

e Delayed allocation for minimizing fragmentation and
increasing performance.

e Implemented direct I/O for high throughput and non-
cached I/0 for DMA devices.

C. BTRFS

Btrfs ("better FS", "b-tree F S") is a copy-on-write (COW)
FS based on B-trees. It was initially designed at Oracle
Corporation in 2007 for the use in Linux [11]. It has the
following characteristics [9]:

e Maximum FS size and maximum file size of nearly 16

EB.

e B-tree organizes and finds directory entries.

e Online defragmentation, offline FS check.

e Background based fixing errors on redundant files.

V. VMWARE ESX1 AND PROXMOX

ESXi is an enterprise-class, type-1 hypervisor developed by
VMware for deploying and serving VMs (Figure 2). It runs
directly on hardware and significantly improves system
performance [12]. The major part of architecture is VMkernel
and processes that run on top of it. VMkernel has control of
all hardware devices on server, manages resources and
handles system processes. It receives requests from VMs for
resources and presents the requests to the physical hardware
[13].

[et braker | vpxa || shme |
. = e
'J Third-party
CIM plug-ins

|7 1 . = 1 2
I.JLIw“d |[pcui] [systog || wmx || vax |[vmex |

| User warld API

Virtual Ethemnet |

| Distributed
gadaptmand switch

VM file system

)

VMkernel i

Resource
schiadll

a stazk.- Network stack
) | |

Device drivers |

Figure 2. ESXi architecture [14]

The main processes that run on top of VMkernel are: [13]

* Direct Console User Interface (DCUI) — the low-level
configuration and management interface, accessible through
the console of the server, used primarily for initial basic
configuration.

* The VM monitor, which is the process that provides the
execution environment for a VM, as well as a helper process
known as VMX. Each running VM has its own VMM and
VMX process.

e Various agents used to enable high-level VMware
Infrastructure management from remote applications.

* The Common Information Model (CIM) system: CIM is
the interface that enables hardware-level management from
remote applications via a set of standard APIs.

VMware uses VMFS. It is a special high-performance
clustered FS. The main feature of this segment is ability to be
shared by being simultaneously mounted on multiple servers.
The VMEFS datastore can be extended to span over several
physical storage devices that include SAN LUNs and local
storage. This feature allows you to pool storage and gives you
flexibility in creating the datastore necessary for your virtual
machines. [12]

Proxmox Virtual Environment — PVE (Figure 3) is a bare-
metal hypervisor (runs directly on the hardware), to run VMs
and containers. It is an open-source project, developed and
maintained by Proxmox Server Solutions GmbH. For
maximum flexibility, they implemented two virtualization
technologies: full virtualization with KVM (Kernel-based
Virtual Machine) and container-based virtualization (LXC)
[15].

User Tools

Services

pveproxy ~ pvedaemon pvestatd pve-hadrm pve-cluster

App | App App | App

App App App App

Figure 3. Proxmox architecture [15]

Linux Kernel

Proxmox uses a Linux kernel and is based on the Debian
GNU/Linux Distribution. The source code is released under
the GNU Affero General Public License, version 3. KVM was
the first hypervisor to become part of the native Linux kernel
(2.6.20). It is implemented as a kernel module, allowing
Linux to become a hypervisor simply by loading a module.
Benefits from the changes to the mainline version of Linux is
optimization of hypervisor and the Linux guest Oss [16].

Proxmox natively supports running LXC (LinuX
Containers) containers from the Ul These are similar to
docker containers but behave more like a traditional VM.

RTI2.3 Page 3 of 6

Performance of KVM virtualization was the focus of this
paper.

The main features for Proxmox VE [17]:

e Live migration;

High availability;
Scheduled backup;
Command-line (CLI) tool,
Flexible storage;
OS template.

VI. TESTING

The assumption of adequate testing is the application of a
single hardware configuration, the same OS, and
measurement methodology for all tests. The used server
configuration has respectable hardware components although
it is does not represent the latest technology.

The OS used is Ubuntu version 20.10, the latest instalment
of Linux distribution (Table 1). During the installation
process, we opted for minimal installation option which
installs only essential packages and programs. The system
disk uses EXT4 while the test disk is EXT4, XFS, or BTRFS.

All tests were performed using Filebench tool. Latest
release of Filebench software was installed following
instructions provided on the official GitHub repository of this
project. Filebench is a program designed to measure the
performance of FS and storage, and it can generate multiple
workload types that simulate environments when using certain
servers/services such as mail, web, file, database, etc. [18].
Before starting any tests, we made sure that all available
updates were installed. Each VM was given 4 GB of RAM
and 4 CPU cores.

TABLE I
SERVER TEST ENVIRONMENT

HP ProLiant DL380 G7

Component Characteristic

CPU 2 x Intel Xeon
E5540 QuadCore
2.53GHz

RAM 32GB DDR3

Storage Controllers HP Smart
Array P410i

Hard Drive 1 HP 10K SAS
146GB(DG0146)

Hard Drive 2 HP 7.2K SAS
500GB(MMO0500)

PVE hostOS-FS ext4

ESXi hostOS-FS VMFS

The VM parameters are shown in Table 2. All used VMs
have identical characteristics.

TABLEII
VIRTUAL MACHINE PARAMETERS

I Component Characteristic I

vCPU 4

RAM 4GB

Disk 12GB + 32GB

(0N Linux Ubuntu
20.10

FS ext4

Tested FS extd/xfs/btrfs

The focus of this paper is on measuring disk performance
by comparing two hypervisors combined with three different
FSs using 1, 2, or 3 VMs at the same time. It is expected that,
as the number of VMs increases, performance will decline
significantly in any combination.

Filebench is a very powerful and very flexible tool able to
generate a variety of FS - and storage-based workloads. It
implements a set of basic primitives like create file, read
file, mkdir, fsync and uses WLM (the Workload Model
Language - WML) to combine these primitives in complex
workloads [18].

The files used for our benchmark were varmailf,
webserver.f, and fileserver.f. Those files are included in the
Filebench software installation package, and were minimally
edited to suit our needs.

The duration of each the tests was set to 120 seconds,
which is the only change we made in *.f files with the goal of
making the most realistic results. During the test execution, it
was ensured that the impact of any external subject on system
components was reduced to the minimum. The benchmark is
run 3 times and the average value of the test is taken as final.

First, Proxmox VE was installed on server and nine VMs
were generated, 3 for every FS. Tests were conducted in a
way that one VM was first started and measured, then 2 and 3
VMs simultaneously. After that, disk is formatted and ESXi
was installed. By the same principle, everything is applied to
ESXi. From the generated data, the final conclusions were
made by calculating the average values of the results.

4.5
4.0

3.5

3.0
2.5
2.0
§
— []

Figure 5. Varmail workload test results

TABLE III
BENCHMARK VARMAIL RESULTS

IVM -
(MB/s)

2VM -
(MB/s)

3VM -
(MB/s)

Varmail

RTI2.3 Page 4 of 6

esxi - ext4 2.6 1.3 0.9
esxi - xfs 3.5 1.6 1.2
esxi - btrfs 35 1.8 1.0
pve - ext4 3.0 1.5 1.1
pve - xfs 35 1.7 1.2
pve - btrfs 39 1.9 1.5

Figure 5 and Table 3 show Varmail test results. Varmail
emulates I/O activity of a simple mail server that stores each
e-mail in a separate file (/var/mail/ server). The workload
consists of a multi-threaded set of create-append-sync, read-
append-sync, read and delete operations in a single directory.
16 threads are used by default [19].

For the Varmail workload, which is characterized by the
dominant random reads and random writes, where random
writes are represented by the synchronous transfers covered
by equations (3) and (4), the main differences are components
3 (VH-proc), 4 (hypervisor-proc) and 5 (hostOS-FS).

When looking at the number of VMs, the combination of
pve-btrfs was the best in each category, while esxi-btrfs and
esxi-xfs had the same overall results with the ESXi
hypervisor. We can conclude that the BTRFS FS is the best
choice for a mail server.

1400.0
1200.0
1000.0

800.0

600.0

400.0 II I

200.0

00 | nll
1VM - (MB/s) 2VM - (MB/s) 3VM - (MB/s)
M esxi - ext4 M esxi - xfs esxi - btrfs
H pve - ext4 M pve - xfs pve - btrfs
Figure 6. Webserver workload test results
TABLE IV
BENCHMARK WEBSERVER RESULTS
Webserver IVM - | 2VM - | 3VM -
(MB/s) (MB/s) (MB/s)

esxi - ext4 453.5 238.4 171.2
esxi - xfs 507.2 235.1 228.3
esxi - btrfs 720.0 677.5 419.1
pve - ext4 1243.9 864.9 595.0
pve - xfs 1284.1 940.5 561.8
pve - btrfs 928.8 808.0 544.7

Figure 6 and Table 4 show Webserver test results.
Webserver emulates simple web-server /O activity and
produces a sequence of open-read-close on multiple files in a
directory tree plus a log file append. 100 threads are used by
default [19]. The Webserver workload is characterized by a
dominant random read component as covered in equations (3)
and (4), while the main differences are components 3 (VH-

proc) and 5 (hostOS-FS). In both cases, VH-proc is Full-
Hardware virtualization, but in Proxmox it is realized through
QEMU. A large difference in performance in favor of
Proxmox was observed in this test. The overall results of pve-
xfs is 2.87 times better than esxi-xfs.

80.0
70.0
60.0
50.0
40.0
30.0 I
Figure 7. Fileserver workload test results
TABLE V
BENCHMARK FILESERVER RESULTS
Fileserver IVM - |2VM - | 3VM -
(MB/s) (MB/s) (MB/s)
esxi - ext4 63.3 32.0 17.4
esxi - xfs 44.4 16.7 13.8
esxi - btrfs 45.1 33.2 10.7
pve - ext4 73.4 41.3 21.4
pve - xfs 47.6 29.0 18.3
pve - btrfs 52.5 26.4 20.4

Figure 7 and Table 5 show Fileserver test results.
Fileserver - Emulates simple file-server I/O activity. This
workload performs a sequence of creates, deletes, appends,
reads, writes and attribute operations on a directory tree. 50
threads are used by default [19].

For the Fileserver workload, which is characterized by all
kinds of data transfers, when considering equations (3) and
(4), the main difference is component 5 (hostOS-FS).
As ESXi uses VMFS, which is a clustered FS and represents a
higher level of abstraction, while Proxmox uses EXT4, and
the best FS in this test was EXT4, we conclude that this ruled
in favor of Proxmox.

As in the previous two tests, this time too Proxmox came
out as the winner but with a slightly smaller difference. We
also have a match in the choice of FS: EXT4 gave the best
overall results in both hypervisors.

VIL

In this paper, we tested two respectable type 1 hypervisors:
the commercial VMware ESXi solution and the open-source
solution - Proxmox. Although it was expected that, due to its
importance and big impact in the IT world, ESXi would
provide better results, this did not happen. Proxmox won each
comparator hypervisor + file system test. This was best seen
during the webserver test where they were better almost 3

CONCLUSION

RTI2.3 Page 5 of 6

times and the third (VH-proc) and fifth (hostOS-FS)
components of formulas (3) and (4) came to the fore.

If we only look at the performance of the FS, we get an
interesting distribution. EXT4 performed best on fileserver,
XFS on webserver, and BTRFS on varmail test.

For all 3 workloads we mnoticed that Proxmox is
significantly better than ESXi. In the context of formulas (3),
4), (5), (6), we consider that the first two components,
BENCH and guestOS-FS, in equations (3) and (4) have the
same effect on for both hypervisors. The 3rd and 4th
components, VH-proc, PVE-proc and ESXi-proc, differ
significantly, where we notice that Proxmox is better.
However, the main reason for Proxmox's victory is the 5th
component (hostOS-FS). ESXi used a higher level of
abstraction such as VMFS which slowed it down in this case,
while Proxmox used a basic level of FS such as EXT4.

When we summarize all the test results, the used virtual
machine operating system and hypervisors hostOS-FS, we can
say that Proxmox is more optimized for Linux distribution.

The Proxmox virtualization system can be particulary
useful for people starting their own business in small steps,
without requiring additional costs. This does not mean that
large companies do not use it. As already mentioned, this is an
Open-Source solution and help for some of the possible
problems can be found in a community where the number is
unknown. If you still want to be insured, you can subscribe to
the team of people behind this solution - Proxmox Server
Solutions GmbH on more than favorable terms.

Interesting ideas for future work and research is to add fast
Solid State Disks, comparative analysis of hypervisors using
container virtualization or testing a different hypervisor such
as Xen and Microsoft Hyper-V to determine which one
achieves the best results.

ACKNOWLEDGMENT

The work presented in this paper has partially been
funded by the Ministry of Education, Science and
Technological Development of the Republic of Serbia.

REFERENCES

[1]1 S. Meier, IBM Systems Virtualization: Servers, Storage, and Software,
First edition, Redpaper, 2008.

[2] F. Bazargan, C. Yeun, J. Zemerly, “State-of-the-Art of Virtualization,
its Security Threats and Deployment Models”, International Journal for
Information Security Research. 3. 10.20533/ijisr.2042.4639.2013.0039,
2013.

[3] N. Yaqub, “Comparison of Virtualization Performance: VMware and
KVM*, Master Thesis, Department of Informatics, Uviversity of Oslo,
Norway, 2012.

[4] C. Taylor, 2020, What is a Hypervisor Server?, accessed 14 May 2021,
https://www.serverwatch.com/virtualization/hypervisor-server/

[5S] P. Vasconcelos, F. Aratjo, G. Freitas, T. Marques, “KVM, OpenVZ
and Linux Containers: Performance Comparison of Virtualization for
Web Conferencing Systems”, International Journal of Multimedia and
Image Processing. 6. 10.20533/ijmip.2042.4647.2016.0039, 2016.

[6] B. Dbordevi¢, N. Macek, V. Timéenko, “Performance Issues in Cloud
Computing: KVM Hypervisor’s Cache Modes Evaluation”, Vol. 12,
No. 4, PP 147-165, 2015. http://uni-
obuda.hu/journal/Dordevic Macek Timcenko 60.pdf,

[71 D. Vojnak, B. Dordevi¢, V. Timcenko, S. Strbac, “Performance
Comparison of the type-2 hypervisor VirtualBox and VMWare

(8]

(9]

[10]

[11]

[12]

Workstation”, 27th Telecommunications Forum (TELFOR), Belgrade,
Serbia, pp. 1-4, doi: 10.1109/TELFOR48224.2019.8971213, 2019.

THE EXT4 FILE SYSTEM, accessed 16 May 2021,
https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-
ext4

D. Vuji¢i¢, D. Markovi¢, B. Pordevi¢, S. Randi¢, “Benchmarking
Performance of EXT4, XFS and BTRFS as Guest File Systems Under
Linux Environment”, 2016.

THE XFS FILE SYSTEM, accessed 16
https://access.redhat.com/documentation/en-
us/red_hat _enterprise_linux/7/html/storage administration guide/ch-
xfsBtrfs

O. Rodeh, J. Bacik, C. Mason, (2013). “BTRFS: The linux B-tree
filesystem”, ACM Transactions on Storage (TOS).
9.10.1145/2501620.2501623, 2013.

E. Sosa, Mastering VMware NSX® for vSphere®, First edition,
Indianapolis, Indiana, John Wiley & Sons, 2020.

May 2021,

RTI2.3 Page 6 of 6

[13]
[14]
[15]

[16]

[17]
[18]

[19]

VMware, “The Architecture of VMware ESXi”, Technical White
Paper, 2007.

B. Laurent, 2020, VMs Everywhere, accessed 24 May 2021,
https:/littlecorner.info/post/virtualization/

Proxmox Server Solutions Gmbh, ‘“Proxmox VE Administration
Guide”, 2021.

S. Aiiy, “Comparative analysis of proxmox VE and xenserver as type 1
open source based hypervisors”, International Journal of Scientific and
Technology Research. 7. 72-77, 2018.

S. Cheng, Proxmox High Availability, First edition, Birmingham,
England, Packt Publishing, 2014.

V. Tarasov, E. Zadok, S. Shepler, “Filebench: A Flexibile Framework
for File System Benchmarking”, Vol. 41, No. 1, 2016.
Filebench, 2017, accessed 23
https://github.com/filebench/filebench/wiki

April 2021,

Snort IDS system visualization interface

Nadja Gavrilovic, Vladimir Ciric, Nikola Lozo
University of Nis, Faculty of Electronic Engineering, Nis, Serbia

Abstract—Over the past decades, the rapid Internet develop-
ment and the growth in the number of its users have raised
various security issues. Despite numerous available security tools,
the exchange of data over the Internet is becoming increasingly
insecure. For this reason, it is of great importance to ensure the
security of the network in order to enable the safe exchange
of confidential d ata, as well as t heir i ntegrity. O ne o f t he most
important components of network attack detection is an Intrusion
Detection System (IDS). Snort IDS is a widely used intrusion
detection system, which logs alerts after detecting potentially
dangerous network packets. The next step in successful network
protection is the analysis of logged alerts in search of deviations
from normal traffic t hat m ay i ndicate an i ntrusion. T he g oal of
this paper is to design and implement a visualization interface
that graphically presents alerts generated by Snort IDS, classifies
them according to the most important attack parameters, and
allows the users to easily detect possible traffic irregularities. An
environment in which the system has been tested in real-time is
described, and the results of attack detection and classification
are given. One of the detected attacks is analyzed in detail, as
well as the method of its detection and its possible consequences.

Index Terms—IDS, snort, network intrusion detection, visual-
ization interface

Nadja Gavrilovic is with the Faculty of Electronic Engineering,
University of Nis, Aleksandra Medvedeva 14, Nis, Serbia (e-
mail:nadja.gavrilovic @elfak.ni.ac.rs).

Vladimir Ciric is with the Faculty of Electronic Engineering,
University of Nis, Aleksandra Medvedeva 14, Nis, Serbia (e-
mail:vladimir.ciric @elfak.ni.ac.rs).

Nikola Lozo is with the Faculty of Electronic Engineering, University of
Nis, Aleksandra Medvedeva 14, Nis, Serbia (e-mail:nikolalozo@elfak.rs).

RTI2.4 Page 1 of 1

Performance comparison of homomorphic
encryption scheme implementations

Goran Pordevi¢, AET Europe The Netherlands, ETF Beograd, Milan Markovié, Panevropski
Univerzitet Apeiron Banja Luka, Pavle V. Vuleti¢, ETF Beograd

Abstract — Homomorphic Encryption allows third party to
receive encrypted data and perform arbitrarily computations on
that data while it remains encrypted, despite not having the
secret decryption key. This enables many new secure
applications in cloud environments. For a long time, a key issue
with the homomorphic encryption was its low performance
which made it unusable in production environments. Advances
in the last ten years in the field of homomorphic encryption
resulted in several new schemes and software libraries which
implement them. These homomorphic schemes have improved
performance, but there is still a question whether the
improvements would justify their use in production
environments. In this paper we evaluated features and
performances of several new homomorphic encryption
mechanisms: BGV, BFV and CKKS.

Keywords — Homomorphic Encryption; Performance; Secure
Multiparty Computation.

I. INTRODUCTION

Homomorphic encryption allows computations on
ciphertext without the knowledge of the secret key, or more
precisely it allows performing computations on the encrypted
data, without decrypting them [1]. Homomorphic encryption
allows a third party (e.g., cloud, service provider) to perform
certain computable functions on the encrypted data while
preserving the features of the function and format of the
encrypted data and without being able to see its content.
Homomorphism of the first asymmetric encryption algorithms
(RSA) over some mathematical operations (e.g.
multiplication) was known since these algorithms were
invented almost fifty years ago. Such schemes which support
partial set of mathematical operations are known as partially
homomorphic. Cryptographic mechanisms that support
arbitrary level of computations on ciphertext (multiplication,
addition, rotation) without the knowledge of the secret keys
are known as Fully Homomorphic Encryption (FHE) systems.
The increased popularity of cloud-based services on one side
and the need to preserve data privacy led to the new interest in
homomorphic encryption research which would enable secure
multiparty computation in the cloud environment. One could
imagine the use of Al or machine learning algorithms on the
data which is encrypted and invisible to the Al system
provider, thus preserving data privacy only for the data owner.
An example of such a scenario where homomorphic
encryption mechanisms are deployed is given in Figure 1. In
this example the user sends and stores the data in the
encrypted form on the cloud server. The data is processed on

RTI2.5 Page 1 of 6

the server in the encrypted form, and the results which remain
in the encrypted form are sent back to the user who can
1. User encrypt

decrypt the data and use the result.
message m, Enc(m) 2. User sends

Enc(m)to server

[User: m, Enc, Dec, f()}

3. User queries f()

4. Server evaluates f{
homomorphically

5. User computes and returns Enc(f{m))

Dec(Enc(f(m))) and
determines f{m)
Fig. 1. An example of client-server HE scenario

The biggest obstacle for the use of homomorphic
encryption schemes was the fact that there were no FHE
mechanisms ~ which had reasonable performance.
Computations were by several orders of magnitude slower
than the operation on unencrypted data which made any such
solution too resource expensive. However, in the last ten years
a breakthrough happened in the area and a set of new
homomorphic encryption schemes emerged. Modern fully
homomorphic encryption schemes use complex algorithms on
lattice structures and Ring-LWE (Ring Learning With Errors)
mechanism [2]. In addition to the homomorphic property, it is
believed that these algorithms are resistant to quantum
computer attacks because nowadays there are no known
algorithms that would use the properties of quantum
computers to break these algorithms in polynomial time.
Following the appearance of new fully homomorphic
encryption schemes, a set of programming APIs and libraries
which implement different schemes emerged as well. In this
paper we are assessing the set of capabilities and performance
of three homomorphic encryption schemes (BGV, BFV,
CKKS) and are discussing the suitability and constraints of
these schemes for use in the cloud-based environments for
secure multiparty computations. Performance assessment of
the new FHE schemes has not been explored a lot in the
literature. We believe that this paper will provide a better
insight into the current state of the work on FHE and its
suitability for real use case scenario deployments.

The paper is organized as follows. Section Il gives an
overview of the related work in the field of the performance
evaluation of the FHE schemes. The most important
properties of homomorphic encryption and the classification

of the homomorphic encryption schemes are presented in
Section Ill. The main features and description of modern HE
schemes: BGV [3], BVF [4] and CKKS [5] are elaborated in
Section IV. In Section V is shown results of experimental
analysis. Conclusions are given in Section VI.

Il. RELATED WORK

Related work about the FHE schemes is spread across the
papers in the relevant sections, while this section contains
only those papers which were dedicated to FHE performance
evaluation. Experimental results related to BGV scheme with
value of ciphertext modulus g=130 are given in [1]. Viand et
al. in [6] compare the features of Palisade, Microsoft SEAL,
and HELib homomorphic encryption libraries. In addition,
this paper gives statistical compiler tests of BVF scheme
implemented in the SEAL library in a graphical form without
presenting precise numerical values. Melchor et al. [7]
compared the performance of three libraries HELib, SEAL
and FV-NFLIib for large plaintext moduli of up to 2048 bits.
Finally, Lepoint et al. [8] compare the performance of two
older homomorphic schemes. Unlike the previous work, in
this paper we give experimental results for BGV with broader
range of values ciphertext modulus g and results for other
modern homomorphic schemes: BFV and CKKS that are not
covered in [1].

I1l. PROPERTIES OF HOMOMORPHIC ENCRYPTION

There are four main types of homomorphic schemes [1]:

o Partially Homomorphic Encryption (PHE). The PHE
scheme enables either any number of addition or any
number of multiplication operations over encrypted data.

e Somewhat Homomorphic Encryption (SHE) allows both
addition and multiplication, but it can perform a limited
number of operations. “Somewhat” means it works for
some functions f.

o Fully Homomaorphic Encryption. The scheme allows any
number of addition or multiplication operations. “Fully”
means it works for all functions f. An FHE scheme can
evaluate unbounded depth.

e Levelled Homomorphic Encryptions (LHE). This scheme
can evaluate arbitrary polynomial-size circuits.

Homomorphic Encryption should support two main

homomorphic operations:

¢ Additive Homomorphic Encryption;

¢ Multiplicative Homomorphic Encryption.

Homomorphic encryption is additive, if [9]:
Enc (m1 + my) = Enc (m1) + Enc (my); vmz, m; € M.
Homomorphic encryption is multiplicative, if [9]:
Enc (m1 * my) = Enc (my) * Enc (my); Ymy, my € M.
The most popular classes of homomorphic schemes are
(given with their main properties):

e Boolean circuit (Fastest Homomorphic Encryption in the
West (FHEW) [10] and Fast Fully Homomorphic
Encryption over the Torus (TFHE) [11]):

o Plaintext data are coded as bits;
o Computations are performed by using Boolean
circuits.

RTI2.5 Page 2 of 6

o Modular integer arithmetic (BGV, BFV):

o Plaintext data are coded as integer modulo a
plaintext;

o Computations are expressed as integer modulo
arithmetic.

e Approximate number arithmetic (CKKS):

o Plaintext data are coded as real (or complex)
numbers;

o Computations are performed in a way similar to
floating-point arithmetic but dealing with fixed-
point numbers.

Modern HE mechanisms are based on usage of lattice
cryptography with errors LWE [12]. Lattices have an
important role in modern cryptography, especially in the
context of the research on post-quantum cryptography. It is
known that the factoring problem which was discovered to be
solvable in polynomial time on a quantum computer by Shor
can be applied to the widely used asymmetric cryptographic
schemes (RSA, DH). At the moment of writing this paper
there was no report in the literature which claimed that it can
break lattice-based cryptographic algorithms using quantum
computer algorithms.

The newest HE algorithms are applied structured lattices
i.e. Ring-LWE mechanism [2]. The Ring-LWE reduces key
length and computation time. The ring implementation is
based on power-of-two cyclotomic rings:

Rqg=2Zg/{(x"+1)

The optimized Residue Number System (RNS) variants of
algorithms show significant performance gain compared to
their earlier respective implementations [13]. The RNS works
with native (machine-word size) integers because it is faster
than multi-precision integer arithmetic. It breaks rings of large
bit-width integers into a parallel set of rings (<64-bit residues)
allowing very efficient computation on 64-bit CPU
architecture.

Large modulus q is represented as product of integers:

q =TT qi

Modulus q is a functional parameter that determines how
many computations are allowed without the appliance
bootstrapping procedure [14].

One of the properties of the homomorphic encryption
schemes is that they add noise to a ciphertext in the
encryption process. Homomorphic operations (especially
multiplication) increase the noise. If the noise becomes too
large, the resultant ciphertext can become undecryptable.
Noise budget is the total amount of noise that can be added
until the decryption fails [15]. The bootstrapping is the
procedure of "refreshing” a ciphertext by running the
decryption function on it homomorphically, resulting in a
reduced noise.

All considered homomorphic encryption schemes support
the following homomorphic operations:

e Addition;

o Multiplication;

¢ Rotation.

1IV. HOMOMORPHIC SCHEMES

The BGV scheme was proposed [3]. BGV is a levelled HE
scheme, meaning that the parameters of the scheme depend on
the multiplicative depth that the scheme is capable to evaluate.
Multiplicative depth determines how many sequential
multiplications can be performed.

The BFV scheme [4] is a homomorphic cryptographic
scheme based on the Ring-LWE problem in a lattice.

The CKKS scheme [5] is known as Homomorphic
Encryption for Arithmetic of Approximate Numbers
(HEAAN). Supported operations in the scheme are shown in
Figure 2. The CKKS scheme enables computations on vectors
of complex values.

Message
(Cn/z

A

Decoding| Encoding

A 4

Plaintext
R=Z[X]/(X"+1)

Decryption| Encryption

Ciphertext
R, = Z,[X]/(X"+ 1)

Fig. 2. Operations in CKKS

The CKKS is an approximate homomorphic encryption
scheme with the following features:

e Dec (Enc(m)) = m;

e Dec (ct; * cty) = Dec (ct1) * Dec (cty);

¢ Noise bounds are determined by the parameter set.

In the CKKS scheme noise is considered as a part of
numerical error in approximate computation. It supports
homomorphic rounding-off.

In all above-mentioned schemes the
homomorphic operations are implemented [16]:

o Public key encryption:

PubEncrypt(pk, M) — C
The public encryption algorithm takes as input the public
key (pk) of the scheme and any message M from the
message space. The algorithm outputs a ciphertext C.
e Decryption:

following

Decrypt(sk, C) — M
The decryption algorithm takes as input the secret key of
the scheme (sk), and a ciphertext C. It outputs a message
M from the message space.
e Homomorphic addition:
EvalAdd(Params, ek, C1, C2) — Cs
EvalAdd is an algorithm that takes as input the system
parameters Params, the evaluation key (ek), two
ciphertexts C; and C,, and outputs a ciphertext Ca.
e Homomorphic multiplication:
EvalMult(Params, ek, Ci, C;) — Cs
EvalMult is an algorithm that takes as input the system
parameters Params, the evaluation key ek, two
ciphertexts C; and C,, and outputs a ciphertext Ca.

RTI2.5 Page 3 of 6

The evaluation key is needed to perform homomorphic
operations over the ciphertexts. The evaluation key is used in
in the following homomorphic operations: relinearization
(multiplication) and rotation. Any entity that has only the
evaluation key cannot learn anything about the messages from
the ciphertexts only [16].

An example of homomorphic encryption with asymmetric
key cryptography by using BGV [3], BVF [4], and CKKS [5]
schemes is shown in Figure 3.

Client Server
Generate |Evaluation key (ek)
Keys (GEN)
ek
Public key (pk) l
m Encrypt ~ € || Evaluate
(ENC) (EVAL)
Secret key (sk) f
Decrypt ¢
f(m) < <
(m) (DEC)

Fig. 3. Homomorphic encryption with asymmetric keys

V. EXPERIMENTAL ANALYSIS

In the experimental analysis we evaluated the time needed
for execution of the following homomorphic operations:
Public key encryption (Table II), Decryption (Table III),
Homomorphic addition (Figure 4), and Homomorphic
multiplication (Figure 5). Homomorphic encryption libraries
implement the above-mentioned cryptographic operations of a
scheme and expose a higher-level APl. We evaluated the use
of the following homomorphic schemes:

e BGV,

e BVFand

e CKKS;
that are implemented in the following open-source libraries
respectively:

o Microsoft SEAL [17];

o Palisade [14];

e HELib [18] [19].

HELib is a C++ open source library that implements both
the BGV [3] and CKKS [5] homomorphic encryption
schemes. HELib library, published in 2013 by Halevi and
Shoup, was the first homomorphic encryption library.

Palisade [14] is multi-threaded library written in C++ 11. It
uses the NTL library [20] to accelerate underlying
mathematical operations. Palisade supports more schemes,
including BFV, BGV, CKKS. It also supports multi-party
extensions of certain schemes and other cryptographic
primitives like Proxy Re-Encryption (PRE) and digital
signatures [6].

Microsoft Simple Encrypted Arithmetic Library (SEAL)
[17] is a homomorphic encryption library that allows
additions and multiplications to be performed on encrypted
integers or real numbers. Microsoft SEAL is written in C++11
and contains a .NET wrapper library for the public API. The

latest available version 3.6.2 is developed in C++17.

TABLE Il
PUBLIC KEY ENCRYPTION

Table | gives an overview of the publicly available open- .
source libraries with implemented HE algorithms. Palisade HE scheme HE parameters i HE Ilbr.ary
implements Boolean circuits Fully Homomorphic Encryption n logz q | Palisade| HELib | SEAL
(FHE) schemes: FHEW and TFHE. In the FHE mechanisms it BFV 1,024 | 27 - - 272
uses bootstrapping procedure [14] (noise refreshing BGV 1,024 27 - 1,783 -
procedure) with the application of the appropriate CKKS 1,024 27 585 482 257
bootstrapping keys. The FHEW and TFHE schemes are not BFV 2,048 54 1557 _ 506
implemented in the HELib igdBlli/éllcrosoft SEAL libraries. BGV 2,048 54 1,560 3.608 i

HE ALGORITHMS IN OPEN-SOURCE LIBRARIES CKKS 2,048 54 1,173 997 479
Library/ Palisade HELib SEAL BFV 4,096 | 109 3,519 - 1,687
HE scheme BGV 4,096 | 109 | 3,493 | 7,833 -
BGV V v CKKS | 4096 | 109 | 2,753 | 2,288 | 1926
BEV j - j/ BFV | 8192 | 218 | 7,773 - | 4838
E:TEKV?/ 7 BGV | 8102 | 218 | 8116 | 17,817 | -
Threshold EHE 7 CKKS 8,192 | 218 7,538 | 4,664 | 5,688
BFV 16,384 | 438 | 24,050 - 16,252

The homomorphic encryption code was executed on a PC BGV 16,384 | 438 | 25926 | 44,796 -
with: _ CKKS | 16,384 | 438 | 23,183 | 12,581 | 19,344

: iégég;x;_z 8-core CPU; BFV |32768| 881 | 77,553 | - | 59,457

« Ubuntu 20.04 LTS. BGV 32,768 | 881 | 78,639 | 109,340 -

. CKKS 32,768 | 881 | 76,406 | 39,890 | 71,373

Tables Il and 11l and Figures 4 and 5 show the results of
encryption, decryption, HE addition and HE multiplication SECRETTQ%L&!LYPTION
tests respectively, where: HE parameters HE library

e Times in the last three columns (HE Library) are HE scheme n log | Palisade] HELib |SEAL

expressed in microsecond (Us);

e Each operation was executed 1000 times and the times BFV 1024 | 27 . . 63

presented are the times to execute 1000 iterations; BGV 1,024 21 - 13,047 -

o We used 128-hit homomorphic encryption security level; CKKS 1,024 27 415 3,159 10

e Ciphertext dimension is n; BFV 2,048 | 54 159 - 127

o Ciphertext modulus is g. BGV 2,048 54 133 49,096 -

Ciphertext dimension n shall be chosen on basis of desired CKKS 2,048 54 809 5,104 19
security level and value of ciphertext modulus g. If ciphertext BEV 4,096 | 109 420 - 416
modulus q is bigger than noise budge’; it enab_les BGV 4096 109 353 192 351)
implementation more complex homomorphic evaluation : .
function f i.e. implementation the function with bigger depth. CKKS 4,096 109 1,432 14,279 12

Palisade library implements modular arithmetic schemes: BFV 8192 | 218 940 - 1484
BGV and BVF with 128-bit security level beginning from BGV 8,192 218 1,012 | 763,178 -
ciphertext dimension n = 2048. CKKS 8,192 | 218 | 6,038 | 48,960 | 290

The public key encryption operation in BFV scheme has BFV 16,384 | 438 | 2,370 - 5,904
the best performance when the SEAL library is used. BGV 16,384 | 438 3,690 | 3,033,690 | -
Performance difference depends on the ciphertext dimension: CKKS 16,384 | 438 | 13,776 | 183,254 |1,166
while the SEAL encryption is three times faster for the BEV 32,768 | 881 7,330 - 24,919
ciphertext dimension of 2048, when the ciphertext dimension BGV 32768 | 881 | 14.941 |12,003497| -

is 32768, this factor is 1.3 times. The encryption operation has CKKS 32763 | 881 | 51960 | 701913 |4.826

the best performance in BGV scheme when the Palisade
library is used. Performance difference ratio decreases with
the increase of the ciphertext dimension. The encryption
operation in CKKS scheme for ciphertext dimension n > 8192
has the best performance when the HELIib library is used,
whereas in case of lower dimension n the best results are
achieved by using SEAL library.

RTI2.5 Page 4 of 6

The decryption operation in CKKS scheme has the best
performance by using SEAL library. The decryption operation
in CKKS scheme when using SEAL is approximately 10
times faster than when Palisade is used and more than 100
times faster than when HEL.b is used.

The secret key decryption operation in BGV scheme
performs better by several orders of magnitude in the Palisade

than in the HEL.b library.

The decryption operation in BFV scheme for ciphertext
dimension n > 8192 has better performance when Palisade
library is used, whereas in case of lower dimension n better
results are achieved by using SEAL library.

BFV addition
Library: ,..--”*
®- Palisade __’,..-'”
+- SEAL e
- Y]
10° - e
g " I
o ,/ e
E Py -
A e -
102 ," /.’
s
I /"
.f.f ’
a4
P
£
0 ¥
o 5000 10000 15000 20000 25000 30000
Ciphertext dimension
BGV addition
Library: e -
®- Palisade L
10° § -+- HELib -
o - =t
,." A=
7 1w . -~
= ’ .
g ¥ -~
= /! g
; -
10t , -
) S
] +
] 4
’
%
F
10’3 T ‘ : T T T T T T
o 5000 10000 15000 20000 25000 30000
Ciphertext dimension
CKKS addition
Library:) =
®- Palisade ST
+- HELib T s
105 { ~®- SEAL s _as=5="
x"; 4 ==
) I et g
Y .
L, ; -
£ r,x »
/ S
! I’//
o -,
A
£
10 A
o"/
P
£
o 5000 10000 15000 20000 25000 30000

Ciphertext dimension
Fig. 4. Homomorphic encryption — addition operation time

The ciphertext addition in CKKS scheme has the best
performance in the HELIib library. The ciphertext addition in
CKKS scheme has better performance in the Palisade than in
the SEAL library, but the differences are generally smaller
than for the decryption operation.

The ciphertext addition in BFV scheme has significantly
better performance (more than 2 times faster) in the Palisade
than in the SEAL library.

The ciphertext addition in BGV scheme has significantly
better performance (more than 4 times faster) in the Palisade
than in the SEAL library.

RTI2.5 Page 5 of 6

BFV multiplication

Library: et
®- Palisade e =
+- SEAL =T
10° =T .
P =T
z I
=2 £ =T
-
g ol
"
r/
100 A
I
+ I
o 5000 10000 15000 20000 25000 30000
Ciphertext dimension
BGV multiplication
. Library: _________.-——o-
10 #- Palisade =TT
+= HELIb S o
-
I.’
10* /
- / U
= ! T
o i ————
E ! P
= 102 J_. __.‘J__-
' e
i
1
10° ¥,
1s
¥
|
£
T L T T T T T T
0 5000 10000 15000 20000 25000 30000
Ciphertext dimension
CKKS multiplication
100 Library: __________.-+
®- Palisade _______.-—-""__
+- HELib =T
w= SEAL "
- =X
1w R __._--"'---_- -
s _ e
) */ PPt - -
- ’ - -
i} £ - "
£ 10° o ___.--"'.
S B
&
10° /
4
o 5000 10000 15000 20000 25000 30000

Ciphertext dimension

Fig. 5. Homomorphic encryption — multiplication operation time

The ciphertext multiplication is much more complex and
more time consuming than ciphertext addition. Figure 4
presents the time needed for performing homomorphic
multiplication without relinearization procedure.

The cyphertext multiplication in CKKS scheme for
ciphertext dimension n > 8192 has the best performance when
implemented in the Palisade library whereas in case of lower
dimension n the better results are achieved using SEAL
library.

The cyphertext multiplication in BGV scheme for
ciphertext dimension n > 8192 has significantly better
performance (more than 3 times faster) when implemented in
the Palisade library than in the HELib whereas for lower
ciphertext dimensions better results are achieved by using
HELIb library.

The cyphertext multiplication in BFV scheme for ciphertext
dimension n > 4096 has better performance in the Palisade

than in the SEAL whereas for lower ciphertext dimensions
slightly better results are achieved by using SEAL library.

In addition, we compared execution time of homomorphic
operations with no security level versus operations with 128-
bit security level. We have measured execution time of
homomorphic operations in CKKS (approximate arithmetic)
and BGV (integer modulo arithmetic) schemes that are
implemented in the Palisade library.

In the experiments we have got similar ratio of results for
both schemes, so we present only results related to CKKS
scheme.

In the tests we have performed homomorphic operations by
using following scenarios:

1. No security level with ciphertext dimension n=512;

2.128-bit security level with ciphertext dimension

n=32768.

Each operation was executed 1000 times. In both scenarios
it is used same value of ciphertext modulus g.

We have got following results of homomorphic operations
(CKKS scheme):

¢ Public key encryption operation is about 69 times faster
in scenario 1;

e Private key decryption operation is about 46 times
faster in scenario 1;

e Homomorphic addition operation is about 45 times
faster in scenario 1;

e Homomorphic multiplication operation is about 48
times faster in scenario 1.

VI. CONCLUSIONS

Homomorphic encryption allows performing computations
on the encrypted data, without decrypting them. The paper
compares the time needed to execute homomorphic
operations, like, public key encryption, secret key decryption,
addition and multiplication implemented in the open-source
libraries: Microsoft SEAL, Palisade, and HELib. The
operations are compared for BGV, BFV and CKKS
homomorphic encryption schemes implemented in the
libraries.

Homomorphic operations that are performed at client side:
public key encryption and secret key decryption if it is used
BGV scheme (integer arithmetic) have the best performance
when using methods that are implemented Palisade.

Homomorphic operations that are performed at the server
side: addition and multiplication are fastest when Palisade
library is used for all three tested schemes, except for BGV
addition and higher ciphertext dimensions in which cases
HEL.ib has slightly better performance.

Execution time of homomorphic operations with no
security level versus operations with 128-bit security level
was performed and showed that all the operations are still by
two orders of magnitude slower than when no security is used
which presents an issue when complex machine learning or
Al calculations are required.

The performance of current fully homomorphic encryption
schemes, especially for large parameters, can still be
improved. Further improvement can be achieved by
implementation low-level homomorphic operations in an

RTI2.5 Page 6 of 6

assembly language which is executed on a hardware platform.
Also it can be achieved better performance if homomorphic
operations are implemented in hardware platforms like
Graphics Processing Unit (GPU), Application-Specific
Integrated Circuit (ASIC), and Field-Programmable Gate
Array (FPGA).

LITERATURE

[1] A. Acar, H. Aksu, A. Selcuk, and M. Conti, "A Survey on
Homomorphic Encryption Schemes: Theory and Implementation,"”
ACM Comput. Surv. 1, 1, Article 1, http://dx.doi.org/10.1145/3214303,
2018.

[2] V. Lyubashevsky, C. Peikert, and O. Regev, "On ideal lattices and
learning with errors over rings," Journal of the ACM (JACM) 60, no. 6,
2013.

[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, "Fully Homomorphic
Encryption without Bootstrapping,” Cryptology ePrint Archive, Report
2011/277. https://eprint.iacr.org/2011/277, 2011.

[4] J. Fan and F. Vercauteren, "Somewhat practical fully homomorphic
encryption,” IACR Cryptology ePrint Archive, 2012:144, 2012.

[5] J.H. Cheon, A. Kim, M. Kim, and Y. Song, "Homomorphic encryption
for arithmetic of approximate numbers," Cryptology ePrint Archive,
Report 2016/421, https://eprint.iacr.org/2016/421, 2016.

[6] A. Viand, P. Jattke, A. Hithnawi, "SoK: Fully Homomorphic
Encryption Compilers”, IEEE Symposium on Security and Privacy
2021.

[71 C. Aguilar Melchor, M. Kilijian, C. Lefebvre, T. Ricosset, "A
Comparison of the Homomorphic Encryption Libraries HEIlib, SEAL
and FV-NFLIib," in: Lanet JL., Toma C. (eds) Innovative Security
Solutions for Information Technology and Communications. SECITC
2018. Lecture Notes in Computer Science, vol 11359. Springer, Cham.
https://doi.org/10.1007/978-3-030-12942-2_32, 2019.

[8] T. Lepoint, M. Naehrig, "A Comparison of the Homomorphic
Encryption Schemes FV and YASHE," in: Pointcheval D., Vergnaud D.
(eds) Progress in Cryptology — AFRICACRYPT 2014. AFRICACRYPT
2014. Lecture Notes in Computer Science, vol 8469. Springer, Cham.
https://doi.org/10.1007/978-3-319-06734-6_20, 2014.

[9] T. Maha, S. Hajji, and A. Ghazi, "Homomorphic encryption applied to
the cloud computing security," in Proceedings of the World Congress
Engineering, vol. 1, pp. 4-6, 2012.

[10] L. Ducas and D. Micciancio, "FHEW: bootstrapping homomorphic
encryption in less than a second," in E. Oswald and M. Fischlin, editors,
Advances in Cryptology — EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, So_a, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 617-640. Springer, 2015.

[11] I Chillotti, N. Gama, M. Georgieva, and M. Izabachene, "Faster packed
homomorphic operations and e_cient circuit bootstrapping for tfhe," in
Advances in Cryptology-ASIACRYPT 2017: 23rd International
Conference on the Theory and Application of Cryptology and
Information Security, pages 377-408. Springer, 2017.

[12] O. Regev, “The learning with errors problem," in Blavatnik School of
Computer Science, Tel Aviv University Invited survey in CCC, 2010.

[13] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, "A full rns variant
of approximate homomorphic encryption,” Cryptology ePrint
Archive,Report 2018/931, https://eprint.iacr.org/2018/931, 2018.

[14] Y. Polyakov, K. Rohloff, G.W. Ryan, and D. Cousins, "PALISADE
Lattice Cryptography Library User Manual (v1.10.6)", 2020.

[15] S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, and S.
Bhattacharya, "A Review of Homomorphic Encryption Libraries for
Secure Computation,"” http://arxiv.org/abs/1812.024, 2018.

[16] M. Albrecht, M. Chase, H. Chen and others, "Homomorphic encryption
standardization," homomorphicencryption.org, 2018.

[17] K. Laine, "Simple Encrypted Arithmetic Library 2.3.1," 2017.

[18] S. Halevi and V. Shoup, "Algorithms in Helib," in Advances in
Cryptology — CRYPTO 2014, J. A. Garay and R. Gennaro, Eds, Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 554-571, 2014.

[19] S.Halevi, V. Shoup, "HElib design principles," 2020.

[20] V. Shoup and others, "NTL: A library for doing number theory,"
http://www.shoup.net/ntl.

Comparison of Message Queue Technologies
for Highly Available Microservices in IoT

Marko Milosavljevi¢, Milica Mati¢, Neven Jovi¢, Marija Anti¢

Abstract— Internet of Things (IoT) solutions connect large
numbers of devices, which generate various data and control
messages asynchronously. In the IoT system cloud, these
messages need to be queued in order to control the processing
load and prevent the overload in cases of traffic bursts. On the
other hand, one of the requirements the IoT cloud needs to fulfill
is the high availability. Therefore, multiple instances of services
accepting and processing the messages generated by the devices
are needed. There are various message queue technologies
available today, but they all have their limitations. In this paper,
we compare the performance of Apache Kafka and RabbitMQ in
the scenario of the highly available IoT cloud data processing.

Index Terms— message queue; load
balancing; internet of things.

high availability;

I. INTRODUCTION

In the past decade, the world is witnessing the expansion of
Internet of Things (IoT) solutions. Within IoT systems,
different devices are connected to perform a certain function
together. IoT use-cases are various, such as smart transport,
smart fabrics, smart cities, smart homes, etc.

In order to collaborate, the devices need to be able to
exchange data such as commands and state change reports.
Although the expansion of 10T has led to the development of
technologies such as ZigBee, Z-Wave, WiFi or Bluetooth
Low Energy, which enabled the connection of many different
actuators and sensors into large local mesh networks, in order
for an IoT solution to achieve its purpose, the existence of the
cloud component is also needed. The cloud allows remote
control and monitoring of the local networks, but it can also
provide advanced features which require processing of larger
quantities of historical system data, or the interaction with
components responsible for customer management, software
update and third-party services.

As the data from the IoT system is generated
asynchronously [1], and processing it requires a certain
amount of time, mechanisms are needed to control the cloud
load. Usually, this control is achieved by deploying various
message queueing systems, that allow to communicate
between different components of the cloud, and react to

Marko Milosavljevi¢ is with OBLO Living, Novi Sad, Narodnog fronta
21a, Serbia (e-mail: marko.a.milosavljevic@ obloliving.com).

Milica Mati¢ is with the Faculty of Technical Sciences, University of Novi
Sad, Serbia (e-mail: milica.matic@rt-rk.uns.ac.rs).

Neven Jovi¢ is with OBLO Living, Novi Sad, Narodnog fronta 21a, Serbia
(e-mail: neven.jovic@ obloliving.com).

Marija Anti¢ is with the Faculty of Technical Sciences, University of Novi
Sad, Serbia (e-mail: marija.antic@rt-rk.uns.ac.rs).

RTI2.6 Page 1 of 4

messages generated by the end devices [2]. Message queuing
technologies which are available today differ in terms of the
performance guarantees they offer, and depending on the
actual use-case, metrics such as latency, disk space, RAM
memory or processor usage may be a limiting factor [2], [3].
The comparison of Kafka and Apache Pulsar has been
performed by the authors in [4], and it has been shown that,
although Apache Pulsar may achieve better results in terms of
resource usage, the maturity of the solution, available
documentation, and possibility to integrate with other data
processing tools, may be a reason to favor Kafka in the
commercial deployment scenarios. On the other hand, Kafka
and RabbitMQ have been compared in [5], to show that
RabbitMQ has its advantages in terms of the achieved
throughput on a single server instance, but the scaling options
are on Kafka’s side.

In this paper, we explore the possibility of replacing the
already implemented RabbitMQ message queueing within the
smart home system cloud [6],[7], with Apache Kafka. Within
the deployed smart home cloud, messages generated by end
devices are processed by multiple cloud services. As the
number of supported features is growing, so is the number of
the cloud services that process these messages. Also, some of
the messages need to be processed by multiple of these
services. Additionally, as the number of users grows, the
system needs to be scaled up, and, as already said, Kafka has
its advantages in this domain. The paper is organized as
follows: in Section II, the elements of smart home system and
its cloud architecture are introduced, then the overview of
RabbitMQ and Kafka is given in Section III and Section IV.
Finally, the performed tests and their results are presented in
Section V.

II. SMART HOME CLOUD DATA BUFFERING

In the existing smart home solution, the end devices within
the household use technologies such as ZigBee, Z-Wave and
ONVIF/IP to connect to the home gateway — Fig. 1. The
gateway is responsible to execute the core system logic: it
implements the middleware which represents all of the
devices in the same way, regardless of the communication
technology they use in the local network, and allows them to
work together, according to the automation rules set up by the
user. To communicate with the user applications and cloud
backend, the gateway uses MQTT protocol. MQTT conveys
commands issued by the user, system control messages, and
reports about device state changes. Control messages are
processed on the cloud side, for the purpose of system

administration, upgrade, backup and restore. Also, reports
about device state changes are stored to provide user with the
information about the history of system usage [7].

HTTP/
mMQrT

o,

s O

Fig. 1. Smart home system components and communication between them.

The observed smart home cloud system solution has the
microservice-based architecture. It is highly available (HA),
which means that the entire system is fault tolerant, i.e. that
there are multiple instances of every microservice running [6].
In order to prevent problems with MQTT messages
processing due to the overload of cloud system, or the failure
of some instances, temporary data buffering is necessary. In
the temporary data buffering module all important messages
are first queued, allowing relevant microservices to process
them at their own pace.

In the current implementation, RabbitMQ is used for the
purpose of data buffering. The incoming MQTT messages are
parsed by the B2Q (Broker to Queue) microservice, and
directed to the appropriate RabbitMQ queues, based on the
information they contain. All of the instances of one cloud
microservice share the load of processing the messages from
the RabbitMQ queue they are associated with. The problem
here represents the fact that if one message needs to be
processed in multiple ways (i.e. it is relevant as the input for
multiple cloud microservices), it has to be replicated to
multiple queues. Therefore, in this paper we explore the
possibility of replacing RabbitMQ with Apache Kafka. We
implement the B2K (Broker to Kafka) microservice, which
publishes messages to Kafka queues, that the processing
microservices are subscribed to, and we compare the
performance of the two implementations.

A. RabbitMQ

RabbitMQ is a message queue manager, which has
originally implemented the Advanced Message Queuing
Protocol (AMQP). Later it was extended to support Streaming
Text Oriented Messaging Protocol (STOMP), Message Queue
Telemetry Transport (MQTT), and other protocols, but
AMOQP remains the default and the most widely used one.

RabbitMQ messages can convey any kind of information,
from a simple text message to a message with information
about processes important for the system. Message broker
stores the message into the queue, until the application fetches

RTI2.6 Page 2 of 4

it for processing. Message queuing allows web servers to
avoid the overload, as they can control the number of the
messages that are processed simultaneously. It is also useful
for distributing messages to multiple consumers sharing the
load and providing fault tolerance.

J

=3

Queue A

\/ i,‘= Exchange

8,
Producer "ol

awd?

e

‘Consumer

3

Queue B

Fig. 2. RabbitMQ message delivery mechanism.

Producer applications create the messages, but the
messages are not published directly to a queue. First, the
producer sends the message to the RabbitMQ exchange
running on the broker — Fig. 2. The exchange is responsible
for routing the messages to different queues, based on the
configured bindings and routing keys. Four types of
exchanges exist - direct, topic, fanout and headers exchange.
In the direct exchange, the message is routed to the queue
whose binding key matches the routing key of the message.
The topic exchange does a wildcard match between the
routing key and the routing pattern specified in the binding.
The fanout exchange routes messages to all of the queues
bound to it. The headers exchange uses the message header
attributes for routing. Consumers subscribe to the queues and
process the messages from them. All consumers subscribed to
the same queue will share the load of processing the messages
from that queue. The messages are deleted from the queue
after processing.

B. Apache Kafka

Apache Kafka is an event streaming platform. It is elastic,
distributed, highly scalable and fault-tolerant. Similar to
RabbitMQ, Kafka has the client and server side. Kafka clients
and servers communicate using TCP protocol.

Kafka implements the publish/subscribe mechanism, and
allows processing streams of events as they arrive into the
system or retrospectively, but also allow to store streams of
events as long as they are needed.

Consumar gravp 1

Consumer graup

Fig. 3. Kafka message processing mechanism.

Similar to RabbitMQ, the Apache Kafka clients can act as
producers and consumers — Fig. 3. Producers represent client
applications that write (publish) events to Kafka. On the other
hand, consumers are subscribing to topics, reading and writing
events. Producers and consumers are not aware of each other.
They work completely independently, and that is a key design
to achieve high scalability. Therefore, producers will never
need to wait for consumers.

When data is written to Kafka, it is written in the form of an
event containing the key, value, timestamp and optional
metadata. Events are stored in topics. The durability of events
inside Kafka’s topic is configurable. Unlike RabbitMQ, Kafka
events can be read whenever they are needed, because events
are not deleted after consumptions. Events can be stored as
long as needed. Storing data for a long time does not affect
Kafka.

Topics in Kafka are partitioned, and one Kafka topic can
have any number of partitions defined in the Kafka
configuration file. Events are ordered inside the partition in
the exactly same order as they were written, and one
consumer can process data from one partition only. However,
the data stored in one partition can be processed by multiple
consumers belonging to different consumer groups, i.e. one
message can be processed multiple times, without the need to
duplicate it. Offset is an integer number that is used to
maintain the current position of a consumer inside partition.
Every topic can be replicated, so that there are dozens of
brokers that have a copy of data. This makes data fault-
tolerant and highly-available.

III. TESTING AND RESULTS

Tests were designed to measure CPU load of smart home
system servers when RabbitMQ and Apache Kafka are used
for data buffering. RabbitMQ and Kafka brokers were run on
the 8-core Intel i7 processor with 8 GB of RAM memory.

TABLE I
RABBITMQ TEST RESULTS

presented in Table 1.

RabbitMQ reached CPU limit after 16 consumers, but was
able to continue working stably, while the setup with 32
consumers stopped working after ten minutes. The throughput
of the system was approximately 11000 messages per second.
Maximum CPU usage was 800%, i.e. all eight cores were
used 100%.

To test Kafka performance, 16 producers were created,
which published to the variable number of partitions (32, 64,
128). Since Kafka allows only one consumer per partition, the
number of consumers was also varied from 0 to 128. Test
results are presented in Table II.

In any of test cases limit of Kafka maximum CPU load was
not reached. It can be observed that the CPU usage deviation
is smaller than in RabbitMQ case. Therefore, the server stays
stable, even as the number of messages that are stored in
Kafka increases with time.

TABLE II
KAFKA TEST RESULTS

CPU usage on 8 cores [%]
average maximum deviation

Setup

16 producers
32 partitions 210 573 65
0 consumers

16 producers
32 partitions 202 347 43
32 onsumers

16 producers
64 partitions 186 473 90
0 consumers

16 producers
64 partitions 208 360 37
64 consumers

16 producers
128 partitions 150 300 93
0 consumers

16 producers
128 partitions 480 553 53
128 consumers

CPU usage on 8 cores [%]

Setup

average maximum deviation

16 producers
8 queues 324 640 108
0 consumers

16 producers
8 queues 410 794 197
8 consumers

16 producers
8 queues 486 800 167
16 consumers

16 producers

8 queues 553 800 147

32 consumers

To test the RabbitMQ buffering, 16 producer B2Q
processes were created, that published messages to 8 queues.
The messages from these queues were processed by a variable
number of consumers (0, 8, 16, 32). Producers were
configured to publish messages every 1 ms. Test results are

RTI2.6 Page 3 of 4

IV. CONCLUSION

This paper gave a brief description of some of the message
queueing technologies that can be used for flow control and
load balancing in the IoT scenario. RabbitMQ and Apache
Kafka were deployed within the smart home system cloud,
and their performance was tested for a variable number of
consumers.

The presented test results indicate that data buffering in
Kafka is highly stable and has the lower average CPU usage.
At any point of testing, maximum CPU usage was never
reached. Therefore, in our further work we will focus on
integrating Kafka in the data collection and storage module of
the smart home system. Using Kafka will allow us to process
the same messages multiple times, without the need to
duplicate data. This, in turn, opens the possibility to create
advanced data processing scenarios which may bring added
value to the users of the smart home system.

V. ACKNOWLEDGMENT

This research (paper) has been supported by the Ministry of

Education, Science and Technological Development through

the project no.

451-03-68/2020-14/200156: “Innovative

scientific and artistic research from the FTS (activity)
domain”.

(1]

(2]
[3]

REFERENCES

F. Metzger, T. HoBfeld, A. Bauer, S. Kounev and P. E. Heegaard,
“Modeling of Aggregated IoT Traffic and Its Application to an IoT
Cloud,” Proceedings of the IEEE, vol. 107, no. 4, pp. 679-694, April
2019

G. Fu, Y. Zhang and G. Yu, “A Fair Comparison of Message Queuing
Systems,” IEEE Access, vol. 9, pp. 421-432, Jan. 2021

H. Wu, Z. Shang and K. Wolter, “Performance Prediction for the
Apache Kafka Messaging System,” Proc. of IEEE
HPCC/SmartCity/DSS, Aug. 2019

RTI2.6 Page 4 of 4

(4]

(3]

(6]

(7

S. Intorruk and T. Numnonda, “A Comparative Study on Performance
and Resource Utilization of Real-time Distributed Messaging Systems
for Big Data,” Proc. of IEEE/ACIS International Conference on
Software Engineering, Artificial ~Intelligence, Networking and
Parallel/Distributed Computing (SNPD), July 2019

P. Dobbelaere and K. S. Esmaili, “Kafka versus RabbitMQ: A
comparative study of two industry reference publish/subscribe
implementations: Industry Paper,” Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems
(DEBS '17), June 2017

M. Mati¢, E. Nan, M. Anti¢, S. Ivanovi¢ and R. Pavlovi¢, “Model-
Based Load Testing in the IoT System,” Proc. of International
Conference on Consumer Electronics (ICCE-Berlin), Sept. 2019

S. Ivanovi¢, M. Anti¢, L. Papp, N. Jovi¢, “Data Acquisition, Collection
and Storage in Smart Home Solutions,” Proc. of 6th International
Conference on Electrical, Electronic and Computing Engineering
(IcETRAN), May 2019

Design of a Network Topology Using
CISCO NSO Orchestrator

Mioljub Jovanovic
Wireless Communications Research

Milan Cabarkapa
Department of Telecommunications

Djuradj Budimir
Wireless Communications Research

Group School of Electrical Engineering Group
University of Westminster University of Belgrade University of Westminster
London, UK. Belgrade, Serbia. London, UK.

Cisco Systems, Diegem, Belgium
m.jovanovic@my.westminster.ac.uk
mjovanov@gmail.com

Abstract— This paper presents the design of a network topology
using CISCO NSO orchestrator. The mismatch problem
solution between a network service and its monitoring is
proposed. Applying the proposed approach, the telemetry
efficiency ratio parameter greater than 40 is achieved. All tests
are performed in the real experimental conditions using CISCO
NSO orchestrator.

Keywords—intent based network; intent-aware monitoring
agent; model-driven telemetry; service assurance

I. INTRODUCTION

NFV orchestrators (e.g., Tacker [1], Cloudify [2], ONAP
[3], CISCO NSO [4]) are a crucial part for the dynamic and
optimal management and orchestration of various virtualized
network resources (e.g., VMs, Virtualized Network
Functions). 5G technology, empowered by NFV and SDN,
presents a new dimension of complexity that must be
addressed by service assurance [5].

Using these orchestration software having higher level of
abstraction, the rapid connectivity and provisioning could be
achieved at lower prices while letting to operators possibility
to build, arrange and preserve network service [6], [7].

Communication Service Provider (CSP) networks — such
as Virtual Evolved Packet Core are subject to very dynamic
configuration change. Provisioning, modification and
termination of packet data services are being done in rapid
pace in order to keep up with dynamic environment needs and
cater to main business drivers, such as 10T, Video etc. SDN
technologies using Network Slicing approach are foundation
for such a dynamic environment, allowing automated and
programmatic configuration of network services [5].

Traditionally network services are being monitored by
deployment of probes which generate traffic and provide
feedback on the status of the service. Due to such rapid
changes in network service configuration there is open
question in regard to monitoring and assuring provisioned
services: What is the right approach to take in order to monitor
the network which constantly changes? How to ensure
network service is operational and carefully selecting probes
to monitor network service? [5], [8].

Monitoring using active probes face challenges such as
introduction of synthetized traffic within the data flow, end to
end monitoring only with no understanding of the data path,

XXX-X-XXXXK-XXXXK-XIXXI$XX.00 ©2021 IEEE
RTI3.1 Page 1 of 4

cabmilan@etf.rs

School of Electrical Engineeing
Univrsity of Belgrade, Serbia.
d.budimir@wmin.ac.uk
d.budimir@etf.rs

lack of comprehension of the configuration intent etc [9]-[11].
Generated traffic using probes should resemble real traffic of
the network service, however even with almost perfect
synthetized traffic, there is substantial possibility that real
network service traffic could be impacted, but probe does not
detect such a problem since probe is not part of the actual real
data flow [12]. Therefore, there is a gap in regard to
monitoring and assurance of the actual network service data
flow, with all network elements data traverses on the path
between endpoints.

We are proposing solution based on Intent Based
Networking (IBN). The proposed approach consists by:

. Extraction of configuration intent by analysing of the
network service configuration.

. Discovery of the network elements along the
network service data path.

. Leveraging existing network monitoring capabilities
of network elements, along with probes and Model Driven
Telemetry (MDT) to get more accurate information on the
status of desired Network Service.

Research methodology used in understanding benefits of
proposed monitoring approach involves qualitative approach,
comparative analysis of existing - probe based monitoring and
proposed solution based on Intent Based Networking (IBN).
By using the proposed approach, we have achieved higher
than 40 for the telemetry efficiency ratio parameter.

Il. INTENT BASED NETWORK METHODOLOGY

Role of Intent Based Network is transforming Business
Intents into configuration changes. As depicted in Fig. 1,
Intent at high level represents one or set of different
requirements which describe service or network.

mailto:m.jovanovic@my.westminster.ac.uk
mailto:m.jovanovic@my.westminster.ac.uk
mailto:d.budimir@wmin.ac.uk
mailto:d.budimir@wmin.ac.uk

Business Requirements
Intents

¥

Intent
Based
Network

Automation

Machine Learning

L

Configuration changes

Fig. 1. Intent Based Network — high level description

Those requirements are then being analysed by set of steps,
processes or algorithms in order to convert/render high-level
requirements into lower form of abstraction, which could then
be used to configure computer network elements in order to
enable needed service. As business intent is being transformed
into configuration on devices it’s important to enable
monitoring of the network services in order to have
understanding whether desired service is operational and
functioning in accordance to the business requirements — key
performance indicators (KPIs). As graphically demonstrated
in Fig. 2, traditionally in legacy network such monitoring
would mean enabling monitoring on different data points
including but not limited to: SNMP, Netflow/SFlow,
telemetry and even Command Line Interface outputs (CLI).
Acquiring data from different sources would certainly
improve visibility on the state of the network, yet it would
greatly impact efficiency and would aplify amount of
telemetry data transferred over the network, but without
providing clear answer on whether the intent has been fulfilled
and whether network service is running and operational as per
pre-defined KPIs [13].

Too much data, yet insufficient information

>
6

Is the network service running?

Fig. 2. Main query is - Is the Network Service running according to the
pre-defined KPIs?

I1l. EXPERIMENTAL SETUP

Experimental setup consists of the following routers:
Simulated customer premises routers (CE), provider core
routers (P) and provider edge routers (PE). Fig.3, shows the
network with service models which is configured using the
orchestration network architecture.

RTI3.1 Page 2 of 4

Fig. 3. Business Intent communicated to the orchestrator

In Fig. 4 orchestrator is configuring devices in order to
fulfil desired service intent. Orchestrator uses Netconf
protocol to access and configure network elements which are
taking part in the data path to enable desired service.

e

Fig. 4. Orchestrator sends configuration to network devices

In the provided example, actual intent is to establish
communication — tunnel service between ce-1 and ce-3
network device in order to enable communication between
Client-1 and Client-3. In order to traverse path between
Client-1 and Client-3, data packets need to cross pe-1, p-2 and
pe-3 as shortest path between the endpoints. Of course, this
trajectory may be different in function of routing protocols and
connectivity in function of time, but topology discovery and
update events will be discussed in future work. At this time,
we are focusing on the fixed path through the experimental
network and assuming there would not be topology changes
throughout the experiment shown in Fig. 5.

Fig. 5. Service is configured. Question: Service running within
acceptable KPIs? Question: Is configuration model mapped to monitoring
model?

In Fig. 6 we can observe each of the network devices
streaming telemetry data to the collector, monitoring platform
which is receiving and processing all telemetry data.

(111

Fig. 6. Telemetry data streamed to Monitoring/Analytics platform.
250000 different stats per router (740 kbps of data)

Thanks to the fact involved network elements are already
using Model Driven Telemetry processing data points by
collector is simpler. However, as there are so many different
data points which are being monitored on devices, there may
be information overload since on average router there could
easily be 250000 different monitored data points. Such as
large number of collected data points could essentially mean
that amount of generated telemetry data may be significantly
high and could pose challenge for network infrastructure as
well as could cause impact to collector processing capacity.

Instead of monitoring all relevant and non-relevant data
points, causing unnecessary increase of traffic and compute
resources to process large amount of data, we’re proposing
significant reduction in amount of telemetry data by ensuring
that only minimal set of relevant data points is exported from
the network devices by means of intent-aware monitoring
agent (IAMA). Data reduction task is accomplished by
deploying IAMA locally to the network devices, thus
leveraging local area network (LAN) links and avoiding use
of wide-are links (WAN) for large amount of data points.
IAMA is aware of the service details and is also capable of
receiving telemetry data. As represented on IAMA
architecture in Fig. 7, service intent is received by from the
orchestrator while MDT is received from network devices.

' ¢

Export Statuses and

Metrics

Compute Status

o

Collect Metrics

1 1 i

-
> Servica 1 Sorvice2

Fig. 7. Intent-aware monitoring agent architecture

IAMA is performing analysis on the received datasets and
series of computations in order to determine actual state of the
service. Steps performed by IAMA: collecting MDT,
processing and exporting reduced — yet more relevant MDT is
called IAMA pipeline. Final result of IAMA pipeline is
significantly reduced amount of MDT containing only high-

RTI3.1 Page 3 of 4

level status of the monitored service, as per pre-defined Key-
Performance Indicators (KPIs).

IV. RESULTS

Measuring objective was to determine how much data is
actually received via MDT under usual telemetry export, with
typical data points for router such as environmental, interface
stats etc. Result of this work outlines amount of measured data
after performing analysis of the incoming telemetry and
mapping to service aware MDT. All routers and all incoming
data points were taken into account.

TABLE I. EXPERIMENTAL RESULTS
Intent-Aware Monitoring Efficiency
Total Rate 1 Rate 5 Rate 15 min
MB min in min in in kbps
kbps kbps
Incoming from | 51, 740.7 700.1 7117
routers
This work 130.8 173 17.2 171
Outgoing to
Analytics 2249 29.5 29.1 29.3
platform
Thiswork 1 459 428 40.6 417
efficiency ratio

As outlined in Table I, demonstrated experimental results
have reduced the amount of incoming MDT from routers from
5.2 GB to 130 MB, while preserving relevant information
which is — is service running and operational per pre-defined
KPlIs.

V. CONCLUSION

The design of a network topology using CISCO NSO
orchestrator has been presented in this paper. The solution
about mismatch problem between a network service and its
monitoring has been proposed. The telemetry efficiency ratio
parameter of more than 40 has been achieved. The amount of
telemetry data has been reduced by injecting service aware
information in MDT and removing all overhead MDT data
points which do not need to be exposed to the network
operator who is monitoring the service. Of course, full MDT
can also be enabled if desired.

REFERENCES

[1] https://docs.openstack.org/tacker/latest/

[2] https://cloudify.co/

[3] https://www.onap.org/

[4] https://www.cisco.com/c/en/us/solutions/service-provider/solutions-
cloud-providers/network-services-orchestrator-solutions.html

[5] Anil Rao, “Reimagining service assurance for NFV, SDN and 5G”,
White paper, Analysis Mason, 2018.

[6] R. Mijumbi, J. Serrat, J. I. Gorricho, S. Latre, M. Charalambides, and
D. Lopez, “Management and Orchestration Challenges in Network
Functions Virtualization,” [EEE Communications Magazine,vol. 54,
no. 1, pp. 98-105, Jan 2016.

[71 A.J. Gonzalez, G. Nencioni, A. Kamisiski, B. E. Helvik, and P. E.
Heegaard, “Dependability of the NFV Orchestrator: State of the Art
and Research Challenges,” IEEE Communications Surveys Tutorials,
pp. 1-23, 2018.

[8] M. Pattaranantakul, R. He, Z. Zhang, A. Meddahi and P. Wang,
"Leveraging Network Functions Virtualization Orchestrators to
Achieve Software-Defined Access Control in the Clouds," in IEEE

(9]

[10]

[11]

Transactions on Dependable and Secure Computing, pp. 1-14, Nov.
2018.

A. D’Alconzo, 1. Drago, A. Morichetta, M. Mellia and P. Casas, "A
Survey on Big Data for Network Traffic Monitoring and Analysis," in
IEEE Transactions on Network and Service Management, vol. 16, no.
3, pp. 800-813, Sept. 2019.

R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F.
Estrada-Solano, and O. M. Caicedo. A Comprehensive Survey on
Machine Learning for Networking: Evolution, Applications and
Research Opportunities. J. Internet Serv. Appl., 9(16), 2018.

Cisco Systems, Inc, “GitHub Network Telemetry Pipeline,” Cisco
Systems, Inc, 2017. [Online]. Available:
https://github.com/cisco/bigmuddy-network-telemetry-pipeline

RTI3.1 Page 4 of 4

[12]

[13]

M. Jovanovié, M. Cabarkapa, B. Clause, N. Neskovi¢, M. Prokin, B.
Durad, Model driven telemetry using Yang for next generation network
applications, 5th International Conference on Electrical, Electronic and
Computing Engineering (ICETRAN) 2018, pp. 1186 - 1189, Pali¢,
Serbia, June, 2018.

B. Claise, J. Clarke, and J. Lindblad “Network Programmability with
YANG: The Structure of Network Automation with YANG,
NETCONF, RESTCONF, and gNMI”, Addison-Wesley Book, 1st
edition, 2019.

Visualization of microscopic morphological
characteristics used for determination of
Infectious molds

Mina Milanovi¢, Aleksandar Milosavljevi¢ and Marina Randelovi¢

Abstract—Invasive fungal infections (IFI) and systemic
fungal infections (SFI), caused by molds are on the rise,
based on data from literature. Diagnostics of those
infections can sometimes be inefficient; they require a
longer period of time in laboratory procedures and
sometimes may lead to late diagnosis or misdiagnosis, which
can result in patient’s critical condition or even mortality.
The goal of this research is to develop a neural network
model that will perform identification of molds, and thus
accelerate the process of diagnostics. A classifier has been
developed, using an EfficientNet-B1 deep convolutional
neural network (CNN) and sample images obtained at the
Department of Microbiology and Immunology, Medical
faculty, University of Ni§, Serbia, archives. We applied
Grad-CAM visualization to determine morphological
characteristics used by the model to classify samples.

Index Terms—molds identification, fungal infection,
convolutional neural networks, deep learning, Grad-CAM.

. INTRODUCTION

Ability of fungus to start a pathological process in the
host organism is as a specific phenomenon, according to
numerous authors, because, excluding groups of
dermatophyte molds and tropical fungi, these
microorganisms does not need pathogenicity for their
dissemination and survival in nature [1]. Among 400.000
species of fungi known in the nature, around 50 kinds can
cause invasive fungal infections(IFl), that are
characterized by very high morbidity (serious clinical
case) and mortality. Numerous reasons have contributed
to the increase of number of infections among humans,
and incidences of IFI caused by molds are constantly
growing. The most important reasons are complex
procedures and medical interventions, intensive
treatments with antibacterial drugs, cytostatics,
immunosuppressants; longer lifespan of a humans,
increase in the number of patients at high risk due to
primary diseases and treatment, the appearance of
resistance in fungi and certainly the establishment of
mycological analyzes and higher diagnostic efficiency,
i.e. more successful diagnostic procedures in a
microbiology [2].

Mina Milanovi¢ — Faculty of Electronic Engineering, University of
Ni§, Aleksandra Medvedeva 14, 18000 Nis, Serbia (e-mail:
mina.milanovic@elfak.rs).

Aleksandar Milosavljevi¢c — Faculty of Electronic Engineering,
University od Ni$, Aleksandra Medvedeva 14, 18000 Nis, Serbia (e-
mail: aleksandar.milosavljevic@elfak.ni.ac.rs).

Marina Randelovi¢ - Department of Microbiology and Immunology,
Medical faculty, University of Nis, Blvd Zorana Djindjica 81, 18000
Nis, Serbia (e-mail: marina87nis@gmail.com).

RTI3.2 Page 1 of 5

Fungi are eukaryotic microorganisms. In nature, they
are widespread, living in soil and water, on organic
materials as saprophytes, as symbionts or parasites of
animals, plants, or human [3]. Based on the structure, all
fungi can be primarily divided into yeasts -unicellular
fungi with basal cell blastoconidia (blastospora) and
multicellular fungi (molds) with a basic hypha cell.
Molds classification is performed on the basis of
structure, i.e. macroscopic and microscopic
morphological characteristics. Differences between the
morphology of molds, hypha structure, production of
different conidiae (spores), enable a diagnostic procedure
for their identification [4].

This goal of this project is to develop a neural network
model that will perform identification of molds, and thus
accelerate the process of diagnostics. No similar projects,
involving determination of molds or their morphological
characteristics, could been found during our research, and
beside some rapid tests that can be used only for most
common types of infections, whole process of
determination is manual and sometimes takes days, so
providing an application that can accelerate the process
can be very beneficial. During recent years, number of
infections caused by more rare species of fungi has
drastically increased, which was a motivation for a
project like this, which includes classification of so far
neglected types of fungi.

Sample collection has contained high resolution
images, which needed manual preparation for training, as
described in chapter Il. Prepared dataset was expanded
before training and EfficiencyNet-B1 architecture of
convolutional neural network (CNN) has been used for
developing and training the model, which makes the core
of the classifier, as presented in chapter Ill. Results and
discussion of the results, including visualization of
decision making process using Grad-CAM method, have
been shown in chapter IV. Conclusion and planned
further steps have been described in chapter V.

Il. DATA

A. Dataset description

Fungi, based on morphology are classified in group of
yeasts -unicellular fungi with basal cell blastoconidia
(blastospora) and multicellular fungi (molds) with a basic
hypha cell. Molds can be primarily divided into
dermatophytic and non-dermatophytic fungi [5].

Dermatophytic molds, in other words, dermatophytes,
are causative agents of superficial fungal infection of
skin, hair and nail with prevalence of 22-25% worldwide.

Other group of molds caused invasive fungal infection
(IF1) and in recent years incidence of these diseases has
been on the rise [6].

Diagnostics of infections caused by dermatophytic
and non-dermatophytic fungi can sometimes be
inefficient; they require a longer period of time in
laboratory procedures and sometimes may lead to late
diagnosis. In case of SFI (systemic fungal infection) late
diagnosis or misdiagnosis can lead to wrong treatment, as
well as not implementing measures for preventing the
spread of infection [7]. On the other hand late diagnosis
or misdiagnosis of IFI can result in patient’s condition
impairment or even mortality. In our previous paper [8],
we considered only fungi genera that cause invasive
infections, but we extended the dataset so types of fungi
that cause systematic fungal infections are included too.

In both groups molds classification was performed on
the basis of structure, i.e. macroscopic and microscopic
morphological characteristics. Expert’s knowledge and
experience are needed for differentiation and
identification of isolated fungi in laboratory practice.

B. Morphologial differences of fungi

Microscopic morphological
Dermatophytes are:
i) Microsporum spp. are characterized by

segmented hyphae, numerous macroconidiae that are
thick walled, rough, present microconidia;

ii) Trichophyton spp. are characterized by
segmented hyphae, rare macroconidiae that are thin
walled and smooth, numerous microconidiae;

iii) Epidermophyton spp. are characterized by
segmented hyphae, numerous macroconidiae that are
thin and thick walled, smooth and microconidiae are
not formed.

characteristics of

Microscopic morphology of
genera is characterized by:
i) Aspergillus spp.: Septate hyphae with unbranced

conidiophores which ending with swollen vesicule
that is covered with flak-shaped phialides on which
are chains of mostly round sometimes rough conidia;
ii) Penicillium spp.: Septate hyphae with branched
or unbrenched conidiophores that have secondary
branches known as metulae or prophialides on which
are phialides with chains of conidiae (Figure 1);

iii) Fusarium spp.: Septate hyphae with formation
of canoe shaped or sickle shaped multiseptate
macroconidia that are produced from phialides on
unbranched or branched conidiophores;

iv) Alternaria spp.: Septate, dark hyphae with
septate conidiophpores and formation of large
macroconidiae which have transverse and
longitudinal septations;

non-dermatophytic

RTI3.2 Page 2 of 5

v) Mucor spp.; Wide and practically non-septate
hyphae, speorangiophores are long, often branched
and bear terminal round spore-filled sporangia.

£

Figure 1. Penicillium morphology

C. Preparation of dataset images for training

Machine processes a picture as an array of pixels and
numbers, so classification of images can be a rather
difficult job, especially in cases where brightness is not
the best, position of camera changes or the object is not
fully present on the picture, which doesn’t present a
problem for a person. But, like a human, machine learns in
the same manner, with examples of different categories
with labels, so it eventually can recognize the patterns on
the images.

For our model, we extracted examples of eight fungal
genera, which are Aspergillus spp., Fusarium spp.,
Epidermophyton spp., Alternaria spp., Microsporumspp.,
Penicilliumspp., Trichophytonspp. and Mucorales spp.
(Figure 2). Images have been made at the Department of
Microbiology and Immunology, Medical faculty,
University of Nis, Serbia, laboratories, where molds have
been isolated from patient materials, examined on
microscopes and then photographed.

>

N "o ™
: 7vf,~4§

Aemana

Miromorum R srium Epldermophyton Aspergiius

Penlolilium Micordes

Tricho phyton

Figure 2. Examples of the dataset images

After preparing the images, which includes manually
cutting the high resolution (3024 x 4032 pixels) sample
images obtained from Department of Microbiology and
Immunology and selecting ones which contain significant

molds parts, it is necessary to determine which percentage
of them will be used for training, and which for
evaluation, since these sets have to be different so results
of evaluation can be regular. After manual preparation,
there were 6918 images, from which we used around 80%
for training and the rest of the images (20%) for
evaluation. In Table I, details of dataset used for training
are presented.

TABLE |
Details of used dataset
Number | Number | Number | Number of | Images Images
of of od images used for | used for
classes samples | samples after training | validation
per preparation
class
8 492 50-65 6918 5603 1315

IIl. METHOD DESCRIPTION

For a neural network to learn to recognize certain
patterns in images, it is necessary to create examples so it
can learn from them. Sample images of patient materials
with molds are high resolution, taken on microscopes, and
they have to be cut, because of the GPU limitations when
it comes to neural network training, and also to make
more examples for network to learn. To obtain small
resolution images, it was necessary to cut original images
into the set of smaller images, suitable for training. After
cutting the images, and manually eliminating the ones that
don’t contain mold patterns, it was decided to expand the
dataset so examples can be more informative.

Operations that are used on the images to widen the
dataset and provide multiple examples from one image are
called augmentations [9]. Using different brightness,
rotation, translation, flipping of the images, etc., we made
more examples for training (Figure 3). In the end of this
process, dataset became more informative and training
could be started.

- -
0

I s
B 5 [
EaE
2 B
% NN

Figure 3. Augmentation of an image gives more images for training

- saffd
R

Image classification is a very common problem, present
in many different fields of expertise, and traditional
approach to this problem is crafting a feature extractor that
can be used for training a classifier [10-13]. Earlier
solutions used artificial neural networks (ANNs) [14], but
major advantages in this area have been made in recent
years with development of convolutional neural networks
(CNNs) [15]. CNNs represent an aggregation of three
architectural ideas, local receptive fields, shared weights

RTI3.2 Page 3 of 5

and spatial subsampling, which makes them more
consistent in terms of translation and distortion [16].

During recent years, many different types of
convolutional neural network architectures have been
developed, but the one that gave the best result while
training our model is EfficientNet. EfficientNet has a
family of models (B0 to B7) and during training we tried
various variants, where B1 showed the best results, based
on accuracy measured. This models, introduced in 2019,
by Tan and Le [17], are among the most efficient models,
and their innovation lays in heuristic way to scale the
model (compound scaling), making them a good
combination of efficiency and accuracy [18].

Unlike conventional scaling methods (b-d on Figure 4)
that arbitrary scale a single dimension of the network,
compound scaling method uniformly scales up all
dimensions. In this method, appropriate scaling
coefficients are determined with grid search, which
discovers relationships between different scaling
dimensions. Applying those coefficients to baseline
network gets the desired target model size [19].

—

= wider- -

#channels
' - ' wider

deeper
deeper

| | &5
| - [| 1

H T~ higher «higher
} resolution HxW

¢+ resolution * resolution

(a) baseline (b) width (c) depth (d) resolution (&) compound

scaling scaling scaling scaling

Figure 4. Comparison of different scaling methods [17]

Programming language Python [20] and library Keras
have been used for training the model. Keras library [21],
implemented in Python, has an interface which can be
used for creating and training neural network models,
including EfficientNet family. Keras is a deep learning
API, running on top of the machine Ilearning
platform TensorFlow [22]. They were developed with a
focus on enabling fast experimentation.

[SAMPLE DATASET OBTAINED 1
L FROM ARCHIVES)

PICTURES
MANUALLY
CUTTING IMAGES
INTO SMALLER
ONES

DATASET
OF

SMALLER
IMAGES
-

MANMUALLY
ELIMINATING NON-
VALID EXAMPLES

SAMPLE
IMAGES

DATA
AUGMENTATION

EXTEMDED
DATASET

EfficientNetB1
ENCODER

FEATURE
VECTORS

VISUALIZATION
Figure 5. Solution diagram

Model has been compiled with RMSprop algorithm
[23] for optimization (optimizers ~ module),

sparse_categorical_crossentropy type of error (losses
module), and the only parameter of metric during learning
has been set as accuracy.

EfficientNet-B1 architecture model makes the core of
this solution. After training of this model, feature vectors
are obtained, which are then used to form a classifier.
Classifier can then be used to determine which of 8
classes of molds new input images belong to. Diagram of
current solution is shown in Figure 5.

Adjusting parameters of Keras functions and starting
the training with different number of epochs, results at
these phase of the project show that the trained model
after twenty one epochs gives the best results, with
95,74% validation accuracy in classification of images
(Figure 6). In our previous paper [8], with a slightly
different (including only invasive fungi infections) and
drastically smaller dataset, we got the accuracy of around
92%, which shows that we reached a very good
improvement with new model. Also, in our previous work
we haven’t tried EfficientNet neural networks, which gave
the best accuracy for our, now expanded, dataset.

Classification accuracy 95.74%

05% 16% 0.5% - 80

Aspergilus 13% 58% 19%

Epidermophyton { 1 1.2% 1.8%

60

Fusarium

True label

Microsporum

40
Mucorales

Penicillium

Trichophyton 20

Predicted label

Figure 6. Confusion matrix showing accuracy in %

IV. RESULTS AND DISCUSSION

Because of specific nature of the dataset and sample
making, model has not been compared and tested with
other datasets or models. In Table Il, average results for
each fungi genera have been presented.

TABLE Il
Results for different fungi genera
Fungi genera spp. Accuracy [%] Samples placed
correctly/samples per
class

Alternaria 96,7 177/183
Aspergillus 89,7 139/155
Epidermophyton 95,1 155/163
Fusarium 99,3 1447145
Microsporum 98,8 166/168
Mucorales 98,8 161/163
Penicillium 93,2 151/162
Trichophyton 943 166/176

After validation of the model, it has also been tested
manually, showing that the results for most images are
accurate. Figure 7 shows confusion matrix, which contains

RTI3.2 Page 4 of 5

accuracy results per classification class, showing
problematic areas too. The most misclassifications
happened for Apergillus spp. genera, for which we had the
least number of clear images, which points out that more
images have to be obtained or existing images should be
sharpened, so better accuracy can be achieved.

160
Misclassified 56 out of 1315 specimens

Alternaria 140

Aspergilus

Epidermophyton

100
Fusarium

True label

Microsporum 80

Mucorales
60

Penicillium - 7 2 1 - 1

40
Trichophyton{ - 1 - 1 - 1 7

3 20
&
&

Predicted label

Figure 7. Confusion matrix

Taking into consideration that neural networks learn
from examples, from which they learn patterns, and that
some sample molds images contain not only significant
parts used for diagnostics, but also other parts of materials
(for example plain parts of the branches, end of slides on
the microscope, different base colors) it is important to
verify those learned patterns to be sure that classification,
and later diagnostics, performed by the model is valid.

Grad-CAM method is a technique used for
visualization of decisions from CNN models, making the
decision making process transparent and understandable
[24]. This method uses gradients of a target concept (in
our cases molds) flowing into final convolutional layer in
a network, so it can highlight regions of significance. This
way, part of the image which had lead to decision of the
classifier is highlighted.

Based on the majority of heat maps got from Grad-
CAM method, decisions made by our classier have been
done on significant parts of mold samples. Figure 8 shows
the examples.

| \i - ;5&v

b} W)
s
: ' i, ','J-’/.
il)
Vol &b
' : |
" 4

Figure 8. Examples of good pattern recognition visualization

Grad-CAM method is very useful in terms of
concluding which of the test images have been
misclassified because of the wrong pattern recognition in
wrong part of the image (Figure 9). In our case, most of
the misclassification happened because of poor quality of
input images, because some of them are taken by mobile
phones brought close to the microscope oculus, which can
result in blurry image. In this way, visualizing the decision
making process pointed out that maybe images should be
sharpened before processing.

Figure 9. Examples of bad pattern recognition on blurry samples

V. CONCLUSSION

In this paper, we described developing a identification
model which, based on accuracy results and testing,
presents a solid base for developing an application that
can be used in practice and drastically accelerate the
process of diagnostics.

Grad-CAM method used to visualize the decision
making process has proven to be a very efficient method
of evaluation of the model, not only in terms of validating
the “thinking” process of the classifier, but to point out
flaws and cases where errors happen.

Future development of the model and application will
involve developing an algorithm that can reach the
decision based on high resolution photo, from which
number of smaller images will be cut, and then
classification will be performed on each of the small
sample images. This approach will increase precision of
the diagnostics, since the decision will be a ruling of the
mayor, rather than determination based on one small
sample.

ACKNOWLEDGMENT

We would like to thank the Department of
Microbiology and Immunology, Medical faculty,
University of Ni§, Serbia, for all resources, samples and
advices given during the work on this project.

REFERENCES

[1] Tasi¢ S, Pesi¢ S: Gljiviéneinfekcije, dijagnoza | mogucénosti
terapije, Punta Ni§, Medicinski fakultet Ni§, 2006 (odluka
nastavno nauénog veéa 14-376-5/2-2, 2006, udzbenik) R-12-5 M-
44-2.

[2] Oftasevi¢ S, Tasi¢-Miladinovic N. Tasi¢ A: Medicinska
parazitologija-udzbenik sa CD-om. Univerzitet u Nisu- Medicinski
fakultet Ni§ 2011 14-6735-6/2-4 2011.

[3] Valentina Arsi¢-Arsenijevi¢, Marina Milenkovi¢, SuzanaOtasevic,
Dusan Pavlica. Medicinska mikologija i parazitologija. Drustvo
medicinskih mikologa Srbije, Centar za inovacije u mikologiji
Beograd, V. Arsi¢-Arsenijevi¢, Beograd 2012. ISBN 978-86-
915391-1-5.

[4] Davise HL. Medically important fungi-a guide to identification,
3rd edn. Washington: American Society for Microbiology; 1995.

RTI3.2 Page 5 of 5

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

S Tasi¢-Otasevic , M Golubovi¢, S DPeni¢, A Ignjatovi¢c, M
Stalevi¢, S Momcilovi¢, M Bojanovi¢ , V Arsi¢-Arsenijevié
Species distribution patterns and epidemiological characteristics of
otomycosis in Southeastern Serbia. J Mycol Med; 2020 Jun
30;101011. doi: 10.1016/j.mycmed.2020.101011.

Otasevi¢ S, Momcilovi¢ S, Stojanovi¢ NM, Skvaré M, Rajkovic¢
K, Arsi¢-Arsenijevi¢ V. Non-culture based assays for the detection
of fungal pathogens. J Mycol Med. 2018 Jun;28(2):236-248. doi:
10.1016/j.mycmed.2018.03.001. Epub 2018 Mar 29.

Pesic Z, Otasevic S, Mihailovic D, Petrovic S, Arsic-Arsenijevic
V, Stojanov D, Petrovic M. Alternaria-Associated Fungus Ball of
Orbit Nose and Paranasal Sinuses: Case Report of a Rare Clinical
Entity. Mycopathologia. 2015 Aug;180(1-2):99-103. doi:
10.1007/s11046-015-9881-6. Epub 2015 Mar 7.

Mina Milanovi¢, Aleksandar Milosavljevi¢, Determination of
molds isolated from patient materials, based on the microscopic
morphological characteristics, ICIST, March 2021 (proceedings in
preparation)

How to Load Large Datasets From Directories for Deep Learning
in Keras by Jason Brownlee. Available online:
https://machinelearningmastery.com/how-to-configure-image-data
-augmentation-when-training-deep-learning-neural-networks/
(accessed on 20 May 2021).

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural
Features for Image Classification,” IEEE Trans. Syst. Man.
Cybern., vol. SMC-3, no. 6, pp. 610-621, Nov. 1973.

J. A. Jose and C. S. Kumar, “Genus and Species-Level
Classification of Wrasse Fishes Using Multidomain Features and
Extreme Learning Machine Classifier,” Int. J. Pattern Recognit.
Artif. Intell., Mar. 2020.

P. J. D. Weeks, M. A. O’Neill, K. J. Gaston, and I. D. Gauld,
“Species-identification of wasps using principal component
associative memories,” Image Vis. Comput., vol. 17, no. 12, pp.
861-866, 1999.

G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray,
“Visual Categorization with Bags of Keypoints,” in Workshop on
statistical learning in computer vision, ECCV, 2004.

I. Kanellopoulos and G. G. Wilkinson, “Strategies and best
practice for neural network image classification,” Int. J. Remote
Sens., vol. 18, no. 4, pp. 711-725, Mar. 1997.

Y. LeCun et al., “Handwritten digit recognition with a back-
propagation network,” papers.nips.cc, pp. 396—404, 1990

Y. LeCun and Y. Bengio, “Convolutional networks for images,
speech, and time series.MIT Press, Cambridge,” Handb. brain
theory neural networks, vol. 3361, no. 10, 1995

EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks, Mingxing Tan, Quoc V. Le, International Conference
on Machine Learning, 2019
Image_classification_efficientnet_fine_tuning. Available
online:https://keras.io/examples/vision/image_classification_effici
entnet_fine_tuning/ (accessed on 25 May 2021).

EfficientNet: Improving Accuracy and Efficiency through
AutoML and Model Scaling. Available online:
https://ai.googleblog.com/2019/05/efficientnet-improving-
accuracy-and.html(accessed on 25 May 2021).

Python. Available online: https://www.python.org/ (accessed on
26 May 2021).

Keras: The Python Deep Learning Library. Available online:
https://keras.io (accessed on 26 May 2021).

TensorFlow. Available online: https://www.tensorflow.org/
(accessed on 26 May 2021).

Understanding RMSprop — faster neural network learning.
Available online: https://towardsdatascience.com/understanding-
rmsprop-faster-neural-network-learning-62e116fcf29a (accessed
on 26 May 2021).

Grad-CAM: Visual Explanations from Deep Networks via
Gradient-based Localization, Ramprasaath R. Selvaraju, Michael
Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
Dhruv Batra, Dec. 2019

Freelancing blockchain: A practical case-study
of trust-driven applications development

Milan Radosavljevic, Aleksandar Pesic, Nenad Petrovic, Milorad Tosic

Abstract—Nowadays, a large amount of work is done by
freelancers across various areas — from graphical design and
music composition to data input and software development.
However, many issues appear due to participation of several
third parties together with different rules and policies imposed
by different platforms. On the other side, the emerging
blockchain technology provides the execution of transactions in
a trustable, decentralized, but still transparent manner. In this
paper, we demonstrate a case-study where blockchain is
adopted to eliminate the barriers and make freelancing more
convenient and profitable at the same time. As an outcome, a
proof-of-concept ~ implementation of blockchain-based
freelancing platform relying on Ethereum and Solidity smart
contracts is presented that provides practical pointers for
trustOdriven applications development.

Index Terms— Blockchain, Ethereum, Solidity, Freelancers

I. INTRODUCTION

In today's business world, everything is based on trust.
Any monetary transaction, ownership or arrangement. This
trust, however, is provided in a very specific way - by the
role of a third party, i.e. an institution of trust. In money
transactions these are banks, in ownership relations there are
cadastres and similar state institutions, in the case of any
type of contract, there are courts. The positive side of these
institutions, i.e. third parties, is that all parties to all these
agreements trust them and expect protection in case of any
unexpected occurrences. On the other hand, the appearance
of third parties brings with it a lot of negative effects, so you
often end up in a waiting list in order to make payments or
get a certificate of ownership of a real estate and the like.
Mistakes made by these institutions themselves are also very
common, and as a rule they fall on the common man as a
burden. There is bureaucracy, inefficiency, mistakes,
enormous costs that at some point completely make the role
of these intermediaries meaningless. The question is, is it
possible to exclude third parties from future business, and
still preserve that positive factor that they brought with
them. In the last few years, there has been a development of

Milan Radosavljevic is student at Faculty of Electrical Engineering,
University of Ni§, Aleksandra Medvedeva 14, 18000 Nis, Serbia (e-mail:
milan.radosavljevic@elfak.rs).

Aleksandar Pesic is student at Faculty of Electrical Engineering,
University of Ni§, Aleksandra Medvedeva 14, 18000 Nis, Serbia (e-mail:
alpesh@elfak.rs)

Nenad Petrovic is teaching assistant at Faculty of Electrical Engineering,
University of Ni§, Aleksandra Medvedeva 14, 18000 Nis, Serbia (e-mail:
nenad.petrovic@elfak.ni.ac.rs)

Milorad Tosic is full professor at Faculty of Electrical Engineering,
University of Ni§, Aleksandra Medvedeva 14, 18000 Nis, Serbia (e-mail:
milorad.tosic@elfak.ni.ac.rs)

RTI3.3 Page 1 of 4

a technology called blockchain, whose primary idea is just
this. Decentralized system with minimal costs, efficient,
transparent and yet safe enough to take on the role of e.g.
banks. [1]

The share of freelancers in today's business world is large.
A large amount of work is completed by freelancers, and as
a freelancer, everyone has the opportunity to work in a huge
number of domains as an independent. So, people who are
engaged in graphic design, writing stories, teaching foreign
languages and, of course, programming, earn their living by
freelancing. Current platforms for freelancers are safe and
the most popular places where freelancers can find work are
[2] [3] [4]. The problem that arises is the possession of a
third party and some rules that must be followed on certain
platforms. Blockchain provides an opportunity to eliminate
these problems and as a new solution sets some new
boundaries and presents some new problems that are
obtained by introducing this solution.

In this paper, it is explored how the blockchain
technology can be leveraged to eliminate barriers when it
comes to freelancing. As main outcome of this research, we
introduce prototype implementation of freelancing platform
based on Ethereum blockchain technology and Solidity
smart contracts.

Il. BACKGROUND

A. Blockchain

Blockchain is a "cryptographically secure transactional
singleton machine with a shared state". Cryptographically
secure means that the creation of digital currency is
provided by complex mathematical algorithms that are
practically impossible to break. With the help of these
algorithms it is almost impossible to cheat the system (e.g.
creating fake transactions, deleting transactions etc.). A
transactional singleton machine means that there is one
canonical instance of the machine responsible for all
transactions created in the system. In other words, there is
one global truth that everyone believes in. Shared status
means that the status stored on this machine is shared and
available to everyone.

B. Ethereum blockchain platform

Ethereum blockchain is practically a transaction-based
state machine. As it is known, the state machine receives
inputs and, based on the current state, passes into new states.
With Ethereum's state machine, we start from the “initial
state”. This is practically the state before any transaction
occurred on the network. When transactions are executed,
the initial state passes to some final state. At any time, the
final state represents the current state in the Ethereum
network. The state of Ethereum has millions of transactions.
These transactions are grouped into "blocks". Each block

mailto:milan.radosavljevic@elfak.rs
mailto:alpesh@elfak.rs
mailto:nenad.petrovic@elfak.ni.ac.rs
mailto:milorad.tosic@elfak.ni.ac.rs

contains some set of transactions and each block is
cryptographically chained together with the previous blocks,
which can be seen in Figure 1.

BLOCK 1 BLOCK 2 BLOCK N
Header Header Headar
mTransactions ’-HTransactions .

Fig. 1. Preview of Ethereum blockchain.

To cause a transition from one state to another, the
transaction must be valid. For a transaction to be considered
valid, it must go through a validation process known as
mining. Mining is the process when a group of Ethereum
nodes (more precisely computers) spend their computing
resources to create a block of valid transactions. Any
Ethereum network node that declares itself a miner can try
to create and validate the block. All miners try to create and
check blocks at the same time. Every miner provides
mathematical "proof" when submitting a block, and this
proof acts as a guarantee: if the proof exists, the block must
be valid. The process of validation of each block by the
miner who is supposed to provide mathematical proof is
called proof of work.

C. Concept of fees

One very important concept in Ethereum is the concept of
fees. Any calculation that occurs as a result of a transaction
on the Ethereum network is charged a fee. The fee is paid in
denominations called "gas". Gas is a unit used to measure
the fees required for a particular calculation. Two factors
determine how much it takes to pay for an action: the gas
price, and how much gas that action requires. The important
part is that Ethereum gas prices aren’t fixed. Gas prices are
determined by supply and demand. The busier the Ethereum
network, the higher the gas price. The amount of gas
required for each transaction depends on how complex the
transaction is. Gas prices are denoted in gwei, which itself is
a denomination of ETH. Gwei is 10° ETH. It is possible to
set a gas limit for each transaction. Gas limit refers to the
maximum amount of gas you are willing to consume on a
transaction.

D. Solidity smart contracts

A smart contract is a contract that is performed by itself
together with the terms of the contract to which the parties
have agreed. The terms of the contract are written directly in
the code of that smart contract. And the contract itself and
the 'consent' of the participants exists throughout the
Ethereum network. Practically smart contracts are programs
that are immutable and deterministic. They depend on the
context of the Ethereum Virtual Machine and the
decentralized global network. The contract controls the
execution of transactions, which are public and non-
refundable. In essence, contracts are reduced to programs,
which are modeled on traditional contracts, ‘if it happens,
then do it’. The contract is executed on many computers to
ensure reliability and trust. Smart contracts provide
autonomy, trust, speed, security and money savings.

RTI3.3 Page 2 of 4

I1l. RELATED WORK

The blockchain was invented in 2008 by a group or an
individual, and this information is still unknown to the
public. Therefore, we can consider that blockchain, and at
the same time Ethereum, is a newer technology that poses
some new challenges and problems in front of us. Much
research has been conducted in academia as well as in
industry to explore the benefits of smart contracts as well as
the worlds in which they are applicable. There are many
smart contract platforms on the market with different
features that suit certain applications. In [5], the authors
focus on the technique of using blockchain to store
vaccination records, which is secure and efficient and is
based on smart contracts found on the Ethereum platform. In
[6], a system based on blockchain was proposed, which
refers to workers who are temporarily employed in
companies. In that way, employees are provided with a fair
and legal salary for their work obligations, as well as
protection if the employer becomes a debtor. The author's
work in [7] gives a focus on climate change and proposes a
solution which, with the use of blockchain, would reduce
global warming while keeping records of the crown
impression of the product. In [8], the authors provided an
overview of all the challenges that smart contracts would
face in the future.

IV. SOLUTION OVERVIEW

A. System Architecture

The application architecture consists of three parts: client
side, Web3 interface and server side. The server side is
located on the Ethereum blockchain network and uses
Solidity smart contracts which are accessed via Web3
interface on the client side. The client side is located in the
browser and uses HTML, CSS and Javascript programming
language. Also, the client side contains the Web3.js
Javascript library through which it communicates with
Solidity smart contracts as can be seen in Figure 2.

2
- - - - Evm [ann] CK‘DJ
= B]

Smart
Contract

Web3
interface

Client side

Server side

Fig. 2. Representation of system architecture.

B. Tools used for system implementation

1) Ganache

Ganache is a local Ethereum blockchain that runs on a
local computer. Intended for the development and testing of
smart contracts and decentralized applications in a secure
and deterministic environment. Provides ten externally
owned accounts for testing purposes. The application
contains a graphical interface and can also be used as a
console application.
2) Metamask

Metamask is a software that allows you to own a

cryptocurrency wallet and allows you to interact with the
Ethereum blockchain. Metamask provides the ability to
store and manage account addresses on the browser. It also
allows us to connect securely to decentralized applications.
Using this software enables multi-user browser behavior.
3) Remix IDE

Remix IDE is an open source web and desktop
application. It enables the rapid development of Solidity
smart contracts and contains a large number of plugins as
well as a graphical interface. The Remix IDE is used for
contract development, but also as a platform for learning
programming on the Ethereum platform. The Remix IDE is
part of a Remix project that develops a handful of tools
related to Solidity smart contracts. It is written in the
Javascript programming language and allows you to run and
test contracts in a web browser. It also allows you to test,
debug and deploy contracts as well as many other useful
options. [9]

V. IMPLEMENTATION

As indicated in the System Architecture chapter, the
system consists of a server and a client side. The server side
consists of smart contracts written in the Solidity
programming language. The UML diagram in Figure 3
shows the organization of the contracts and the structures
used in the system. The main component is a
FreelancerContract contract that uses Service,
FreelancerStructure and Offer data structures. This
component represents one Freelancer who is registered in
the system. While PlatformContract acts as a repository and
it contains all registered freelancers in the system. In
addition to the data structure that stores basic information
about the freelancer, there are also structures for services
and offers. Service is what a freelancer offers, while an
Offer acts like a real job offer.

+GetFroelancers

Fig. 3. UML contract diagram on Ethereum platform.

The client side of the application is written in the Javascript
programming language. On the client side there are two
proxy classes that correspond to the contracts on the server
side, and also uses the Web3.js library to communicate with
the server side. Practically one function on the client side
calls one function in the contract. There are also functions
that are handlers for the events which are broadcasted in
contracts. The UML class diagram of the client side can be
seen in Figure 4.

RTI3.3 Page 3 of 4

FreelancerContractProxy

-web3

-contractinstance

+myAccount()
+setNameAndSurname(name, surname)
+answerOnOffer(offerld, answer)
+addOffer(favourld, description, price)
+addFavour(name, price)
+deleteFavour(favourld)

PlatformContractProxy

-web3
-contractinstance

+createFreelanceAccount()
+addFreelancer(freelancerContractAdrress)
+getAllFreelancerAddresses()
+getFreelancer(account_address)
+getFreelancerfForCurrentContract()

+getFavours()

+seeOffers()

+getViewData()
+approveCompletedOffer(offerid)
+completeOffer(offerld)
+getCompletedobs()
+getAcceptedOffers()
+processOfferAccepted(error, result)
+processOfferDeclined(error, result)
+processlobCompleted(error, result)
+processlobApproved(error, result)

Fig. 4. UML class diagram on the client side.

VI. RESULTS

Figure 5 shows the initial view of the client application.
The application offers the ability to create a new account
and navigation that allows to navigate through the entire
application.

Fig. 5. Initial view of the application.

After creating the account, you get the view as in Figure 6
and the application allows the user to set the name and last
name, add services he is offering and have an insight into
the job offers that are offered to him, offers accepted by the
user and offers waiting for client’s approval.

Moj profil

Fig. 6. View of the application after creating the account.

Clients can see the services of all freelancers on the
Profiles of Others page, which can be selected from the
navigation. The view of the page can be seen in Figure 7.
The application provides the ability to search all offered
freelancer services that are in the system and the ability to
send a service offer to a specific freelancer that will be
displayed on the homepage of the freelancer for whom the
offer is intended.

Profili ostalih korisnika

Ime Prezime Naziv usluge Cena usluge Akcija

Milan Radosavljevic Ct+ 5000

Milan Radosavijevic Java 6000

Obavestenje!
Trenutno nemate ponuda koje su prihvacene.

Fig. 7. View of page Profiles of other users.

When submitting an offer it is necessary to add a
description and offer a price for a particular service. Based
on the submitted offer, the freelancer will decide whether to
accept the offer for the job. Form for sending the offer can
be seen in Figure 8. After the offer is sent, the offered price
is transferred from the client's account to the smart contract
account. In case the freelancer rejects the offer, Ether will
be returned to the customer account.

Profili ostalih korisnika

Ime Prezime Cena usluge

Milan Radosavijevic Ce++ 5000

Milan Radosavijevic Java 6000

Operacije sa ugovorom

Fig. 8. Appearance of the offer submission form.

After the accepted offer, freelancer completes the offer
and sends it to the client for approval, after the approved
offer, the client accepts the completed work and only then
the offered price is transferred to the freelancer's account.
The layout of the offer table can be seen in Figure 9.

PONUDE POSLOVA

id

ponude Adresa ponudjaca Naziv Opis

0 0xa277B64b695bBFI46CAAIABIFIBBAM66ecOBT Java

Android Aplikacia
Java

Fig. 9. Appearance of the table with job offers.

VIl. CONCLUSIONS AND FUTURE WORK

A platform for supporting a freelancing work community
is developed using Solidity smart contracts on the Ethereum
platform. The implementations process is used as a case-
study for learning practical aspects of trust-driven
applications development. Practical experiences and results
are presented in this paper.

This paper gives our first experiences and more
systematic approach is needed particularly validation and
evaluation that are planned for future work. Regardless of

RTI3.3 Page 4 of 4

absence of a full scientific rigor, we present our experiences
that could be useful for future work in the field of trust-
based applications development.

The good side of the solution presented in this paper is
that it exploits advantages of the blockchain such as
reliability, security and speed. Due to the fact that since its
launch, the Ethereum platform has not had downtime due to
consensus and decentralized approach. Hence the fact that
this is another advantage, more precisely the advantage that
the platform is always online and working. This further
implies that the applications running on the blockchain do
not have a downtime, including this one. The solution has an
intuitive user interface that is capable of expansion. Even
though the application was developed as a proof-of-concept,
it shows high potential for commissioning in a real
environment.

One of disadvantages of the approach is that every action
that changes the state of the blockchain uses gas that
requires compensation from the user, as stated in the chapter
Background. Hence, some actions performed in the
application are not free. In the current prototype, freelancer
can not deliver product to the client who hired him. In future
work this shortcoming could be fixed by connecting
accounts with Github service, for example. It is possible to
further optimize the speed of the application, on both client
and server side, and to minimize the fee spent for
performing actions on the server side. The obtained solution
proves that it is possible to reach a satisfactory solution at an
acceptable price.

ACKNOWLEDGMENT

This work has been supported by the Ministry of
Education, Science and Technological Development of the
Republic of Serbia.

REFERENCES

[1] Uvod u blockchain [online], Blog, Porde Ivanovi¢, 2018. Source:
https://blog.itkonekt.com/2018/07/30/uvod-u-blockchain/

[2] Freelancer [online], freelance recruitment platform,
https://www.freelancer.com

[3] Upwork [online], freelance recruitment platform,
https://www.upwork.com

[4] Fiverr, freelance recruitment platform [online],

https://www.fiverr.com

[5] S. K. Deka, S. Goswami, A. Anand, “A Blockchain Based Technique
for Storing Vaccination Records”, IEEE Bombay Section Signature
Conference (IBSSC), pp. 135-139, 2020.

[6] A. Pinna, S. Ibba, “A blockchain-based Decentralized System for
proper handling of temporary Employment contracts”, Proceedings of
the 2018 Computing Conference vol. 2, pp. 1-6, 2019.

[71 A. M. Rosado da Cruz, F. Santos, P. Mendes, E. Ferreira Cruz,
“Blockchain-based Traceability of Carbon Footprint” Proceedings of
the 22nd International Conference on Enterprise Information Systems
(ICEIS), pp. 1-10, 2020.

[8] Sh. Wang, Y. Yuan, X. Wang, J, Li, R. Qin, F. Wang, “An Overview
of Smart Contract: Architecture, Applications, and Future Trends”,
IEEE Intelligent Vehicles Symposium, pp. 108-113, 2018.

[91 Remix IDE documentation [online]. Source: https://remix-
ide.readthedocs.io/en/latest/

https://blog.itkonekt.com/2018/07/30/uvod-u-blockchain/
https://www.freelancer.com/
https://www.upwork.com/
https://www.fiverr.com/
https://remix-ide.readthedocs.io/en/latest/
https://remix-ide.readthedocs.io/en/latest/

Comparative analysis of intra-board
synchronous serial communication interfaces

Predrag Petronijevi¢, Vlatacom Institute of High Technologies, Milutina Milankovica 5, 11070
Belgrade, Serbia
Vladimir Kuzmanovi¢, Faculty of Mathematics, University of Belgrade

Abstract — Designing custom-made hardware for special
purposes is a challenging process. During the development, it is
essential to take into consideration the required performance of
the device, component availability on the market as well as the
final price of the developed and assembled product. Almost every
modern hardware consists of various sensors, memories, AD/DA
converters and a microcontroller to control and manage the
interaction off all those devices. Based on the purpose of the
device being developed, the engineer has to make a decision on
the components that will be used in the final product. For this
decision to be justifiable, the engineer needs to have a very high
level of knowledge regarding the intricate world of interfaces
required to establish the intercommunication of the components
inside the device. Modern sensors, memories and AD/DA
converters usually require some form of a high-speed serial
interface, synchronous or asynchronous. In this paper we will
analyze the three most commonly used serial synchronous
communication interfaces: 12C, SPI and SPORT. Also, we will
explain the hardware and software properties and limits of every
mentioned synchronous serial interface. Finally, the benefits and
drawbacks of the chosen communication interfaces will be
considered and conclusions drawn.

Index Terms — computer engineering, embedded systems,
sensors, synchronous serial communication

. INTRODUCTION

One aspect of designing new hardware is defining its
application and the other aspect is defining a set of features
the final product has to meet. The desired set of features can
be divided into a set of operational and environmental limits,
e.g. thermal resistance or voltage, and a set of desired
performance characteristics, e.g. bandwidth or noise levels.
This set of features limits the number of possible components
that can be used in the design of the hardware. Even when
limited with operational and performance characteristics, the
choice of available hardware components is enormous due to
a large number of manufacturers. Making the correct choice
of hardware in order to meet the desired characteristics
requires extensive knowledge [1-2]. One key decision to make
is the choice of the right communication interface that will be
used for intercommunication of the chosen components.

Predrag Petronijevi¢ is with Vlatacom Institute of High Technologies,
Milutina Milankovica 5, 11070 Belgrade, Serbia (e-mail:
predrag.petronijevic@vlatacom.com).

Vladimir Kuzmanovi¢ is with the Faculty of Mathematics, University of
Belgrade, Studentski trg 16, 11000 Belgrade, Serbia (e-mail:
vladimir_kuzmanovic@matf.bg.ac.rs).

RTI3.4 Page 1 of 5

Modern devices usually consist of various sensors,
memories, AD/DA converters and many other components
controlled by a microcontroller. This control is achieved by
establishing intercommunication between the microcontroller
and every component inside the device. In modern devices,
this communication is digital and standardized to conform to
one or more of the standard communication interfaces in use
today [3-4].

Interfaces used today can be divided into categories based
on the way the data is transferred between the devices. Two
criteria can be used for this division. The first criterion is
defined by the number of channels used in the transmission of
the data. If the data is transmitted bit by bit in a specific order
over a single channel, such transmission is called serial. If the
data is sent as multiple bits at the same time over multiple
channels, such transmission is called parallel. The other
criterion is defined by the way the data is sent. If the data is
sent in the form of a byte or a single character with start and
stop bits added to the data, such transmission is called
asynchronous because it does not require synchronization. If
the data is sent in the form of groups or frames, such
transmission is called synchronous because it requires
synchronization between sender and receiver. Synchronous
transmission is more reliable and full-duplex, while
asynchronous transmission is half-duplex [5].

Inter-Integrated Circuit (12C) was discussed by Patel et al.
[6], Lynch et al. [7] and Blum [8]. Wootton in [9] described
the use of Serial Peripheral Interface (SPI) as a means of
communication between the CPU and various peripheral
devices. Gay in [10] described the properties of SPI and its
operation was described by Dogan in [11]. SPI and 1?C were
compared in [12-13]. SPI, I1°C and UART were analyzed in
[14-15].

In this paper we will address and compare the three most
commonly used synchronous serial communication interfaces
for intercommunication between various devices. Besides the
well-known and widely used 1°C and SPI protocols, we will
also introduce Analog Devices proprietary SPORT protocol
and perform comparative analyses of the three serial
protocols. Section 2 of the paper introduces all three interfaces
with their hardware and software properties and requirements.
The next section analyses the benefits and drawbacks of these
serial interfaces. Finally, section 4 draws conclusions on serial
interfaces described in the paper.

Il. SYNCHRONOUS SERIAL COMMUNICATION

A serial communication protocol in which data is sent as a
continuous stream at a constant rate is described as
synchronous serial communication. For communication to be
called synchronous it is required that the clocks are
synchronized in both the transmitting and receiving devices.
The term synchronized refers to the clocks running at the
same rate, which enables the receiver to sample the signal at
the same intervals used by the transmitter. Synchronization of
clocks permits the omission of start and stop bits. As a
consequence, more information can be passed over a circuit
per unit of time than with asynchronous serial
communication.

Serial communication can be established via a
communication channel or a computer bus. It is mostly used
for long-distance communication and computer networks
where parallel communication is impractical. The
development of technology has made serial computer buses
more common at shorter distances, mostly as a basis for cheap
and simple intra-board communication between two or more
integrated circuits on the same printed circuit board connected
by signal traces and not external cables.

The three most commonly used synchronous serial
communication protocols for intra-board communication are
inter-integrated circuit (12C), serial peripheral interface (SPI)
and Analog Devices synchronous serial peripheral port
(SPORT).

A. Inter-Integrated Circuit (12C)

Inter-Integrated Circuit (1°C) is a synchronous, multi-
master, multi-slave, packet-switched and single-ended serial
communication bus invented in 1982 by Philips
Semiconductors. Today it is widely used for interfacing with
lower speed peripheral integrated circuits from a
microcontroller in short distance intra-board communication.

I2C emphasizes design simplicity and low manufacturing
costs over speed. It is usually used for accessing low-speed
AD/DA converters, controlling small displays, reading
diagnostic sensors, etc. 1°C enables the microcontroller to
control a network of devices with just two general-purpose
input-output pins and software. Many other serial protocols
offer similar functionality but require more pins and signals to
interconnect multiple devices [16].

Hardware requirements for establishing 12C communication
are rather simple. Two bidirectional open collector or open
drain lines with typical voltages of +5V or +3.3V are required
for connecting the devices. These two lines are called Serial
Data Line (SDA) and Serial Clock Line (SCL). 12C bus speed
can range from 10 kbit/s to 5 Mbit/s depending on the revision
of the protocol. The bit rate is defined for transfer between
master and slave without taking into consideration any
protocol overhead. The overhead includes a slave address and
usually a register within the slave device and finally per byte
acknowledge (ACK/NACK) bits. This makes the actual
bitrate lower than the bitrate used would imply. High-speed
I2C is widely used in embedded systems, while lower speed
version is used in personal computers.

RTI3.4 Page 2 of 5

The reference design is a bus with clock (SCL) and data
(SDA) lines with 7-bit addressing to which the devices are
connected. Devices connected to the bus are referred to as
nodes. The number of nodes is limited by the address space
and by the total bus capacitance of 400pF. This restricts
communication distances to a few meters. In practice, 1°C is
restricted to intra-board communication due to its relatively
high impedance and low noise immunity which requires a
common ground potential.

There exist two roles for the node on the bus: master and
slave. The device is referred to as the master if it generates the
clock and initiates communication with the slaves. The device
is referred to as the slave if it receives the clock and responds
when addressed by the master. The protocol supports multiple
masters and multiple slaves on the same bus. Also, the roles
of the device can be changed during its operation.

The protocol defines four modes of operation for a given
device on the bus: master transmits, master receives, slave
transmits and slave receives. Usually, each device on the bus
will use a single role with two predefined modes of operation.
Besides 0 and 1 data bits, the 1°C defines special signals
which represent message delimiters. These signals are called
START and STOP signals which are distinct from data bits.
The communication between devices is as follows:

e The master is in master transmit mode and initiates the

transmission by sending the START signal followed by a 7-

bit address of the slave it wants to communicate with which

is followed by a single bit designating whether the master
wants to write to or to read from the slave.

o |f the slave with the given address exists on the bus it

responds with the ACK bit for that address. Then, the

master continues to transmit either in transmit or receive
mode according to the bit set while the slave continues in
complementary mode.

The address and the data over the 12C bus are sent in MSB
mode. The START signal is a high-to-low transition of the
data line (SDA) with the clock (SCL) line high. The stop
signal is a low-to-high transition of SDA with SCL high. All
other transitions of SDA take place with SCL low. The device
which is in transmitting mode writes the data byte by byte to
the SDA line. The device in receive mode sends the ACK bit
after every byte. 12C transmission may consist of multiple
messages. The master terminates a message with a STOP
signal if it is the end of the transaction. If the master wants to
retain control of the bus for another message it sends another
START signal.

I2C physical layer is shown in Figure 1.
VCC
3

SLAVE

MASTER Rop ﬁRFM

SDA

Csus

2
v

I2C Control I2C Control

SCL °

% Cgus

4
v

Figure 1. 12C physical layer

B. Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is a synchronous serial
communication interface developed by Motorola in the mid-
1980s [17]. It is used for short-distance communication in
embedded systems. It is typically used for interfacing with
memories, liquid crystal displays, sensors and AD/DA
converters.

Devices communicating over SPI are organized as a
master-slave architecture with a single master. The
communication is achieved in full-duplex mode. The master
device creates the frames for reading and writing. SPI
supports multiple slave devices through selection with
individual slave select lines. Sometimes, these lines are called
chip select (CS) lines. The SPI bus specifies four logic
signals:

e Serial clock (SCLK) — output from the master.

e Master Out Slave In (MOSI) — data output from the

master.

e Master In Slave Out (MISO) — data output from the

slave.

e Slave/Chip Select (SS/CS) — output from the master,

active low.

For the communication to be established between devices,
MOSI on a master device connects to MOSI on a slave
device. Slave/Chip Select line is used instead of software
addressing concept. Sometimes, MOSI on a slave device is
labeled as Serial Data In (SDI) and MISO is labeled as Serial
Data Out (SDO). This signal naming convention is used as an
unambiguous way of labelling the pins of master and slave
devices.

The SPI bus can operate with a single master device and
one or more slave devices. Most slave devices have tri-state
outputs so their MISO becomes high impedance when the
device is not selected. This allows multiple slave devices to
share common bus segments with each other.

For the communication to start, the master device has to
configure the clock signal using a frequency supported by the
slave. Then the master has to select the desired slave device
with the logic level 0 on the appropriate SS/CS line. If the
slave device requires a waiting period, the master device has
to wait for at least that period of time before it starts issuing
clock cycles on the SCLK line. During each cycle on the
SCLK line, a full-duplex transmission occurs. The master
sends a bit on the MOSI line and the slave reads it, while the
slave sends a bit on the MISO line and the master reads it.
This form of operation is maintained even when one-
directional data transfer is intended.

Besides configuring the clock frequency, the master also
needs to configure the clock polarity (CPOL) and clock phase
(CPHA) with respect to the data. CPOL determines the clock
polarity. CPOL value 0 defines a clock signal which idles at
logic level 0 and each cycle consists of a pulse of 1. This
translates to the leading edge being rising and the trailing edge
is falling. CPOL value 1 defines the opposite. The clock idles
at logic level 1 and each cycle consists of a pulse of 0. CPHA
determines the timing of the data bits relative to the clock

RTI3.4 Page 3 of 5

pulses. CPHA value 0 defines that the “out” side changes the
data on the trailing edge of the preceding clock cycle, while
the “in” side captures the data on the leading edge in the clock
cycle. CPHA value 1 defines the opposite. The “out” side
changes the data on the leading edge of the current clock cycle
while the “in” side captures the data on the trailing edge of the
clock cycle.

Finally, SPI supports word sizes that are not limited to 8-bit
words but can range up to 32-bit words. Also, message size is
arbitrary, as is its contents and purpose. The signal lines are
shared between multiple devices, except for the slave select
line which is unique per slave.

Its versatility, high speed and easy implementation coupled
with board real estate savings compared to parallel buses have
made it popular in many applications today. SPI interface is
widely used in embedded systems for interfacing various
sensors, control devices, memories and liquid crystal displays.

SPI physical layer is shown in Figure 2.

SCLK SCLK
MOSI »| MOSI
MASTER ~ MISO |¢ miso STAVE
§S1/CS1 »| SS/CS
882/C82
! SCLK
»{ MOSI
Miso SLAVE
88/CS

Figure 2. SPI physical layer

C. Synchronous Serial Peripheral Port (SPORT)

Synchronous Serial Peripheral Port (SPORT) is Analog
Devices proprietary synchronous serial communication
interface that supports a variety of serial data communication
protocols. Key features of SPORT are continuously running
clock and serial data words from 3 to 32 bits in length either
most- or least-significant bit first. The protocol also supports
two synchronous transmit and two synchronous receive data
signals which double the total supported data stream. Finally,
frames are synchronized with configurable synchronization
signals [18].

For the SPORT interface to be established between two
devices, the standard defines the following eight signals:

e Transmit Data Primary (DTO0)

e Transmit Data Secondary (DT1)

Transmit Clock (TSCLK)
Transmit Frame Sync (TFS)
Receive Data Primary (DRO)
Receive Data Secondary (DR1)
Receive Clock (RSCLK)

¢ Receive Frame Sync (RFS)

The values for clocks are independent and can be calculated
by dividing the SCLK of the microcontroller with the correct
value. The SPORT clocks are calculated with the following
formula:

SCLK

(2-(SPORTCLKDN +1))
The smallest value the divisor SPORTCLKDIV can have is
zero and the greatest value is 65535. TSCLK and RSCLK are

SPORTCLK =

independent and thus can have different values of
SPORTCLKDIV. Depending on the value of SCLK and
SPORTCLKDIV, the clock values for SPORT can be as high
as 60 MHz or as low as 1 kHz. By default, the primary
transmit and receive channels are enabled while the secondary
transmit and receive channels are disabled.

Frame sync signal can be divided into early frame sync and
late frame sync. Early frame sync is active for one clock pulse
and then deactivates. Once the signal has been deactivated,
valid data will be available. Late frame sync signal frames
valid data and is active for the length of time that valid data is
available. The signal is deactivated once the word to transmit
or receive is fully sent.

SPORT protocol is proprietary and is supported by a
majority of Analog Device microcontrollers and various types
of integrated circuits for numerous applications. Such
applications range from AD/DA converters, Sensors,
memories, health applications, smart industries, etc. Also,
with a range of clock and frame synchronization options, the
SPORT interface allows a variety of serial communication
protocols and provides a glueless hardware interface to many
industry-standard data converters and CODECs [19-20].

SPORT physical layer is shown in Figure 3.
DSP

SCLKO
RFSO
TFSO
DTO
DRO

A 4

SERIAL

DEVICE SPORTO

- SCLK1
<« RFS1
- TFS1
<« DT1
DR1

SERIAL

DEVICE SPORT1

Figure 3. SPORT physical layer

I1l. COMPARATIVE ANALYSIS

I2C, SPI and SPORT all are synchronous bidirectional
serial interfaces with considerable differences. The first
obvious difference is the number of signals needed to
establish communication between devices. The signals and
number of lines required for establishing communication with
each interface are displayed in table 1.

Table 1. Signals required for establishing communication

other property to note is that I?C is a multi-master multi-slave
interface, while SPI and SPORT are single-master multi-slave
interfaces.

Data transfer should also be considered when choosing the
protocol to be used in the final product. The limits for data
transfer are displayed in table 2.

Table 2. Data transfer limits

12C SPI SPORT

SCLK/2 Mbit/s
SCLK — processor
clock frequency

100 kbit/s — 5 Mbit/s Depending on the
Predefined values implementation
depending on version Usually in range
nx MHz to 10n x MHz
n — number of devices
connected to a single
master

12C SPI SPORT
SDA MOSI DT
Serial Data Master Out Slave In Serial Data Transmit
SCL MISO DR
Serial Clock Master In Slave Out Serial Data Receive
SCLK TFS
Serial clock Transmit Frame Sync
SS RFS
Slave select Receive Frame Sync
TCLK
Transmit Clock
RCLK

Receive Clock

Considering the number of signals it is obvious that SPI and
SPORT are full-duplex, while I2C is half-duplex. Also, one

RTI3.4 Page 4 of 5

The advantages of 12C over SPI and SPORT are the ease of
linking multiple devices and the fact that cost and complexity
do not scale up with the number of devices. The limitation of
I2C is numerous. The first is its slave addressing scheme and
its relatively low number of possible addresses which may
lead to address collisions. One other limitation is the number
of supported speeds which need to conform to a certain
standard. Since I1?C is a shared bus there exists a possibility
that a single device could hang the entire bus. This happens if
any device holds the SDA or SCL lines low, which prevents
the master from sending START and STOP signals and reset
the bus. Also, starvation is possible where a slower device
starves the bandwidth needed by faster devices and thus
increases latencies when other devices are addressed. Taking
all this into consideration it is advisable to use 1°C for
communication with on-board devices that are accessed only
occasionally with no need for low latencies and high-speed
bidirectional communication.

The advantages of SPI over 12C and SPORT are complete
protocol flexibility with variable size words and arbitrary
choice of message size, contents and purpose. Also, hardware
interfacing is easy. Slaves do not need a unique address since
they are addressed with a per slave chip select line and slave
devices do not need precision oscillators since they use the
master's clock. Disadvantages compared to I1°C are the
increased number of pins required for communication and the
lack of slave ACK which enables the master to transmit data
to nowhere without knowing it. Also, SPI protocol supports
only one master, does not have a formal standard so validating
conformance is impossible and does not support dynamically
adding nodes. Taking all this into consideration, SPI is
applicable in situations where the data transfer is organized in
packets of arbitrary size and full-duplex. Also, it is applicable
when there are a number of slaves communicating with the
same SPI modes, because frequent changes of SPI mode
severely impact the performance of communication.

Compared to the other two protocols, the main advantage of
SPORT protocol is the support for multichannel transmits and
receives of up to 128 channels. Also, a wide selection of data
sizes is also a benefit as is the programmable polarity of both
frame sync signals and data receive and transmit clocks.
Finally, significantly higher data rates and double-buffered
data registers that allow continuous data stream are a big
advantage compared to both SPI and 12C. The main

disadvantages of SPORT are the fact that it is proprietary and
supported only by Analog Devices products and that the
complexity of supporting software components can be higher
than that of competing schemes.

IV. CONCLUSION

In this paper we presented the three most commonly used
synchronous serial protocols. The introduction showed that
the engineer needs to have a broad knowledge regarding
communication protocols to be able to make the right choice
on the protocol to be used with respect to the desired
operational and performance limits as well as to justify the
proposed design. 12C, SPI1 and SPORT are presented in detail
and their properties, requirements and applications are
discussed. Finally, the benefits and drawbacks of all three
mentioned protocols are compared and analyzed which led to
the conclusion on the suitability of the protocols in various
scenarios. In the future, we intend to further research
asynchronous communication protocols and their properties as
well as inter-board communication protocols. We will focus
on Controller Area Network (CAN) and Universal
Asynchronous Receive Transmit (UART).

ACKNOWLEDGMENT

The research is founded by the Vlatacom Institute of High
Technologies under project #161 V155MM.

REFERENCES

[1] J. Staunstrup, W. Wolf, “Hardware/Software Co-Design: Principles and
Practices,” Springer Science & Business Media, 1997.

[2] P. Horowitz, W. Hill, “The Art of Electronics, 3" edition,” Cambridge
University Press, 2015.

[3] J. Cowley, “Communications and Networking: An Introduction,”
Springer, 2007.

[4] IBM Corporation, “Data Communications Primer,” Form C20-1668-0.

RTI3.4 Page 5 of 5

(5]

(6]

(71

(8]
[
[10]
[11]

[12]

[13]
[14]

[15]

[16]

[17]
[18]

[19]

[20]

J. Patrick, “Serial Protocols Compared,” Embedded Staff, May 31,
2002, available at: https://www.embedded.com/serial-protocols-
compared/.

S. Patel, P. Talati, S. Gandhi, “Design of 12C Protocol,” International
Journal of technical innovation in Modern Engineering & Science, Vol
5, no. 3, pp. 741-744, 2019.

K. M. Lynch, N. Marchuk, M. L. Elwin, “I?C communication,”
Embedded Computing and Mechatronics with the PIC32, Newnes,
2016.

J. Blum, “The I°C Bus,” Exploring Arduino; Tools and Techniques for
Engineering Wizardry, 2" Edition, 2019.

C. Wootton, “Serial Peripheral Interface (SPI),” Samsung Artik
Reference, Apress, Berkeley, 2016.

W. W. Gay, “SPI Bus,” Mastering the Raspberry Pi, Apress, Berkeley,
2014.

I. Dogan, “Serial Peripheral Interface Bus Operation,” SD Card Projects
Using the PIC Microcontroller, Newnes, 2010.

F. Leens, “An introduction to I?’C and SPI protocols,” IEEE
Instrumentation & Measurement Magazine, vol. 12, no.1, pp. 8-13,
2009.

D. V. Gadre, S. Gupta, “Serial Communication: SPI and 12C,” Getting
Started with Tiva ARM Cortex M4 Microcontroller, Springer, 2017.

A. Subero, “USART, SPI and I2C: Serial Communication Protocols,”
Programming PIC Microcontrollers with XC8, Apress, Berkeley, 2017.
S. Shanthipriya, S. Lakshmi, “Design and verification of low speed
peripheral subsystem supporting protocols like SPI, 12C and UART,”
ARPN Journal of Engineering and Applied Sciences, vol. 12, pp. 7368-
7391, 2017.

A.K. Oudjida, M.L. Berrandjia, R. Tiar, A. Liacha, K. Tahraoui, “FPGA
Implementation of 12C & SPI Protocols: a Comparative Study,” DOI:
10.1109/ICECS.2009.5410881, 2009 16th IEEE International
Conference on Electronics, Circuits and Systems - (ICECS 2009),
Yasmine Hammamet, Tunisia, 13-16. December, 2009.

Motorola, Freescale, NXP, “SPI Block Guide v3.06,” 2003.

B. Prabhalika, M. Kiran Kumar, “Fpga implementation of Design and
verification Synchronous serial port(S-PORT),” ISSN: 2321-9939,
International Journal of Engineering Development and Research IJEDR,
India, 2013.

A. Vasudev Prabhugaonkar, J. Rayala, “Interfacing AD7676 ADCs to
ADSP-21365 SHARC® Processors,” Engineer-to-Engineer Note EE-
248, Analog Devices, Rev 1, October 7, 2004.

“Implementing UART Using the ADuCM3027/ADuCM3029 Serial
Ports,” Application Note AN-1435, Analog Devices, Norwood, MA,
2017.

https://www.embedded.com/serial-protocols-compared/
https://www.embedded.com/serial-protocols-compared/

	096_RTI_1.2.pdf
	I. INTRODUCTION
	III. GDPR-COMPLIANT DATA HANDLING
	A. Update of Privacy Policy and Terms of Service
	B. Personal Data Export
	C. User Account Deletion

	IV. FUNCTIONAL VERIFICATION
	A. Privacy Policy Acceptance and Modification
	B. Data Export

	V. PERFORMANCE TESTING
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	107_RTI_3.2.pdf
	I. Introduction
	II. data
	A. Dataset description
	B. Morphologial differences of fungi
	C. Preparation of dataset images for training

	III. Method description
	IV. Results and discussion
	V. Conclussion
	Acknowledgment
	References

	Blank Page

