

РАЧУНАРСКА ТЕХНИКА И ИНФОРМАТИКА

/

COMPUTING AND INFORMATION ENGINEERING

(РТ/RTI)

Apstrakt— Postoje dvije vrste TV (televizijske) usluge u

domenu pretplate: javna (svima dostupan sadržaj za koji nije

potrebna pretplata) i pretplatnička TV usluga (TV sadržaj je

dostupan samo pretplaćenim korisnicima). Da bi pretplatnička

TV usluga imala smisla potrebno je zaštititi TV sadržaj cijelim

prenosnim putem. Postoji nekoliko modela zaštite pretplatničkog

TV sadržaja, a jedan od njih je CAS (eng. Conditional Access

System). Kompanija Widevine je kreirala rješenje sistema

uslovnog pristupa (CAS) takvo da je besplatno za sve operatere.

Da bi operateri mogli upravljati korisnicima i sadržajem,

potrebno je implementirati korisničku upravljačku logiku

sistema. U ovom radu je predstavljeno jedno rješenje softverskog

posrednika (eng. Proxy) u kome je realizovana korisnička

upravljačka logika sistema uslovnog pristupa u Widevine CAS

sistemu.

Ključne reči—Conditional Access System; Proxy; Digital

Television;

I. UVOD

Pretplatnička televizija je usluga koju nude satelitski,

kablovski i drugi distributeri televizijskih kanala. Ključna

tačka preduzetničkog modela u pretplatničkoj televiziji jeste

zaštita televizijskog sadržaja cijelim prenosnim putem, od

emitera do krajnjeg korisnika, čime se otklanja mogućnost

pristupa sadržaju nepretplaćenim korisnicima[1]. Postoji

nekoliko tehnologija zaštite televizijskog sadržaja, a

najpoznatije su upravljanje digitalnim pravima (eng. Digital

Rights Management) i sistem uslovnog pristupa (eng.

Conditional Access System).

Sistem uslovnog pristupa predstavlja zaštitu prenosnog

puta[2] (i on se najčešće koristi za televiziju uživo), dok je

upravljanje digitalnim pravima zamišljeno kao mehanizam

zaštite sadržaja (te se najčešće koristi za televiziju na zahtjev

(eng. On Demand)). Za razliku od upravljanja digitalnim

pravima, u sistemima uslovnog pristupa uobičajno je da se

nakon određenog vremenskog intervala mijenjaju ključevi

kojima je skremblovan sadržaj koji se dostavlja korisniku[3].

Kompanija Widevine je kreirala sopstveno rješenje CAS

sistema za Android TV i Android STB (Set-Top Box) uređaje

koje je napravilo veliki pomak u industriji digitalne televizije.

Radenko Banović – Fakultet Tehničkih Nauka, Univerzitet u Novom Sadu,
Trg Dositeja Obradovića 6, 21000 Novi Sad, Srbija (e-mail:

Radenko.Banovic@rt-rk.com).

Ilija Bašičević – Fakultet Tehničkih Nauka, Univerzitet u Novom Sadu,
Trg Dositeja Obradovića 6, 21000 Novi Sad, Srbija (e-mail:

ilibas@uns.ac.rs).

Nemanja Lazukić – Istraživačko-razvojni Institut RT-RK, Novi Sad,
Srbija, (e-mail: Nemanja.Lazukic@rt-rk.com).

II. WIDEVINE CAS SISTEM

Ključna prednost Widevine CAS rješenja u odnosu na

konkurenciju jeste to što je kompletan CAS ekosistem dat

operatorima na besplatno korištenje, pod uslovom da se

izvršava na Android TV operativnom sistemu[5].

Komponente Widevine CAS sistema su : licencni poslužioc

(eng. License Server), OEMCrypto (modul koji se integriše u

Android TV), ECM (eng. Entitlement Control Message)

generator, skrembler i posrednik u sistemu uslovnog pristupa.

Sl. 1. prikazuje komponente Widevine CAS sistema na

visokom nivou apstrakcije.

Sl. 1. Widevine CAS sistem

Neke komponente sistema su date tako da se ne mogu

prilagođavati (OEMCrypto, licencni poslužioc), dok ECM

generator i posrednik u sistemu uslovnog pristupa moraju da

se implementiraju za svakog provajdera posebno, ali tako da

se oslanjaju na Widevine SDK (eng. Software Development

Kit). Licencni poslužioc je ključna tačka sistema u kojoj se

sastaju predajna i prijemna strana. Korištenje licencnog

poslužioca je moguće nakon što Widevine odobri zahtjev za

korištenjem, i kreira posebne URL putanje prema zahtjevu

provajdera.

Sa predajne strane se licencnom poslužiocu šalje zahtjev za

dostavljanjem ključa (eng. Entitlement Key) kojim se

enkriptuje ECM poruka u kojoj se nalaze ključevi kojima je

skremblovan televizijski sadržaj. Sa prijemne strane se

licencnom poslužiocu šalje zahtjev za dostavljanjem licence iz

koje se izvlače ključevi kojima je moguće dekriptovati ECM

poruku, te sa ključevima izvučenim iz ECM poruke

deskremblovati televizijski sadržaj i prikazati ga korisniku.

Jedno rješenje posrednika u sistemu uslovnog

pristupa digitalne televizije

Radenko Banović, Ilija Bašičević i Nemanja Lazukić

RT1.1 Page 1 of 3

III. POSREDNIK U SISTEMU USLOVNOG PRISTUPA SA

KORISNIČKOM UPRAVLJAČKOM LOGIKOM

Posrednik kao jedan od elemenata CAS sistema komunicira

sa Android TV / STB uređajem, kao i sa licencnim

poslužiocem. Takođe, potrebno je kreirati korisnički interfejs

preko kog je moguće unositi podatke vezane za korisnike,

kanale, pakete na koje su korisnici pretplaćeni, što je

ilustrovano u Sl. 2.

Sl 2. Interakcija posrednika sa okolinom

Posrednik je zamišljen kao mrežno orijentisan servis koji

koristi REST (eng. Representational State Transfer) API (eng.

Application Programming Interface) arhitekturu softvera[4].

Korištenje REST API arhitekture je omogućilo

identifikovanje različitih resursa uz pomoć definisanja

posebnih URI (eng. Uniform Resource Identifier) putanja,

tako da i operater i korisnik (STB uređaj) mogu koristiti

posrednik šaljući različite zahtjeve ka njemu. URI putanje

namijenjene komunikaciji sa operaterom se odnose na

upravljanje sadržajem baze podataka (dodavanje i brisanje

korisnika, uređaja, paketa kanala, ažuriranje informacija o

pretplatama korisnika).

STB uređaj korisniku šalje zahtjev za licencom, zatim se

nakon obrade zahtjeva provjerava da li je korisnik koji

zahtjeva licencu za svoj STB uređaj pretplaćen na željeni

sadržaj. Ukoliko jeste pretplaćen, zahtjev se proslijeđuje

licencnom serveru, te se licenca dobijena od strane licencnog

servera proslijeđuje korisniku koji je uputio zahtjev za

licencom. Komunikacija između STB uređaja i posrednika, te

posrednika i licencnog poslužioca je prikazana u Sl. 3

Sl. 4. Dijagram poziva posrednika

IV. OPIS REALIZACIJE

Posrednik je ralizovan kao HTTP poslužilac u C++

programskom jeziku, jer je SDK na koji se on oslanja takođe

realizovan u C++ programskom jeziku. Jezgro posrednika

predstavlja baza podataka u kojoj se nalaze sve relevantne

informacije na osnovu kojih je moguće odrediti da li je

korisnik pretplaćen na odgovarajuće pakete kanala. Šema baze

podataka je prikazana na Sl. 4.

Sl. 4. Šema baze podataka

A. Alati korišteni za realizaciju

Pošto je C++ izabran kao programski jezik, a posrednik

treba da bude HTTP poslužilac izabrali smo Mongoose

biblioteku[6] u kojoj je implementiran na događaj pobuđeni

(eng. Event-driven) neblokirajući API za HTTP i uz koji je

moguće kreirati REST API servise koji su neophodni za

komunikaciju sa okolinom. Za upravljanje bazom podataka

korištena je SQlite biblioteka[7].

B. Implementacija obrade zahtjeva za licencom

Nakon što posrednik zaprimi zahtjev na URI putanji

dobavi_licencu u funkciji handle_lic_req() se uz pomoć

poziva SDK funkcije getDeviceInfo() iz zahtjeva za licencu

dobijaju informacije o uređaju i to : proizvođač, model,

identifikacioni broj uređaja i serijski broj sertifikata uređaja.

Iz zahtjeva za licencu se uz pomoć poziva SDK funkcije

getContentId() dobavlja informacija o paketu kanala za koji se

šalje zahtjev za licencu.

Na osnovu dobijenih informacija o uređaju iz baze

podataka se dobavlja informacija o korisniku. Zatim se na

osnovu informacije o korisniku i paketu kanala provjerava da

li je korisnik pretplaćen na željeni paket kanala. Ukoliko je

korisnik pretplaćen na paket kanala pozivom SDK funkcije

GenerateLicenseRequestAsJSON() se na osnovu zahtjeva za

licencu generiše zahtjev koji se preko HTTP Post metode

korištenjem Curl biblioteke šalje licencnom serveru.

HTTP odgovor dobijen on licencnog poslužioca se

proslijeđuje STB uređaju koji je poslao zahtjev pozivom

funkcije mg_printf() biblioteke mongoose. Ukoliko korisnik

nije pretplaćen na željeni sadržaj na STB uređaj se odmah

šalje HTTP odgovor sa statusnim kodom 405 koji se odnosi

na to da takav zahtjev nije dozvoljen.

RT1.1 Page 2 of 3

Svaka akcija za popunjavanje baze podataka je kreirana sa

posebnom uri putanjom i funkcijom koja obrađuje zahtjev.

Akcije koje su obrađene su : dodaj korisnika, obriši korisnika,

pretplati korisnika, ukini pretplatu korisnika, dodaj uređaj,

obriši uređaj, dodaj kanal, obriši kanal, dodaj pretplatu, obriši

pretplatu, dodaj kanal u paket i izbaci kanal iz paketa. U ovoj

fazi razvoja nije predviđena realizacija prednjeg dijela (eng.

Front-end) zbog čega su implementirane samo funkcije za

popunjavanje baze podataka, i čitanja iz baze podataka

neophodna za dobavljanje licence.

V. TESTIRANJE

Predloženo rješenje je testirano na Synaptics BG5CT STB

(Sl. 8.) uređajima sa operativnim sistemom Android Q.

Korištena je Live Channels korisnička aplikacija koja se

oslanja na Comedia DTV (eng. Digital Television) srednji sloj

kompanije iWedia, u kom je integrisam OEMCrypto koji

kreira zahtjev za licencom i koji služi za deskremblovanje

televizijskog sadržaja.

Sl. 8. Synaptics BG5CT platforma

Sa predajne strane je korišten TSDuck set alata [8] koji se u

ovom slucaju koristio za skremblovanje TS (eng. Transport

Stream) toka podataka koji se nalazio u izvorišnoj datoteci,

kao i za slanje skremblovanog toka podataka ka odrednišnom

STB uređaju korištenjem računarske mrežne infrastrukture i

IPv6 (eng. Internet Protocol version 6) protokola. Takođe, sa

predajne strane je korišten ECM generator koji je razvijan u

paraleli sa posrednikom u sistemu uslovnog pristupa.

Funkcionalnost je testirana korištenjem više prijemnih

uređaja pri čemu su mijenjane informacije o pretplaćenim

korisnicima u bazi podataka. Kreirano je nekoliko testnih

slučajeva u kojima su različiti korisnici u različitim testnim

slučajevima bili pretplaćeni na željeni sadržaj. Jedan primjer

testnog slučaja: korisnik A je pretplaćen na željeni sadržaj,

korisnik B nije pretplaćen na željeni sadržaj, testiranjem je

utvrđeno da korisnik A ima pristup sadržaju, dok korisnik B

nema pristpu sadržaju.

Po završetku testiranja utvrđeno je da su STB uređaji

pretplaćenih korisnika uspješno deskremblovali i

reprodukovali sadržaj iz izvorišne datoteke koja je emitovana

ka njima. U slučajevima nepretplaćenih korisnika STB uređaji

su dobijali odgovor od posrednika da nisu pretplaćeni na

željeni sadržaj, te nisu dobili licencu iz koje bi mogli izvuću

ključeve kojima bi uspješno deskremblovali sadržaj.

Testiranjem je utvrđena funkcionalnost rješenja.

VI. ZAKLJUČAK

U ovom radu je prikazano jedno rješenje posrednika u

sistemu uslovnog pristupa sa korisničkom upravljačkom

logikom. Opisan je Widevine CAS sistem u cjelini kao i uloga

posrednika u njemu. Navedeni su svi alati korišteni u

realizaciji rješenja, te je dat detaljan opis rješenja. Rješenje je

testirano korištenjem nekoliko prijemnih uređaja i nakon

uspješno završenih testova potvrđena je funkcionalnost

rješenja. Doprinos ovog rada u odnosu na postojeća rješenja je

u tome što je kompatibilan sa Widevine CAS ekosistemom. U

budućnosti ovo rješenje može biti unaprijeđeno kreiranjem

prednjeg dijela poslužioca čime bi se omogućio jednostavan

vizuelni prikaz i lakše upravljanje pretplatom korisnika, te

proširenjem zadnjeg dijela poslužioca.

LITERATURA

[1] I. Kaštelan, V. Peković, V. Zlokolica, J. Zloh, D. Trifunović,

“Simultaneous automated verification of conditional access system on

multiple TV sets,” Proc. IEEE International Conference on Consumer
Electronics, Berlin, Germany, pp. 269-270, Sept. 2012.

[2] Fu-Kuan Tu, Chi-Sung Laih and Hsu-Hung Tung, "On key distribution

management for conditional access system on pay-TV system," in IEEE
Transactions on Consumer Electronics, vol. 45, no. 1, pp. 151-158, Feb.

1999, doi: 10.1109/30.754430.

[3] Milan Bjelica, Nikola Teslić, Velibor Mihić, “Softver u digitalnoj
televiziji 1”, 2017.

[4] Fielding, Roy Thomas (2000). "Chapter 5: Representational State
Transfer (REST)". Architectural Styles and the Design of Network-

based Software Architectures (Ph.D.). University of California, Irvine

[5] Widevine CAS, Jun 2021. [online].
https://www.widevine.com/solutions/widevine-cas

[6] Mongoose - Embedded Web Server, Jun 2021. [online].

https://github.com/cesanta/mongoose
[7] SQLite, Jun 2021. [online]. https://www.sqlite.org

[8] TSDuck, Jun 2021. [online]. https://tsduck.io/

ABSTRACT

There are two types of TV (television) services in the domain of

subscription: public (content available to all for which no

subscription is required) and subscriber TV service (TV content is

available only to subscribed users). In order for the subscriber TV

service to make sense, it is necessary to protect the TV content

throughout the transmission. There are several models of protection

of subscriber TV content, and one of them is CAS (Conditional

Access System). Widevine has created a conditional access system

(CAS) solution that is free for all operators. In order for operators to

be able to manage users and content, it is necessary to implement the

user management logic of the system. This paper presents a solution

of a proxy server in which the user control logic of the conditional

access system in the Widevine CAS system is realized.

One solution of proxy server in the digital television

conditional access system

Radenko Banović, Ilija Bašičević, Nemanja Lazukić

RT1.1 Page 3 of 3

Apstrakt—Zaštita televizijskog sadržaja predstavlja jedan od

najvećih izazova u industriji digitalne televizije usljed sve

manjeg broja televizijskih kanala čije se gledanje ne naplaćuje.

Da bi omogućili naplaćivanje televizijskog sadržaja korisnicima,

potrebno je zaštiti televizijski sadržaj cijelim prenosnim putem.

Najkorišteniji model zaštite živog televizijskog sadržaja je CAS

(eng. Conditional Access System). CAS model podrazumijeva

postupak zaštite video i audio sadržaja skremblovanjem koje

ima za cilj sprječavanje neovlaštene reporodukcije audio i video

sadržaja. Kontrolne riječi kojima je izvršeno skremblovanje se

prenose istim prenosnim kanalom kao i skremblovani sadržaj u

okviru ECM (eng. Entitlement Control Message) poruke ali u

enkriptovanom obliku. Kompanija Widevine je realizovala

sopstveni CAS ekosistem potpuno besplatan za sve korisnike. U

ovom radu je predstavljeno jedno rješenje ECM generatora u

Widevine CAS sistemu.

Ključne reči—ECM generator, Conditional Access System,

Digital Television

I. UVOD

U junu 2014. godine je prvi put prikazan Andoid TV

operativni sistem, koji je prilagođena verzija Android

operativnog sistema za televizore i STB (set-top box)

uređaje[4]. Do danas je veliki broj proizvođača televizora i

STB uređaja, kao i operatera televizijskih kanala integrisalo

Android TV kao operativni sistem koji se izvršava na

njihovim uređajima[5].

Kako bi privoljeli i preostale operatere televizijskih kanala i

proizvođače televizora i STB uređaja da integrišu Android TV

na svoje uređaje kreiran je Widevine CAS sistem uslovnog

pristupa koji je na korištenje dat potpuno besplatno, ali može

da se koristi samo uz Android TV operativni sistem. Da bi

sistem postao funkcionalan, potrebno je implementirati ECM

generator i posrednik u sistemu uslovnog pristupa, za šta je

dat SDK (eng. Software Development Kit).

Komponente sistema koje je potrebno implementirati nisu

implementirane da bi svaki operater televizijskih kanala

prilagodio sistem svojim potrebama. Postoji nekoliko primjera

implementacije ECM generatora [1, 2], ali oni nisu

prilagođeni Widevine CAS ekosistemu. Widevine CAS sistem

je prikazan u Sl. 1.

Radenko Banović – Fakultet Tehničkih Nauka, Univerzitet u Novom Sadu,

Trg Dositeja Obradovića 6, 21000 Novi Sad, Srbija (e-mail:

Radenko.Banovic@rt-rk.com).

Ilija Bašičević – Fakultet Tehničkih Nauka, Univerzitet u Novom Sadu,
Trg Dositeja Obradovića 6, 21000 Novi Sad, Srbija (e-mail:

ilibas@uns.ac.rs).

Ksenija Popov – Istraživačko-razvojni Institut RT-RK, Novi Sad, Srbija,
(e-mail: Ksenija.Popov@rt-rk.com).

Milenko Maksić – Istraživačko-razvojni Institut RT-RK, Novi Sad, Srbija,

(e-mail: Milenko.Maksic@rt-rk.com).

Sl. 1. Widevine CAS sistem

II. ECM GENERATOR

Da bi audio i video sadržaj bio zaštićen tokom kompletnog

prenosnog toka vrši se postupak skremblovanja. Inverzni

postupak u odnosu na skremblovanje se naziva

deskremblovanje, njime se zaštićeni sadržaj prevodi u osnovni

format razumljiv audio i video dekoderima[3].

Skremblovanje se vrši korištenjem kontrolne riječi (ključa

za skremblovanje). Korištenje kontrolne riječi u procesu

skremblovanja omogućuje promjenu kontrolne riječi u

vremenu, a period između dve promjene se naziva periodom

kriptovanja. Što je češća izmjena kontrolne riječi, to je proces

skremblovanja bezbjedniji.

Trenutno korištena kontrolna riječ prenosi se u okviru ECM

poruke koja se generiše u ECM generatoru. PID (eng. Packet

Identifier) vrijednost TS (eng. Transport Stream) paketa u

kom se nalazi ECM poruka se nalazi u CA deskriptoru PMT

tabele. ECM generator u Widevine CAS sistemu komunicira

sa licencnim poslužiocem (eng. License Server) i

skremblerom. Pozicija ECM generatora u Widevine CAS

sistem je prikazan na Sl. 2.

Sl. 2. Pozicija ECM generatora u widevine sistemu

 U ovom radu je korišten skrembler implementiran u TS

Duck programskoj podršci. TS Duck je set alata koji se koristi

za manipulaciju MPEG prenosnim tokovima, a jedan od alata

je i skrembler koji može da koristi i eksterni ECM generator

za generisanje ECM poruka[6]. ECM generator i TS Duck

komuniciraju po ECMG/SCS (eng. Simulcrypt Synchroniser)

protokolu[7].

U komunikaciji između generatora i skremblera, skrembler

je implementiran kao klijent, dok generator treba da bude

implementiran kao poslužioc, te je ECM generator je u smislu

komunikacije sa skremblerom implementiran kao TCP/IP

poslužioc koja čeka zahtjeve od skremblera.

Jedno rješenje ECM generatora

Radenko Banović, Ilija Bašičević, Ksenija Popov i Milenko Maksić

RT1.2 Page 1 of 3

Po uspostavljanju veze generatora i skremblera kreira se

sesija koja je zadužena za razmjenu poruka u okviru

ECMG/SCS protokola. ECMG/SCS protokol je prikazan na

Sl. 3.

Sl 3. Dijagram ECMG/SCS protokola

 WLS (eng. Widevine License Server) je već gotovo

rješenje sa kojim ECM generator komunicira putem HTTP

protokola. ECM generator treba od WLS da dobavi (eng.

Entitlement) ključeve kojima će enkriptovati ECM poruku u

kojoj se nalaze ključevi kojima je skremblovan sadržaj, tako

da u slučaju presretanja ECM poruke presretač ne može da

dobije informaciju o ključevima kojima je sadržaj

skremblovan. Dijagram komunikacije skremblera, ECM

generatora i WLS je prikazan na Sl. 4.

Sl. 4. Dijagram komunikacije ECM generatora

III. OPIS REALIZACIJE

ECM generator je realizovan kao C++ CLI (eng. Command

Line Interface) aplikacija. Prilikom pokretanja aplikacije

potrebno je proslijediti broj porta na kom aplikacija osluškuje

zahtjev klijenta (skrembler) za uspostavljanjem veze.

Kompletno rješenje se oslanja na Widevine SDK (eng.

Software Development Kit). Rješenje možemo podijeliti u tri

logičke cjeline, i to: TCP/IP poslužilac, ECMG/SCS protokol,

i ECM generator.

A. TCP/IP poslužilac

Ovaj modul sadrži dvije funkcije: void TCPstart(int port,

void (*onSessionEstablished)()) i void TCPstop(int port).

Funkcija TCPstart kreira TCP/IP utičnice sa podrškom za

IPv4 i IPv6 protokole, stavlja poslužioca u stanje čekanja

zahtjeva za konekcijom klijenta, te uspostavlja vezu i kreira

sesiju za korisnik / poslužilac komunikaciju. Funkcijom

TCPstop se zatvara otvorena sesija.

B. ECMG/SCS protokol

U ovom modulu je implementiran ECMG/SCS protokol.

Implementiran je tako da se izvršava u while petlji, poziva se

funkcija read() koja je blokirajuća, i koja zaustavlja

izvršavanje petlje dok se memorija za smještanje dolaznih

podataka ne popuni. Iz pristiglih podataka se pozivom

funkcije int32_t msg_pars(const uint8_t* buff, uint32_t size,

struct ecmgp_msg* msg) popunjava sktruktura ecmgp_msg.

Jedno od polja strukture koja predstavlja poruku je tip

poruke, na osnovu kog se korištenjem swich grananja bira

grana u kojoj se priprema odgovor na poslatu poruku. Tip

poruke može biti : CHANNEL_SETUP, STREAM_SETUP,

CW_PROVISION, STREAM_CLOSE_REQUEST. Svaka od

grana popunjava strukturu koja predstavlja poruku, te se

poziva funkcija int32_t msg_generator(uint8_t* buff, struct

ecmgp_msg* msg) koja od podataka iz strukture kreira poruku

koja se šalje ka klijentu.

Poruka tipa CW_PROVISION nosi i vrijednost ključa za

skremblovanje audio/video sadržaja koja kriptovana treba da

se nađe u ECM poruci. U funkciji int32_t

gen_ecm_datagram(uint8_t* ecm_datagram, struct

ecmgp_msg* msg) je implementirano kreiranje ECM poruke,

te se ona poziva u grani obrade poruke tipa CW_PROVISION.

Nakon poziva ove funkcije ECM poruka se dodaje kao polje

strukture ecmgp_msg, poziva se funkcija msg_generator

nakon koje se kreirana ECM poruka šalje skrembleru.

C. ECM generator (u užem smislu)

Za generisanje ECM poruke i kreiranje TS paketa, te

kreiranje zahtjeva za ključevima za enkriptovanje ECM

poruke i parsiranjem odgovora dobijenog od WLS korištene

su funkcije dobijene iz Widevine SDK paketa. Funkcija u

kojoj se kreira ECM poruka gen_ecm_datagram() kroz

parametar dobija poruku dobijenu od skremblera u kojoj se

nalaze ključevi za skremblovanje audio/video podataka. Pored

ključeva za skremblovanje, potrebno je dobaviti ključeve za

enkriptovanje ECM poruke koji se dobijaju slanjem ispravnog

HTTP zahtjeva ka WLS.

RT1.2 Page 2 of 3

Pozivom funkcije CreateEntitlementRequest() koja je dio

Widevine SDK kreira se zahtjev za ključevima za

enkriptovanje ECM poruke. Da bi se kreirao ispravan zahtjev

potrebno je funkciji proslijediti sledeće podatke: identifikator

sadržaja za skremblovanje, naziv operatera, broj ključeva za

skremblovanje (jedan, ili dva), rezolucija sadržaja, ime

operatera koji potpisuje zahtjev za licencom, ključ za

potpisivanje enkriptovanog zahtjeva i vektor za potpisivanje

zahtjeva. Nakon što je zahtjev ispravno kreiran korištena je

CURL biblioteka[8] kako bi se poslao HTTP zahtjev ka WLS,

nakon čega se odgovor upisuje u željeni dio memorije.

Nakon dobijenog odgovora, poziva se funkcija

ParseEntitlementResponse() koja iz sirovog odgovora izvlači

dva ključa za enkriptovanje ECM poruke. Pozivom funkcije

GenerateEcm() kojoj se kao parametri proslijeđuju ključevi za

enkriptovanje ECM poruke kreira se ECM poruka, da bi se na

kraju pozivom GenerateTsPacket() kreirao paket koji se šalje

ka skrembleru.

IV. TESTIRANJE

U paraleli sa izradom ECM generatora, kreirano je i

rješenje posrednika u sistemu uslovnog pristupa (CAS Proxy),

te je integrisana Widevine OEMCrypto biblioteka u Android

STB uređaj. Nakon što na Android STB uređaj pristigne

skremblovan audio/video sadržaj, on posredniku u sistemu

uslovnog pristupa šalje zahtjev za licencom, sa informacijom

o kom sadržaju je riječ. Ukoliko dobije odgovor od

posrednika, licenca se proslijeđuje OEMCrypto biblioteci koja

iz licence izvlači ključeve za dekriptovanje ECM poruke.

Ukoliko se poruka uspješno dekriptuje, ključevima dobijenim

iz ECM poruke se deskrembluje audio/video sadržaj, te je na

ekranu moguće vidjeti audio/video sadržaj koji je poslat na

STB uređaj. Predloženo rješenje je testnirano na Synaptics

BG5CT STB (Sl. 5.) uređajima sa operativnim sistemom

Android Q. Korištena je Live Channels korisnička aplikacija

koja se oslanja na Comedia DTV (eng. Digital Television)

srednji sloj kompanije iWedia.

Sl. 5. Synaptics BG5CT platforma

Pošto su STB uređaji uspješno deskremblovali i

reprodukovali audio/video sadržaj skremblovan ključevima

generisanim u TS Duck alatu, te ECM porukama

enkriptovanim ključevima dobijenim od WLS, konstatovali

smo da je testiranjem utvrđena funkcionalnost rješenja.

V. ZAKLJUČAK

U ovom radu je prikazano jedno rješene ECM generatora u

Widevine CAS sistemu. U uvodu je objašnjena uloga i značaj

CAS sistema, kao i njegova komercijalna primjena. Bliže je

opisan način zaštite televizijskog sadržaja u CAS sistemima,

Prikazan je opis rješenja. Rješenje je testirano na nekoliko

prijemnih uređaja, sa nekoliko ulaznih tokova podataka te je

potvrđena funkcionalnost sistema. U budućnosti se ovo

rješenje može unaprijediti podrškom za kreiranje ECM poruke

za više različitih tokova podataka u paraleli.

LITERATURA

[1] Li Xi and Chen Xin, “Design of Digital Video Broadcasting Conditional

Access System Headend Communication Interface,” in Computer and
Modernization, vol. 1, no. 3, pp. 118-121, 2012.

[2] In-Hee Jo and Byoung-Soo Koh, " Building a common encryption

scrambler to protect paid broadcast services," in International Journal
of Internet Technology and Secured Transactions, vol. 6, no. 3, Nov.

2016, doi: 10.1504/IJITST.2016.080391.

[3] Milan Bjelica, Nikola Teslić, Velibor Mihić, “Softver u digitalnoj
televiziji 1”, 2017.

[4] Google Unveils First Android TV Device, Jun 2021. [online].

https://www.nexttv.com/news/google-unveils-first-android-tv-device-
384772

[5] Android TV OS reaches 80M monthly active devices, Jun 2021.

[online]. https://techcrunch.com/2021/05/18/android-tv-os-reaches-80m-
monthly-active-devices-adds-new-features/

[6] TSDuck, Jun 2021. [online]. https://tsduck.io/

[7] ECMG/SCS protokol, Oktobar 2008. [online].
https://www.etsi.org/deliver/etsi_ts/103100_103199/103197/01.05.01_6

0/ts_103197v010501p.pdf

[8] Curl library, Jun 2021. [online]. https://curl.se/

ABSTRACT

The protection of television content is one of the biggest

challenges in the digital television industry due to the

declining number of free-to-air television channels. In order to

enable the charging of television content to operators, it is

necessary to protect television content throughout the

transmission. The most widely used model for the protection

of live television content is the CAS (Conditional Access

System). The CAS model involves a process of protecting

video and audio content by scrambling that aims to prevent

unauthorized reproduction of audio and video content. The

scrambled control words are transmitted via the same

transmission channel as the scrambled content within the

ECM (Entitlement Control Message) message but in

encrypted form. Widevine has implemented its own CAS

model completely free for all users. In this paper, one solution

of ECM generator in Widevine CAS system is presented.

One solution of ECM generator

Radenko Banovic, Ilija Basicevic, Ksenija Popov, Milenko

Maksic

RT1.2 Page 3 of 3

Apstrakt — XSS (eng. Cross-site scripting) je jedna od

najčešćih ranjivosti veb aplikacija uprkos tome što postoji

veliki broj različitih mehanizama zaštite. U ovom radu

prikazana je implementacija jedne ranjive aplikacije u okviru

koje je moguće demonstrirati različite tipove XSS sigurnosnih

propusta, kao i načina njihove zloupotrebe, ali i eliminisanja.

Aplikacija se može koristiti kao edukativno sredstvo za

praktičnu obuku softverskih inženjera u zatvorenom i

bezbednom okruženju.

Ključne reči — XSS, OWASP top 10, sigurnosni propusti.

I. UVOD

Važnost veb aplikacija posebno je došla do izražaja u

trenutku pandemije koronavirusa koja je počela 2019.

godine i još uvek traje. Od tada ljudi sve više završavaju

svoje poslove i obavljaju određene aktivnosti, poput online

kupovine ili korišćenja društvenih mreža, uz pomoć veb

aplikacija. Na ovaj način korisnici na različitim mestima

ostavljaju svoje poverljive podatke, verujući veb

aplikacijama da oni neće pasti u pogrešne ruke. Iz ovog

razloga je veoma bitno da svaka aplikacija u svakom

trenutku bude zaštićena od različitih tipova napada i

pokušaja krađe osetljivih podataka, i na taj način zadobije i

zadrži poverenje svojih korisnika.

Važan deo bezbednosti veb aplikacija jeste koncept polise

zajedničkog porekla (eng. same-origin policy, SOP) [1].

Zahvaljujući ovom mehanizmu, skripte jedne veb stranice

mogu da pristupe podacima druge veb stranice samo ako su

istog porekla. Dva URL-a su istog porekla ako su im

protokol, host i port identični. Na ovaj način sprečeno je da

napadači preko svojih zlonamernih veb aplikacija dođu u

posed osetljivih podataka smeštenih na nekom drugom veb

sajtu. Zbog toga su napadači morali da osmisle nove načine

kako mogu doći do korisničkih podataka, a da pritom

zaobiđu polisu zajedničkog porekla.

XSS [2][3] je jedan od bezbednosnih propusta koji

zaobilazi polisu zajedničkog porekla. Jedan je od retkih

napada koji se iznova nalaze na OWASP-ovoj godišnjoj listi

top 10 bezbednosnih propusta [4] i gotovo da ne postoji

veliki veb sajt koji u nekom trenutku nije bio ranjiv na ovaj

napad. XSS podrazumeva umetanje klijentskih skripti u

ranjivu aplikaciju, koje su kasnije dostupne korisniku nakon

učitavanja određenih veb stranica te aplikacije. XSS

bezbednosni propust je i dalje popularan i zastupljen na

velikom broju veb aplikacija. Razlog tome često može biti

neiskustvo, neupućenost i neobazrivost programera koji

Katarina Simić je student master studija na Elektrotehničkom fakultetu,

Univerziteta u Beogradu, Bul. kralja Aleksandra 73, 11120 Beograd, Srbija

(e-mail: sk193473m@etf.bg.ac.rs).

Žarko Stanisavljević radi na Elektrotehničkom fakultetu, Univerziteta u
Beogradu, Bul. kralja Aleksandra 73, 11120 Beograd, Srbija (telefon:

+381-11-3218-484; e-mail: zarko.stanisavljevic@etf.bg.ac.rs).

izrađuju veb aplikacije, kao i nedostatak testiranja aplikacija

na propuste prilikom svake velike izmene ili nadogradnje

aplikacije.

U ovom radu prikazana je implementacija i način

korišćenja ranjive veb aplikacije, na kojoj je moguće na

određenim mestima umetnuti zlonamerne skripte i izvršiti

neku od zlonamernih akcija na štetu regularnog korisnika.

Cilj ove aplikacije je jednostavna demonstracija nekih od

najčešće primenjenih i praktičnih XSS napada, koja bi na taj

način pomogla korisniku da bolje razume kada i kako ti

napadi mogu da se dese, kao i na kojim mestima u aplikaciji.

Nakon korišćenja aplikacije, korisnik bi trebao da razume

osnovne koncepte XSS napada, kao i da bude u stanju da

primeni odgovarajuće mere zaštite, koristeći naučeno,

prilikom izrade sopstvene aplikacije.

U drugom poglavlju se opisuju detalji XSS sigurnosnog

propusta. U trećem poglavlju je prikazan razvoj aplikacije

koji se koristi u demonstrativne svrhe XSS napada, uz

detaljan opis korišćenih tehnologija. U četvrtom poglavlju je

opisan rad aplikacije i način korišćenja aplikacije. U petom

poglavlju je dat zaključak.

II. XSS

Pojavom JavaScript programskog jezika sredinom

devedesetih godina prošlog veka omogućen je veliki

napredak u izradi veb aplikacija, koje su sada mogle biti i

interaktivne. Ali, pored svih dobrih i interesantnih

mogućnosti koje su sada bile dostupne, pojavile su se i one

loše koje mogu uticati negativno po korisnika, poput XSS

napada. Prvobitno se XSS napadu nije pridavalo mnogo

pažnje, jer su serveri bili izazovnija i interesantnija meta

napadačima. Ali tokom godina situacija se preokrenula.

Serveri su vremenom postajali mnogo zaštićeniji nego ranije

i bilo je sve teže probiti njihovu zaštitu. Uvidelo se i da

serveri nisu bili neophodni za izvršavanje napada sa

klijentske strane. Pojavljivali su se različiti pretraživači koji

izvršavaju klijentski kod, svaki sa svojim propustima u

zavisnosti od verzije, što je programerima dodatno otežavalo

posao zaštite. Sa druge strane, programeri zbog manjka

vremena ili budžeta, kao i manjka iskustva i znanja, ne

posvećuju dovoljno pažnje bezbednosnim propustima, te ih

je veoma lako i napraviti. Zbog svega ovoga se XSS danas

smatra za jedan od najopasnijih i najučestalijih napada. Dve

trećine svih veb aplikacija imaju XSS propuste u sebi, i

svaka velika i popularna aplikacija je u nekom trenutku

imala ovaj propust.

Primarni cilj napadača jesu korisnici ranjivih aplikacija.

Napadi najčešće podrazumevaju krađu sesije, preuzimanje

osetljivih podataka, izvršavanje nedozvoljenih akcija u ime

korisnika, dostavljanje zlonamernih softvera korisniku (eng.

malware), pa čak i narušavanje zaštite aplikacije od drugih

napada. Osim što ovi napadi oštećuju same korisnike, mogu

Aplikacija za demonstraciju XSS sigurnosnih

propusta

Katarina Simić, Žarko Stanisavljević

RT1.3 Page 1 of 6

mailto:zarko.stanisavljevic@etf.bg.ac.rs
mailto:zarko.stanisavljevic@etf.bg.ac.rs

da imaju i destruktivne posledice po samu aplikaciju,

ponajviše zbog gubitka poverenja od strane korisnika ako

aplikacija zahteva visok nivo bezbednosti zbog veoma

osetljivih i bitnih korisnikovih podataka podeljenih sa tom

aplikacijom.

Postoji nekoliko varijacija XSS napada, koje se mogu

podeliti u tri glavna tipa: reflektujući, snimljeni i DOM

bazirani XSS napad.

A. Reflektujući XSS napad

Reflektujući XSS napad (eng. Reflected XSS attack) [5] je

najzastupljeniji od sva tri tipa. Pod ovim napadom se

podrazumeva da se umetnuta, zlonamerna skripta pošalje na

server kao deo zahteva i zatim odmah reflektuje u

korisnikovom pretraživaču u vidu odgovora koji sadrži tu

skriptu. Dakle, podatak poslat serveru je vraćen i prikazan

na stranici bez ikakve prethodne provere tog podatka. Da bi

uspešno sproveo ovaj napad, napadač prvo mora da osmisli

URL koji će sadržati zlonamernu skriptu. Zatim će taj URL

proslediti korisnicima na lukav način. Ako neko od

korisnika ništa ne posumnja, zahtevaće URL od aplikacije i

server će vratiti odgovor koji će sadržati i napadačevu

skriptu. Korisnikov pretraživač će sada, između ostalog,

izvršiti i napadačevu skriptu i ukradeni podaci se šalju na

napadačev server i postaju mu dostupni. Ovakva vrsta

napada se izvršava samo ako korisnik otvori napadačev

URL, te je tako ovaj napad često jednokratan. Da bi napadač

naveo korisnika da nasedne i otvori sastavljen URL, mora da

se posluži lukavim trikovima. Ako su mu meta individualne

osobe, napadač će im zamaskirani URL upotpunjen

uverljivom porukom poslati direkno (npr. preko e-mail

poruke), tako da korisnik poželi da taj URL i otvori. Ako mu

je meta veći broj ljudi, zamaskirani URL će postaviti na

nekim drugim veb stranicama u vidu linka, te će čekati da

neko taj link i otvori.

B. Snimljeni XSS napad

Snimljeni XSS napad (eng. Stored XSS attack) [6] je

najopasniji tip XSS napada, zato što može da ima značajnije

posledice po veći broj korisnika. Za razliku od reflektujućeg

napada, zlonamerna skripta se čuva na serveru, tako da će se

svakom korisniku, koji od servera bude zahtevao stranicu sa

umetnutom skriptom, u pretraživaču ta skripta i izvršiti. Ovi

napadi su najčešći na sajtovima gde korisnici imaju vid

međusobne komunikacije (forumi, komentari, pitanja

korisnika, itd.). Za izvršavanje ovog napada napadač ne

mora da podmeće korisnicima direktno sastavljen URL, već

je dovoljno da sam umetne skriptu u aplikaciji. Pošto će ona

biti sačuvana na serveru, biće dostupna svakom korisniku te

stranice. Ovaj napad će najverovatnije dati bolje rezultate u

odnosu na reflektujući, jer da bi napadač ukrao korisnikove

osetljive podatke, korisnik u najvećem broju slučajeva mora

biti ulogovan, što će verovatno i biti slučaj prilikom

izvršavanja snimljenog XSS napada, a manje verovatan

slučaj prilikom reflektujućeg. Snimljenim napadom je veća i

verovatnoća da napadačeva žrtva bude administrator

napadnute veb aplikacije, što znači da cela aplikacija može

biti komprimitovana i ugrožena.

C. DOM bazirani XSS napad

Za razliku od reflektujućeg i snimljenog XSS napada, za

čije je izvršavanje neophodno vraćanje zlonamerne skripte

sa servera, DOM (eng. Document Object Model) bazirani

XSS napad [7] će se izvršiti bez da server vrati skriptu

prosleđenu u URL-u. Ovo je moguće zato što JavaScript

može pristupiti DOM-u i samim tim može dohvatiti i

parametre URL-a. To znači da će zlonamerni kod biti

preuzet sa URL-a i obrađen u JavaScript kodu. Ovakva vrsta

napada ima više sličnosti sa reflektujućim XSS napadom

nego snimljenim, jer zahteva od napadača da sastavljen URL

na razne načine podmetne korisnicima, ali je zbog svoje

prirode znatno opasniji. Razlika u odnosu na reflektujući

XSS napad jeste što će JavaScript kod procesirati napadačev

URL, pa samim tim i napadačevu skriptu umetnutu u URL,

tako da bilo šta što će server vratiti kao odgovor nije važno

prilikom ovog napada. Najveći problem kod ovog propusta

jeste naći uzrok zbog kojeg nastaje, a pošto se taj uzrok

može naći bilo gde u klijentskom kodu, programer bi morao

dobro da poznaje projekat prilikom istrage.

D. Zaštita od XSS napada

Nakon upoznavanja sa XSS propustima i uviđanja

njihovih mogućnosti i posledica po korisnike, naredni korak

za programere bi bio da svoje aplikacije od istih i zaštite. S

obzirom da je malo potrebno da se propusti naprave,

neophodno je redovno testirati aplikacije na njih prilikom

svake nadogradnje koda. Radi efikasnije zaštite aplikacija

preporučljivo je primeniti metode poput validacije input-a

[8], validacije output-a [9], konfiguracije aplikacije tako da

vraća Content-Security-Policy zaglavlje [10], zabrane unosa

korisničkih podataka na potencijalno opasnim mestima u

okviru aplikacije [11], kao i korišćenja odgovarajućih

zaglavlja odgovora koji bi mogli da detektuju HTML ili

JavaScript kod u HTTP odgovorima, i samim tim spreče

njihovo ubrizgavanje, poput X-XSS-Protection zaglavlja

[12].

III. IMPLEMENTACIJA APLIKACIJE

Implementirana aplikacija se sastoji iz dva dela. Prvi deo

čini jednostavna, ali ranjiva veb aplikacija, koja služi za

isprobavanje različitih XSS napada na različitim mestima u

okviru te aplikacije. Drugi deo čini napadačev server, na

koji pristižu ukradeni podaci nakon uspešno izvršenih

napada.

A. Implementacija ranjive aplikacije

Prvi deo alata za učenje predstavlja jednostavnu veb

aplikaciju za pretraživanje i dodavanje slika pod nazivom

ImageBrowser (Sl. 1).

Na početku se od korisnika traži da se registruje ili

uloguje na aplikaciju. Nakon što se korisnik uloguje,

prikazuje mu se stranica sa porukom dobrodošlice. Nakon

toga korisniku su dostupne dve različite stranice sa

akcijama. Na prvoj stranici korisnik može da dodaje svoje

slike uz koje ostavlja i određene tagove – reči koje služe za

opisivanje slike. Na drugoj stranici korisnik može da, uz

pomoć input polja, pretražuje slike na osnovu postojećih

tagova, da pretražuje druge korisnike aplikacije dodajući

simbol @ ispred korisničkog imena, kao i da prikazane slike

komentariše i na njih reaguje.

Sama aplikacija ima minimalan skup potrebnih

funkcionalnosti, ali i namerno napravljene XSS bezbednosne

propuste na više mesta radi demonstracije nekih od XSS

napada.

RT1.3 Page 2 of 6

a) b) c)

Sl. 1. Izgled ranjive aplikacije u pretraživaču: a) početna stranica, b) stranica za dodavanje slika i c) stranica za pretraživanje slika

Da bi korisnik mogao da dodaje i pretražuje slike, kao i

da ostavlja komentare i reakcije, određeni podaci moraju da

se čuvaju u bazi podataka. Aplikacija koristi H2 Java in-

memory bazu [13], koja omogućava da se prilikom svakog

pokretanja aplikacije koristi inicijalno stanje podataka baze i

da se sve dotadašnje izmene gube, što omogućava lakše

testiranje aplikacije.

Za implementaciju servera je korišćen razvojni okvir

Spring [14], kao i SpringBoot [15] koji koristi Spring kao

podlogu. U projektu se koristi i Apache Maven [16], alat za

izvršavanje compile i build naredbi Java koda. Spring

Initializer [17] je projekat otvorenog koda (eng. open

source), koji omogućava generisanje konfigurisanog Spring

projekta uz odabir potrebnih zavisnosti (eng. dependencies).

Java kod je grupisan po paketima, od kojih je okružujući

application.imagebrowser u okviru koga se pored drugih

nalazi i ImagebrowserApplication, glavna klasa aplikacije

(Sl. 2).

Sl. 2. UML dijagram paketa unutar application.imagebrowser okružujućeg
paketa

Unutar ovog paketa se nalazi nekoliko drugih paketa, koji

sadrže sav potreban kod za uspostavljanje komunikacije i

ispravan rad servera sa bazom podataka, obradu pristiglih

zahteva na serveru i vraćanje odgovarajućih stranica i

podataka koji se učitavaju na stranici sa kojima će korisnik

interagovati.

Klijentska strana sadrži kod koji se izvršava u

pretraživaču, i sadrži sve što korisnik može da vidi i sa čime

može da interaguje. Najbitnije i najosnovnije tehnologije

koje su korišćene prilikom izrade klijentskog dela aplikacije

su HTML (eng. Hyper Text Markup Language), CSS (eng.

Cascading Style Sheets) i JavaScript. U okviru posmatrane

aplikacije se koriste JSP (eng. Java Server Pages) stranice

[18] koje podržavaju dinamički sadržaj, što omogućava

umetanje Java koda unutar HTML koda uz pomoć

specijalnih JSP tagova. JSP komponenta predstavlja servlet

koji ispunjava ulogu korisničkog interfejsa za Java veb

aplikaciju. Radi olakšanog i preglednijeg fajla, uz JSP se

koristi i biblioteka JSTL (eng. The JSP Standard Template

Library) [19], koja omogućava da se Java kod zameni

tagovima koji će raditi identičan posao. Fragmenti JSP koda

koji se mogu koristiti na više mesta su smešteni u zasebne

fajlove, koji se uz pomoć tagova učitavaju na određenoj JSP

stranici. JSP fajlovi u aplikaciji koji čine stranice su:

 login.jsp, gde korisnik može da se uloguje ili

registruje,

 index.jsp, koji predstavlja glavnu stranicu

prikazanu korisniku nakon što se uloguje,

 upload.jsp, gde korisnik może da dodaje slike i

tagove,

 search.jsp, gde korisnik może da pretražuje slike

po tagovima ili drugim korisnicima, kao i

 searchResults.jsp i noResults.jsp, dve stranice

koje server vraća kao rezultat AJAX [20]

poziva,

prva sa rezultatima, i druga sa informacijom da

rezultata nema.

B. Implementacija napadačevog servera

Drugi deo aplikacije čini napadačev server, na kojem će

se obrađivati pristigli zahtevi, tačnije prethodno dohvaćeni

osetljivi podaci korisnika. Da bi zahtevi uopšte mogli da

pristignu na server, napadač mora da sastavi URL koji će u

sebi sadržati zlonamerni kod za dohvatanje podataka i za

redirekciju. Nakon dohvatanja podataka, napadač može da

ponovo izvrši redirekciju nazad ka napadnutoj aplikaciji

tako da korisnik ni ne posumnja da je bio napadnut.

U okviru ove aplikacije je napadačev server

implementiran u Node.js [21] platformi koja predstavlja

asinhrono runtime okruženje za JavaScript jezik, i koja

omogućava stvaranje skalabilnih veb aplikacija, samim tim i

izvršavanje JavaScript koda van pretraživača.

U slučaju napadačevog projekta je instaliran paket

Express [22], koji predstavlja radni okvir za organizaciju

aplikacije prema MVC arhitekturi. Pomoću Express-a se

mogu na jednostavan način obrađivati pristigli zahtevi.

Napravljen je jedan JavaScript fajl, index.js, u kojem se,

prilikom izvršavanja koda, pokreće server koji

osluškivanjem čeka na zahteve i obrađuje one koji su

pristigli. Svaki zahtev se obrađuje tako da se u terminalu

napadača gde je pokrenuta skripta ispišu pristigli podaci, a

zatim po potrebi izvrši i redirekcija. Dokle god napadačev

server radi, moći će da obrađuje pristigle zahteve.

RT1.3 Page 3 of 6

IV. NAČIN KORIŠĆENJA APLIKACIJE

U ovom poglavlju je dat prikaz nekoliko tipičnih scenarija

XSS napada, gde je prvo objašnjen cilj napada, uz priložene

zlonamerne skripte za ispunjenje tog cilja, a zatim je na

kraju svakog primera dat savet za sprečavanje tog napada.

Bitno je napomenuti da su ovakve vrste napada kažnjive

zakonom svuda u svetu (npr. u Srbiji prema Krivičnom

zakoniku Republike Srbije (Članovi 298 do 304a)) ukoliko

se sprovode prema aplikacijama fizičkih i pravnih lica koja

nisu upoznata i saglasna sa aktivnostima na proveri

ranjivosti.

A. Krađa korisnikove sesije

Nakon što se korisnik uspešno uloguje na aplikaciju,

server će poslati kolačić sesije preko Set-Cookie zaglavlja.

Taj kolačić će se sada slati ka serveru uz svaki korisnikov

zahtev. Zbog toga je kolačić sesije izuzetno osetljiv podatak,

jer ako napadač nekako uspe da dođe do njegove vrednosti

moći će da šalje zahteve ka serveru u ime oštećenog

korisnika. HttpOnly predstavlja deo Set-Cookie zaglavlja u

vidu flag-a. Ako je taj flag postavljen, to će sprečiti

klijentske skripte da pristupe vrednostima kolačića. U

slučaju da taj flag nije postavljen, krađu sesije je moguće

izvesti. U slučaju ove aplikacije flag nije postavljen, tako da

je moguće pristupiti vrednosti kolačića sesije u JavaScript-u

preko document.cookie atributa (Sl. 3).

Sl. 3. Prikaz ukradenog kolačića sesije u terminalu napadača

1) Krađa kolačića sesije - reflektujući XSS napad

Na search stranici aplikacije postoji reflektujući XSS

propust. Prilikom pretrage slika, uneti termin postaje URL

parametar, i prilikom vraćanja rezultata od strane servera se

vraća i pretražen termin koji se dodaje na stranicu.

Validacija na tim osetljivim tačkama nije realizovana,

samim tim korisnik umesto termina može da ukuca skriptu

unutar <script> taga. Napadač takođe proverava na

svojoj mašini da li document.cookie vraća njegovu tekuću

sesiju. Nakon što utvrdi da vraća, napadač može da sastavi

URL koji sadrži zlonamerni kod.

2) Krađa kolačića sesije - snimljeni XSS napad

U aplikaciji postoji i snimljeni XSS propust, tako da

napadač može u komentare da ubacuje zlonamerni kod. Ako

je situacija ista kao kod reflektujućeg XSS propusta, napadač

sada može isti zlonamerni kod da doda kao komentar (Sl. 4).

To znači da će svakom korisniku kojem se taj komentar

bude učitao na stranici biti ukraden kolačić sesije. Ovo je

suptilniji način za prevaru korisnika, te je veća verovatnoća

da će korisnici biti prevareni ovom metodom nego da su

kliknuli na URL primljen od napadača u slučaju

reflektujućeg XSS napada.

Sl. 4. Trenutak dodavanja napadačeve skripte u komentar

3) Krađa kolačića sesije - DOM bazirani XSS napad

Na upload stranici aplikacije postoji DOM bazirani XSS

propust. Korisnik može da dodaje tagove koji se pridodaju

slici, i kako se neki tag doda on postaje deo URL-a u vidu

href parametra. Problem je što se taj deo URL-a nikada ne

šalje na server i ne obrađuje, ali se prilikom učitavanja

stranice sa takvim URL-om tagovi automatski dodaju. To

znači da se taj deo URL-a obradio negde u JavaScript kodu.

4) Način sprečavanja napada

Najlakši i najefikasniji način sprečavanja ovog napada

jeste jednostavno podesiti HttpOnly flag, koji u tom slučaju

sprečava klijentske skripte da dohvate podatke o kolačićima

(Sl. 5). Na ovaj način document.cookie će uvek vratiti

praznu vrednost i kolačić sesije će ostati bezbedan. Iako

ovaj mehanizam odbrane od krađe kolačića funcioniše, to ne

znači da napadač na istom mestu ne može da izvrši druge

zlonamerne akcije. Ovaj flag se setuje na različite načine, u

zavisnosti od korišćenog programskog jezika.

Sl. 5. Postavljanje HTTPOnly flag-a radi sprečavanja krađe kolačića sesije

B. Umetanje napadačevog koda na stranicu

U prethodnim primerima je data jednostavna skripta koja

izvršava redirekciju i prosleđuje kolačić sesije napadaču, ali

ako je primenjena navedena tehnika zaštite od tog napada,

napadač mora da nađe drugi način da naškodi korisniku. Još

jedna tehnika jeste umetanje HTML koda na stranicu, kojem

se dodeljuju stilovi tako da izgleda kao da je zapravo deo

stranice. Ako je kod dovoljno uverljiv, može da uveri

korisnika da uradi određene akcije vođene tim kodom. U

naredna dva primera se može videti kako umetanjem HTML

koda napadač može da ukrade kredencijale korisnika, i kako

može da navede korisnika da preuzme sumnjiv sadržaj na

svoju mašinu.

1) Umetanje koda za preuzimanje sumnjivih fajlova

Ponekad napadaču nije samo cilj da ukrade korisnikove

podatke, već i da ga navede da preuzme određeni fajl. To

postiže umetanjem linka, na čiji klik se započinje

preuzimanje nekog fajla. U zavisnosti od toga šta je cilj

napadača, taj fajl može da ima nikakav ili razoran uticaj na

korisnikovu mašinu. Dovoljno je samo sastaviti taj link

dovoljno uverljivim da navede korisnika da klikne na njega,

tako da će napadač i ovde uneti inline stilove, kao i uverljiv

tekst (Sl. 6).

Sl. 6. Prikaz stranice za pretraživanje slike sa umetnutim linkom za

preuzimanje sumnjivih fajlova

2) Phishing tehnika

Iako kolačići nakon primenjene zaštite ne mogu biti

ukradeni, XSS propust i dalje postoji na istim mestima.

Napadač uviđa da može da umetne skriptu koja sa stranice

RT1.3 Page 4 of 6

briše ceo HTML kod i zameni ga svojim. U ovom primeru je

za brisanje i dodavanje koda korišćen Jquery (tačnije .empty

i .append funkcije). Kod koji se dodaje predstavlja lažnu

formu za unos korisničkog imena i šifre. Ta taktika

umetanja ovakve vrste koda gde korisnik „dobrovoljno“

ostavlja lične podatke napadaču se zove phishing. Napadač

dodaje tekst da uveri korisnika da treba tu formu da popuni,

na primer saopšti korisniku da mu je istekla sesija i da mora

ponovo da se uloguje (Sl. 7).

Sl. 7. Prikaz stranice za pretraživanje slike sa umetnutom formom

Ako korisnik ništa ne posumnja, može uneti svoje lične

podatke. Klikom na dugme za logovanje se zapravo izvršava

redirekcija ka napadačevom serveru i štampaju se podaci u

napadačevu konzolu i na kraju ponovo dešava redirekcija

nazad ka aplikaciji. Napadač sad ima korisnikovo ime i

šifru, što može da zloupotrebi na sličan način kao i prilikom

krađe sesije (Sl. 8).

Sl. 8. Prikaz ukradenih kredencijala u terminalu napadača pomoću
phishing tehnike

3) Način sprečavanja napada

U prethodnim primerima nije bilo potrebno raditi dodatnu

validaciju zbog prirode napada. Ali u ovom slučaju bi bilo

poželjno uraditi validaciju i input-a i output-a, na klijentskoj

i na serverskoj strani. Prilikom pretrage se dešava AJAX

poziv, pa je poželjno da se pre toga uradi sanitizacija

input-a, najverovatnije uz pomoć regularnog izraza. U

slučaju da input ne ispunjava zahteve, AJAX poziv se neće

izvršiti i korisniku se ostavlja poruka da zna da je input polje

bilo neispravno popunjeno. Sledeći korak je uraditi

validaciju u kontroleru prilikom obrade zahteva i vraćanja

odgovarajuće stranice. Tu bi najbolje rešenje bilo korišćenje

gotovih metoda za zamenu (escaping) HTML koda. Ako je

ipak potrebno dozvoliti određene tagove ili specijalne

karaktere, metode moraju ručno da se pišu uz veliki oprez.

Na primer, ako korisnik zameni <script> tag praznim

stringom bez rekurzije, napadač može da sastavi skriptu sa

script tagom <scr<script>ipt>. Takođe mora da se

vodi računa da se obrade i uppercase i lowercase karakteri.

Bitno je određene karaktere i stringove menjati u celoj

skripti, a ne samo po prvom pojavljivanju. Zlonameran kod

može biti prosleđen i kao atribut nekog dozvoljenog taga, pa

je i za to potrebna validacija. Nakon što programer utvrdi

sve šta mu je potrebno za validaciju na serveru, može da

uradi i validaciju output-a. Najlakši način uraditi to u okviru

ove aplikacije jeste koristeći JSTL tag <c:out>, jer ovaj

tag omogućava escaping vraćenog koda. Na kraju se uz ove

tehnike postiže visok nivo zaštite od ovakvog XSS napada.

C. Izvršavanje nedozvoljenih radnji u ime korisnika

Osim krađe podataka, napadač može pomoću

zlonamernog koda i da izvrši neku radnju na stranici u ime

korisnika. U tom slučaju nema potrebe da išta radi na svom

serveru, već samo da pripremi kod koji će se izvršiti. Ako je

cilj napadača da što više korisnika ošteti, to bi najbolje

postigao uz snimljen XSS napad.

Skripta za ovaj primer je sastavljena tako da se u

određenom vremenskom intervalu daju ili sklanjaju

korisnikove reakcije na slike (Sl. 9). Iako ovaj napad nema

veće posledice po korisnika, sam napad može da izazove

nelagodnost i zbunjenost. Ovo je samo jedan primer

izvršavanja nedozvoljenih akcija u skladu sa datim alatom,

ali i u ovom slučaju zlonamerne skripte mogu da izazovu i

znatno veće posledice, posebno ako korisnik nije ni svestan

da se nešto desilo.

Sl. 9. Prikaz izvršavanja napadačeve skripte u ime korisnika u toku

određenog vremenskog intervala

Iako je cilj napadača različit u odnosu na prethodni

primer, metoda sprečavanja od XSS napada je ista. Potrebno

je validirati input i output, sa klijentske i serverske strane.

Poželjno je raditi validaciju na svim osetljivim mestima da

bi se smanjio rizik od napada.

D. Keylogger

Još jedan način na koji napadač može da dođe do

osetljivih korisnikovih podataka jeste da umetne skriptu koja

napadačevom serveru prosleđuje karaktere koje korisnik

unosi, karakter po karakter uz tačno vreme unosa. Ova

tehnika nadgledanja pojedinačnih karaktera koje korisnik

unosi se naziva keylogger, i najefikasnija je na stranicama

na kojima se unose poverljivi podaci, poput broja kreditne

kartice ili kredencijala. Skripta radi tako što pravi ograničen

niz karaktera koji se šalje u određenom vremenskom

intervalu samo ako je taj niz popunjen.

Na stranici za registraciju namerno je napravljen

bezbednosni propust. Kada korisnik prilikom registracije

unese već postojeće korisničko ime ili e-mail, prilikom

osvežavanja stranice će ta informacija biti prisutna u URL-u

i iz nje biti ispisana u odgovarajuće input polje (Sl. 10).

Sl. 10. Prikaz početne stranice u toku izvršavanja keylogger XSS napada

RT1.3 Page 5 of 6

Napadač je otkrio da može svojim zlonamernim kodom da

zatvori tag tog input polja, i dalje samo izvrši svoju skriptu.

Chrome, Safari i IE pretraživači su se u ovom slučaju

pokazali otpornim na napad zahvaljujući X-XSS-Protection

zaglavlju odgovora. Svi korisnici koji se nalaze na ostalim

pretraživačima će biti ranjivi. Napadač na ovaj način može

da sazna kredencijale korisnika kroz individualne karaktere

(Sl. 11).

Sl. 11. Prikaz ukradenih informacija u terminalu napadača tokom

izvršavanja keylogger XSS napada

E. Jednostavan primer DOM baziranog XSS propusta

Preporučljivo je zaobići manipulaciju DOM-a u

klijentskom kodu koliko god je to moguće da bi se smanjile

šanse za DOM bazirani XSS napad. U ovom primeru se

namerno na dnu svake stranice nalazi dekodovani URL

tekuće stranice, koji se i dohvata i dekoduje u JavaScript

kodu (Sl. 12). Ovde napadač takođe može da umetne skriptu

koja će potpuno zaobići server i manipulisati kod koji se

izvršava u JavaScript-u.

Dekodovani URL tekuće stranice se dohvata prilikom

učitavanja te stranice u JavaScript kodu uz pomoć svojstva

document.URL. Na ovaj način se vrši manipulacija DOM

podataka, što otvara mogućnost da stranica bude ranjiva na

DOM bazirani XSS napad. Eliminacijom tog koda problem

bi u potpunosti nestao, ali ako je ipak potrebno taj kod i

izvršiti, neophodno je uraditi validaciju. Tokom izvršavanja

atributa document.URL, on se i dekoduje, te je preporučljivo

ukloniti tu funkcionalnost. Ako informacija treba da bude

dekodovana, treba izvršiti zamenu (eng. escaping)

nepoželjnih karaktera koji se mogu naći u skripti sa

odgovarajućom interpretacijom tog karaktera. Na ovaj način

je sprečeno izvršavanje zlonamerne skripte na svim

stranicama aplikacije.

Sl. 12. Prikaz ranjivosti stranice na kojoj se nalazi dekodovani URL

V. ZAKLJUČAK

U ovom radu predstavljena je jedna ranjiva aplikacija

pomoću koje se može izučavati XSS sigurnosni propust.

Aplikacijom su pokriveni različiti tipovi XSS napada.

Korišćenjem aplikacije moguće je demonstrirati neke

interesantne zloupotrebe ovih propusta. Najvažnije je da

korisnici mogu na siguran način u zatvorenom okruženju

detektovati propuste, a zatim koristeći tehnike zaštite

ispraviti propuste i uveriti se da njihova rešenja ispravno

rade. Aplikaciju je takođe moguće nadograditi po potrebi u

budućnosti, radi dodavanja novih primera i propusta koji bi

korisnicima dodatno omogućili testiranje i učenje o XSS

napadu. Aplikacija je korišćena za izvođenje laboratorijskih

vežbi na predmetu Zaštita računarskih sistema i mreža na

Elektrotehničkom fakultetu u Beogradu, ali efekti korišćenja

nisu izmereni usled uslova izvođenja nastave izazvanih

pandemijom koronavirusa.

LITERATURA

[1] Same origin policy, pristupano 21.05.2021,

https://developer.mozilla.org/en-US/docs/Web/Security/Same-

origin_policy
[2] D. Stuttard, M. Pinto, “The Web Application Hacker’s Handbook:

Finding and Exploiting Security Flaws”, second edition, John Wiley

& Sons Inc, 2011
[3] Cross-site Scripting, pristupano 21.05.2021, https://owasp.org/www-

community/attacks/xss/

[4] OWASP Top Ten Project, pristupano 21.05.2021,
https://owasp.org/www-project-top-ten/

[5] Reflected XSS Attacks, pristupano 21.05.2021,

https://owasp.org/www-community/attacks/xss/#reflected-xss-attacks

[6] Stored XSS Attacks, pristupano 21.05.2021, https://owasp.org/www-

community/attacks/xss/#stored-xss-attacks

[7] DOM Based XSS, pristupano 21.05.2021, https://owasp.org/www-
community/attacks/DOM_Based_XSS

[8] Input Validation Cheat Sheet, pristupano 21.05.2021,
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Chea

t_Sheet.html

[9] XSS Prevention Rules, pristupano 21.05.2021,
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_

Prevention_Cheat_Sheet.html#rule-1-html-encode-before-inserting-

untrusted-data-into-html-element-content
[10] Content Security Policy (CSP), pristupano 21.05.2021,

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

[11] XSS Prevention Rules, pristupano 21.05.2021,
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_

Prevention_Cheat_Sheet.html#rule-0-never-insert-untrusted-data-

except-in-allowed-locations
[12] X-XSS-Protection Header, pristupano 21.05.2021,

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_

Prevention_Cheat_Sheet.html#x-xss-protection-header
[13] H2 Database, pristupano 21.05.2021,

https://www.h2database.com/html/main.html

[14] Spring, pristupano 21.05.2021, https://spring.io/
[15] Spring Boot, pristupano 21.05.2021, https://spring.io/projects/spring-

boot

[16] Apache Maven, pristupano 21.05.2021, https://maven.apache.org/
[17] Spring Initializr, pristupano 21.05.2021, https://start.spring.io/

[18] JSP Tutorial, pristupano 21.05.2021, https://www.javatpoint.com/jsp-

tutorial
[19] JSTL (JSP Standard Tag Library), pristupano 21.05.2021,

https://www.javatpoint.com/jstl

[20] AJAX, pristupano 21.05.2021, https://developer.mozilla.org/en-
US/docs/Web/Guide/AJAX

[21] Node.js, pristupano 21.05.2021, https://nodejs.org/en/

[22] Express, pristupano 21.05.2021, https://expressjs.com/

ABSTRACT

XSS (Cross-site scripting) is one of the most common

vulnerabilities in web applications, despite the fact that there are

many defense mechanisms against it that are available. This paper

presents the implementation of a vulnerable application in which

different types of XSS vulnerability can be demonstrated, along

with the ways they can be misused, but also the ways they can be

eliminated. The application can be used as an educational tool for

software developer practical training in a closed and safe

environment.

AN APPLICATION FOR DEMONSTRATION OF XSS

VULNERABILITY

Katarina Simic, Zarko Stanisavljevic

RT1.3 Page 6 of 6

Apstrakt — Sigurnosni propusti u aplikacijama koji nastaju

prilikom njihovog razvoja i ostaju nedetektovani u

produkcionom okruženju mogu dovesti do narušavanja

integriteta, poverljivosti i dostupnosti takvih aplikacija.

SQLiTrainer predstavlja skup ranjivih aplikacija kojima se

mogu demonstrirati različite vrste SQLi (eng. SQL injection)

ranjivosti. U radu je opisan način implementacije SQLiTrainer

sistema i dati su primeri na koji način se sistem može iskoristiti

za praktičnu obuku programera. Sistem je uspešno korišćen za

izvođenje laboratorijskih vežbi na predmetu Zaštita

računarskih sistema i mreža na Elektrotehničkom fakultetu u

Beogradu.

Ključne reči — SQLi, sigurnosni propusti, razvoj bezbednog

softvera.

I. UVOD

Razvoj bezbednog softvera podrazumeva postojanje

svesti kod programera o potencijalnim problemima, a zatim

i primenu čitavog seta dobrih praksi, kao i automatizovanih

alata tokom procesa razvoja softvera. Aplikacije kod kojih

postoje sigurnosne ranjivosti koje se mogu zloupotrebiti

mogu dovesti do štete kako za korisnike takvih aplikacija,

tako i za njihove autore.

Jedan od sigurnosnih propusta koji je često zastupljen u

veb aplikacijama je SQL injection [1], kod koga se na

različite načine na nepredviđen način mogu umetnuti

naredbe koje mogu narušiti integritet, poverljivost i

dostupnost baza podataka. Ovaj propust se već duži niz

godina nalazi na top listama najčešćih sigurnosnih propusta

u aplikacijama koje objavljuju organizacije kao što je

OWASP (Open Web Application Security Project) [2].

U opštem slučaju nije jednostavno omogućiti

programerima da kroz praktičan rad unaprede svoje znanje o

ovakvim problemima, jer to podrazumeva izučavanje

različitih mehanizama kojima se narušava informaciona

bezbednost aplikacija na kojima se primenjuju. Primena

ovih mehanizama kada se izvršavaju prema sistemima

fizičkih i pravnih lica koja nisu upoznata i saglasna sa

aktivnostima na proveri ranjivosti i testiranju upada u

njihove sisteme je kažnjiva svuda u svetu (npr. u Srbiji

prema Krivičnom zakoniku Republike Srbije (Članovi 298

do 304a)). Iz tog razloga postoje različiti sistemi koji

omogućavaju svojim korisnicima da u zatvorenom

okruženju na praktičan način obave obuku, a da ne prekrše

zakon [3-5]. U ovom radu prikazan je jedan novi sistem za

učenje o SQLi sigurnosnim propustima u aplikacijama.

Đorđe Madić radi u kompaniji Zuehlke Engineering, Bul. Milutina

Milankovića 1i, 11070 Novi Beograd, Srbija (e-mail:
djordje.madic@zuehlke.com).

U trenutku rada na ovom istraživanju Đorđe Madić je bio student master

studija na Elektrotehničkom fakultetu, Univerziteta u Beogradu.
Žarko Stanisavljević radi na Elektrotehničkom fakultetu, Univerziteta u

Beogradu, Bul. kralja Aleksandra 73, 11120 Beograd, Srbija (telefon:

+381-11-3218-484; e-mail: zarko.stanisavljevic@etf.bg.ac.rs).

U drugom poglavlju su na primeru opisani uzrok i koraci

kod izvođenja SQLi napada. U trećem poglavlju prikazan je

način korišćenja realizovanog sistema na primeru jedne

laboratorijske vežbe. U četvrtom poglavlju prikazana je

implementacija laboratorijskih vežbi. U petom poglavlju dat

je zaključak.

II. SQL INJECTION

OWASP definiše injection kao ,,slanje nepouzdanih

podataka interpreteru kao deo komande ili zahteva“. SQL

injection je tip napada koji se koristi za neovlašćeni pristup

SQL bazi podataka koju aplikacija koristi. Napadač može

čitati osetljive podatke, menjati njihovu strukturu, a u nekim

slučajevima i izvršavati komande nad operativnim sistemom

baze. Uzrok postojanja propusta je što aplikacija dozvoljava

da korisnikov unos učestvuje u kreiranju SQL upita,

omogućavajući mu da modifikuje originalni upit u svoju

korist. U nastavku je na primeru SQLi Login Bypass napada

objašnjen postupak izvršavanja napada.

SQLi Login Bypass počinje na stranici za prijavu

korisnika, kao na Sl. 1. Cilj napada je, u bukvalnom prevodu

sa engleskog, ,,zaobići prijavu“, odnosno prijaviti se ne

znajući ni jedno korisničko ime ni lozinku.

Sl. 1. Stranica za prijavu korisnika

Prvi korak napada je analiza aplikacije. Ideja je pronaći

ulazne podatke aplikacije koji se potencijalno koriste za

kreiranje SQL upita. Ti podaci su kandidati da ,,nose“

napadački upit. U primeru prijave korisnika postoje dva

ulazna podatka, korisničko ime i lozinka.

U narednom koraku potrebno je pretpostaviti kako izgleda

SQL upit i odabrati ulazne podatke za napad. Na primer, upit

za prijavu može biti sledeći:

SELECT * FROM korisnik
WHERE korisnicko_ime='$korisnicko_ime'
AND lozinka='$lozinka'

Delovi upita $korisnicko_ime i $lozinka su ulazni podaci

sa korisničkog interfejsa, a napad se, na primer, može

izvršiti kroz $korisnicko_ime.

SQLiTrainer - sistem za učenje o SQLi

sigurnosnim propustima u aplikacijama

Đorđe Madić, Žarko Stanisavljević

RT1.4 Page 1 of 5

Napad se nastavlja na korisničkom interfejsu. U

najčešćem slučaju tekstualni unos u polje za korisničko ime

biće tretiran kao podatak, odnosno neće biti interpretiran kao

komanda od strane baze podataka. Kako je korisničko ime

tekstualnog tipa, u upitu se koristi apostrof za označavanje

početka i kraja tekstualnog podatka. U slučaju da se u polje

za korisničko ime unese apostrof, karakteri koji prethode

tretiraće se kao podatak, dok će se oni koji slede tretirati kao

komanda.

Koristeći ovu činjenicu napadač ima priliku da modifikuje

originalni upit. Pod pretpostavkom da je prijava korisnika

uspešna ukoliko upit vrati bar jedan rezultat, napad se može

izvršiti kao na Sl. 2. što rezultuje sledećim upitom:

SELECT * FROM korisnik
WHERE korisnicko_ime='' or true --' and
password=''

Rezultat upita su svi redovi tabele ,,korisnik”. Simbol ,,--"

predstavlja oznaku za komentar čime se ignoriše deo upita

nakon korisničkog imena.

Uslov ,,or true" čini da svaki red bude deo rezultata,

ignorišući korisničko ime.

Sl. 2. SQLi napad na slučaju korišćenja prijave korisnika

Osnovu prevencije SQLi sigurnosnog propusta čine

parametrizovani upiti (eng. Parametrized Statement,

Prepared Statement). Oni omogućavaju da se bazi prvo

prosledi šablon upita koji će se koristiti, a zatim za svako

izvršavanje šablona i konkretni podaci. Korišćenje

parametrizovanih upita garantuje da konkretni podaci neće

biti interpretirani, čime se eliminiše SQLi sigurnosni

propust. U nastavku je primer korišćenja parametrizovanog

upita za pronalazak korisnika sa određenim korisničkim

imenom u programskom jeziku Java:

String query = "SELECT * FROM korisnik WHERE
korisnicko_ime = ?";
PreparedStatement preparedStatement =
connection.prepareStatement(query);
preparedStatement.setString(1, "petar");
ResultSet results =
preparedStatement.executeQuery();

III. PRIMER KORIŠĆENJA SQLITRAINER SISTEMA

Primer korišćenja realizovanog sistema biće dat kroz

prikaz jedne od laboratorijskih vežbi, dok će način upotrebe

sistema u nastavi biti prikazan na primeru predmeta Zaštita

računarskih sistema i mreža (ZRM) [6] na Elektrotehničkom

fakultetu u Beogradu (ETF).

A. Laboratorijska vežba Megatron

Laboratorijska vežba Megatron zasniva se na aplikaciji

koja predstavlja veb prodavnicu kompjuterske opreme.

Vežba počinje na stranici za pretragu proizvoda. Pretraga se

vrši po nazivu, gde je moguće uneti i samo deo naziva

proizvoda. Rezultat pretrage prikazuje se u vidu tabele, sa

kolonama za naziv i cenu proizvoda, kao na Sl. 3.

Sl. 3 Pretraga prozvoda

Cilj laboratorijske vežbe je pronaći korisničko ime i

lozinku svih korisnika aplikacije. Boduju se i sledeće

informacije:

• Naziv baze koju koristi aplikacija

• Verzija baze

• Nazivi tabela

• Nazivi kolona

Napad se izvršava kroz polje za pretragu proizvoda, dok

se podaci koji su rezultat napada prikazuju u tabeli rezultata

pretrage. Na primer, unosom sledećeg teksta u polje za

pretragu dolazi se do naziva baze:

' and false union select 1, database() --

Sledećim unosom dolazi se do verzije baze:

' and false union select 1, h2version() --

Kako bi se došlo do korisničkog imena i lozinke svih

korisnika aplikacije, prvo je potrebno pronaći naziv tabele

koja sadrži korisnike. Sledećim unosom dolazi se do naziva

svih tabela u bazi:

' and false union select 1, table_name from
information_schema.tables where
table_schema=database() --

Iz prethodnog koraka saznaje se da je tabela sa

korisnicima sačuvana pod imenom users. Sledećim unosom

dolazi se do naziva svih kolona ove tabele:

' and false union select 1, column_name from
information_schema.columns where
table_name='users' --

Poslednji korak je definisanje upita koji prikazuje

korisničko ime i lozinku svih korisnika:

' and false union select username, password
from users --

RT1.4 Page 2 of 5

Tabela sa rezultatima sadržaće korisničko ime i lozinku

svih korisnika, kao na Sl. 4.

Sl. 4 Korisničko ime i lozinka svih korisnika aplikacije

B. Način upotrebe u nastavi

ZRM je predmet master studija na Modulu za računarsku

tehniku i informatiku ETF-a, koji je razvijen u okviru

Erasmus+ KA2 projekta pod nazivom Information Security

Services Education in Serbia (ISSES) [7]. Uzimajući u obzir

probleme kod praktičnog izučavanja tema koje se obrađuju

na predmetu, a koji su pomenuti u poglavlju I, za studente je

napravljeno zatvoreno virtuelno laboratorijsko okruženje u

okviru Laboratorije za informacionu bezbednost, koja je

uspostavljena i opremljena u okviru istog (ISSES) projekta.

Svaki student ima sopstveno virtuelno laboratorijsko

okruženje kome pristupa korišćenjem VPN veze. Za različite

teme koje se obrađuju na predmetu koriste se različite

konfiguracije virtuelnih laboratorijskih okruženja. U slučaju

laboratorijskih vežbi u kojima se koristi SQLiTrainer sistem

laboratorijsko okruženje se sastoji od jedne virtuelne mašine

na kojoj je pokrenut Ubuntu Linux i na kojoj je pokrenut

SQLiTrainer sistem. Studenti mogu da pristupe aplikacijama

SQLiTrainer sistema iz svojih pretraživača korišćenjem

VPN veze.

SQLiTrainer sistem se koristi za izvođenje

laboratorijiskih vežbi, ali i kao deo finalnog praktičnog

ispita na predmetu. Zahvaljujući načinu implementacije

sistema, uz minimalne izmene u kodu, moguće je

jednostavno izmeniti svaku od aplikacija tako da se dobiju

drugačiji problemi sa istom tematikom, čime je omogućeno

da se isti sistem iskoristi i prilikom obučavanja studenata, ali

i prilikom provere njihovog znanja.

Još jedan važan aspekt, kada je u pitanju upotreba

sistema, jeste i jednostavnost instalacije i konfiguracije.

Prilikom konfigurisanja laboratorijskog okruženja za

izvođenje laboratorijskih vežbi potrebno je pokrenuti više

aplikacija istovremeno. Način implementacije SQLiTrainer

sistema omogućava da se svaka aplikacija može pokrenuti

na različitom portu, čime se prethodno postiže na

jednostavan način. Kada je u pitanju instalacija, jedno

rešenje je da se aplikacije iskopiraju na svaku virtuelnu

mašinu i pokrenu odgovarajućim komandama. Ovo rešenje

je vremenski zahtevno i nepraktično kada postoji veliki broj

studenata na predmetu, a samim tim i veliki broj

laboratorijskih okruženja koje je potrebno pripremiti. Način

implementacije SQLiTrainer sistema dozvoljava da se

iskoristi neki od alata za automatizaciju, kao što je na primer

Ansible [8], čime se prethodni problem efikasno rešava na

taj način što se napišu odgovarajuće skripte za ovaj alat

kojima se prethodno manuelni posao kopiranja i pokretanja

aplikacija u potpunosti automatizuje.

Opisani sistem je korišćen u nastavi u dve uzastopne

školske godine 2019/2020 i 2020/2021. Prve školske godine

finalni praktični ispit uspešno je savladalo 67% studenata

(22/33), dok je u drugoj školskoj godini uspešno bilo 65%

studenata (53/81).

IV. IMPLEMENTACIJA SQLITRAINER SISTEMA

Sistem čine četiri aplikacije identične strukture. Dve

demonstriraju Union-based SQLi, pravolinijski i

jednostavan napad gde se u kratkim iteracijama otkriva sve

više podataka iz baze. Sledeća demonstrira Blind SQLi za

koju je specifično da se podaci iz baze nikada ne prikazuju

napadaču, i spada u teže napade za manuelno izvršavanje.

Poslednja demonstrira SQLi Login Bypass, gde je cilj

napadača da uspešno izvrši korisničku prijavu bez

prethodnog poznavanja bilo kog korisničkog imena ili

lozinke. U ovoj aplikaciji student se upoznaje sa upotrebom

HTTP Proxy server, kao alata u izvršavanju SQLi napada.

Sistem je implementiran kao skup Java veb aplikacija

koristeći Spring Boot [9] i h2 [10] in-memory bazu

podataka. Korisnički interfejs aplikacija kreiran je koristeći

HTML, CSS i JavaScript. Za kreiranje lepšeg korisničkog

interfejsa korišćen je MaterializeCSS [11], dok AngularJS

[12] pojednostavljuje pisanje koda za interakciju sa

korisnikom i HTTP (eng. Hypertext Transfer Protocol)

komunikaciju sa serverom.

Korisnički interfejs i serverska aplikacija mogu se

posmatrati kao dve odvojene aplikacije koje komuniciraju

preko HTTP-a.

Sl. 5 Životni ciklus zahteva u aplikaciji korisničkog interfejsa

Korisnički interfejs realizovan je kao Single Page

Application (SPA). Srž aplikacije čine HTML stranica

index.html i JavaScript kod app.js. Resursi aplikacije

organizovani su u posebne direktorijume:

• css – sadrži CSS biblioteke i definicije stilova

specifičnih za aplikaciju,

• images – sadrži fotografije korišćene na korisničkom

interfejsu i

• js – sadrži JavaScript biblioteke i kod aplikacije.

RT1.4 Page 3 of 5

Organizacija koda je slojevita i definiše dva sloja:

• controller – kod koji obrađuje korisničke akcije i

• service – kod za komunikaciju sa serverskom

aplikacijom.

Sloj controller je viši sloj i zavisan od sloja service, a

korisnički zahtevi prolaze kroz oba sloja aplikacije. Na Sl. 5

prikazano je kako korisnički zahtev putuje kroz aplikaciju

korisničkog interfejsa i do serverske aplikacije.

Organizcija serverskog koda je takođe slojevita, gde su

slojevi aplikacije predstavljeni sledećim Java paketima:

• controller – klase za razmenu podataka sa

aplikacijom korisničkog interfejsa,

• service – klase koje izvršavaju poslovnu logiku

aplikacije i

• repository – klase za čitanje i upis domenskih

objekata u bazu podataka.

Pored navedenih paketa postoji i paket domain koji sadrži

klase koje predstavljaju domenske entitete.

Sl. 6 Životni ciklus zahteva u serverskoj aplikaciji

Zahtevi koji dolaze sa korisničkog interfejsa prolaze kroz

sve slojeve aplikacije. Način razmene podataka između

slojeva prikazan je na Sl. 6 na primeru zahteva koji na kraju

rezultuje upisom u bazu podataka. Svaki sloj aplikacije

zavisan je od sledećeg (nižeg) sloja, a često su svi paketi

aplikacije zavisni od domenskog. U nekim

implementacijama izostavljen je servisni sloj, jer ne bi

sadržao nikakvu logiku, već bi samo prosleđivao podatke

sledećem sloju.

Svaka instanca aplikacije poseduje svoju instancu baze,

koja se pokreće zajedno sa aplikacijom i čuva podatke u

memoriji. Kod serverske aplikacije prate SQL skripte koje se

izvšavaju nad bazom prilikom pokretanja aplikacije, kako bi

pri svakom pokretanju aplikacije stanje baze bilo identično.

Skripte se nalaze u sledećim fajlovima:

• schema.sql – izvršava se prva i njena uloga je da

kreira relacionu šemu baze i

• data.sql – popunjava bazu podacima.

Prilikom zaustavljanja aplikacije zaustavlja se i baza

podataka, a podaci iz nje trajno nestaju.

Varijacije problema laboratorijskih vežbi mogu se kreirati

na više načina. Najjednostavniji je izmeniti SQL skripte

čime se menja početno stanje baze podataka. Kompleksnije

izmene, poput izmene imena kolona i tabela, zahtevaju i

manje izmene u kodu aplikacije. Navedene skripte se mogu

pokrenuti i nad nekom drugom bazom podaka, na primer

PostgreSQL ili MySQL, za šta je dovoljno u

konfiguracionom fajlu aplikacije navesti parametre za

konekciju. Korišćenje različitih baza podataka povećava

kompleksnost zadatka jer koriste različite dijalekte SQL

jezika.

V. ZAKLJUČAK

U ovom radu predstavljen je jedan novi sistem za učenje

o SQLi sigurnosnim propustima u aplikacijama.

SQLiTrainer služi za praktičnu obuku programera u oblasti

razvoja bezbednog softvera. Realizovan je kao skup ranjivih

aplikacija kojima se mogu demonstrirati različiti tipovi SQLi

propusta koji se mogu javiti u aplikacijama. Omogućava

proveru postojanja propusta u sigurnom okruženju, kao i

učenje tehnika kojima se mogu otkloniti uočeni propusti. U

radu je prikazan opis SQLiTrainer sistema i način njegovog

korišćenja. U budućnosti se planira dodavanje skupa vežbi u

kojima će studenti biti u prilici da isprave propuste koji

postoje u aplikacijama.

ZAHVALNICA

Autori žele da se zahvale master inž. Adrianu Milakoviću

i prof. dr Pavlu Vuletiću na pomoći prilikom uvođenja

sistema na laboratorijske vežbe na predmetu Zaštita

računarskih sistema i mreža.

LITERATURA

[1] „SQL injection,“ Dostupno na: https://owasp.org/www-
community/attacks/SQL_Injection, poslednji put pristupano: maj

2021.

[2] „OWASP,“ Dostupno na: https://owasp.org/, poslednji put pristupano:
maj 2021.

[3] „Avatao,“ Dostupno na: https://avatao.com/, poslednji put pristupano:

maj 2021.

[4] „Juice Shop,“ Dostupno na: https://owasp.org/www-project-juice-

shop/, poslednji put pristupano: maj 2021.

[5] „Security Idiots,“ Dostupno na: http://www.securityidiots.com/,
poslednji put pristupano: maj 2021.

[6] „Zaštita računarskih sistema i mreža,“ Dostupno na:

https://www.etf.bg.ac.rs/fis/karton_predmeta/13M111ZRM-2019,
poslednji put pristupano: maj 2021.

[7] „Information Security Services Education in Serbia,“ Dostupno na:

https://isses.etf.bg.ac.rs/, poslednji put pristupano: maj 2021.

[8] „Ansible,“ Dostupno na: https://www.ansible.com/, poslednji put

pristupano: maj 2021.

[9] „Spring Boot,“ Dostupno na: https://spring.io/projects/spring-boot,
poslednji put pristupano: maj 2021.

[10] „H2 database,“ Dostupno na: https://www.h2database.com

/html/main.html, poslednji put pristupano: maj 2021.

[11] „Materialize CSS,“ Dostupno na: https://materializecss.com/, poslednji

put pristupano: maj 2021.

[12] „AngularJS,“ Dostupno na: https://angularjs.org/, poslednji put
pristupano: maj 2021.

ABSTRACT

During the application development process security

RT1.4 Page 4 of 5

vulnerabilities can occur and remain in application in production

environment. These vulnerabilities can cause confidentiality,

integrity and availability breaches. SQLiTrainer represents a set of

vulnerable applications that can be used to demonstrate different

types of SQLi vulnerabilities. Implementation of the SQLiTrainer

system is given in the paper and the examples on how to use the

system for programmer practical training is proposed. The system

was successfully used for laboratory exercises at the Advanced

System and Network Security course at the University of Belgrade,

School of Electrical Engineering.

SQLITRAINER - SYSTEM FOR LEARNING ABOUT

SQLI VULNERABILITY IN APPLICATIONS

Djordje Madic, Zarko Stanisavljevic

RT1.4 Page 5 of 5

Apstrakt— Razvojem automobilske industrije i softvera

unutar nje kao tehnička posljedica javila se potreba za

obaveznom integracijom zaštitnih mehanizama u ugrađenim

jezgrima operativnog sistema. Jedan od osnovnih

mehanizama za zaštitu sistema jeste nadzorni časovnik (eng.

watchdog, WDG). Ova komponenta ima za cilj da nadgleda

sve ostale komponente pokrenute od strane raspoređivača i

time omogući bezbjedan rad sistema. Kako je probleme koje

nadzorni časovnik prijavljuje relativno teško ispratiti i

analizirati u stvarnom sistemu, došlo se do ideje da se oponaša

rad komponente nadzornog časovnika na računaru sa istim

ulaznim parametrima kao u živom sistemu. U ovom radu je

dato rješenje za simulaciju mehanizama nadgledanja sistema

definisane AUTOSAR arhitekture. Simulacijom je omogućeno

da se minimalizuju odstupanja, predvide greške u sistemu i

olakša sama analiza. Rad može doprinijeti bržem razvoju

sistema jer omogućava da se prije implementacije predvide

greške koje će se desiti u sistemu.

Ključne riječi— AUTOSAR, WDG, WdgM, WdgIf,

nadgledanje krajnjih rokova, logički nadzor, nadgledanje u

realnom vremenu, najduže vrijeme izvršenja(WCET).

I. UVOD

AUTOMOBILSKA industrija je grana industrije koja se

sveobuhvatno razvija u posljednjoj deceniji. Dizajn vozila

u automobilskoj industriji tradicionalno se oslanja na

diskretne hardverske komponente (elektronske upravljačke

jedinice - ECU), sa vrlo malo potrebnog softvera. Sa

poboljšanjem automobilske industrije, softver za nju se

razvijao. Danas je softverski dio prevladao hardver[1][2] .

Softverske komponente postale su komplikovanije i

zahtjevnije od hardverskih komponenti. Danas automobili

nude mnogo više mogućnosti, uključujući i autonomne

funkcije pri vožnji[1]. Postoji pet nivoa automatizacije

vožnje, dok je industrija trenutno na trećem nivou,

očekujući da će dostići nivo četiri i pet do 2025. godine[3].

Vozači će moći bezbjedno da skrenu pažnju sa vožnje, npr.

gledati film ili čitati knjigu.

Činjenica je da je sve više dobavljača u ovoj grani

industrije, pa se pojavila potreba za standardizacijom

proizvodnje softvera. Da bi se udovoljilo ovom zahtjevu,

stvorena je platforma AUTOSAR (eng. Automotive Open

System Architecture) [1].

Kako se ova industrija sve više širi i kako rastu softverski

zahtjevi povećava se i potreba za raznim alatima za

održavanje bezbjednosti sistema. Ovakvi sistemi moraju

podlijegati raznim testovima i konstantno se nadgledati

Ivana Tešević, RT-RK Institute for Computer Based Systems, Novi

Sad, Srbija (e-mail: ivana.tesevic@rt-rk.com)

Branko Milošević, RT-RK Institute for Computer Based Systems, Novi
Sad, Srbija (e-mail: branko.milosevic@rt-rk.com).

kako bi se u potpunosti otklonila mogućnost greške, jer i

najmanja greška može imati fatalne posljedice.

Nadzorni časovnik je jedna od komponenti koja za cilj

ima nadzor cijelog sistema. Ova komponenta kao takva

sama po sebi mora imati maksimalni kvalitet koda i

podlijegati najvećim provjerama. Bilo kakva greška

primijećena od strane WDG komponente biće ispraćena

reakcijom gašenja cijelog sistema. Ovakav vid zaštite u

industriji otežava testiranje, predviđanje ali i pronalaženje

greške u toku rada. Zato se javila potreba da se prikaže

jedno rješenje za oponašanje sistema kako bi se moglo

predvidjeti i upoznati sa greškama i načinima na koji dolazi

do njih.

Ovaj rad prikazuje jedno rješenje analize i prikaza

kontrolnih tačaka definisanih podešavanjem AUTOSAR

nadzornog časovnika. Prikazaće se simulacija poremećaja u

sistemu koji će nadzorni časovnik prepoznati pomoću

nadzornih mehanizama. Namjerno izazivanje poremećaja i

reakcija nadzornog časovnika na te poremećaje doprinijeće

lakšem testiranju i predviđanju u stvarnom sistemu.

Pomoću ovog rješenja nudi se mogućnost korišćenja

stvarnih ulaznih parametara i testiranje raznih poremećaja i

lanca događaja nakon namjerno izazvane greške.

Mogućnost predviđanja i vizualni prikaz sistema nakon

poremećaja jesu glavni doprinos ovog rada. Postojeća

literatura na temu nadzornog časovnika[5][6]

skoncentrisana je na unaprjeđenju mehanizama zaštite ili na

načinu testiranja sistema i ispravnosti sprege nadzornog

časovnika.

Drugo poglavlje će dati teorijske osnove o načinu rada

svih modula, samom AUTOSAR standardu i vertikali

nadzornog časovnika sa definisanim modulima.

U trećem poglavlju biće opisan način rada, pristup

rješenju i podloga za nastavak i samu implementaciju.

U četvrtom poglavlju su opisani moduli, dato je

programsko rješenje i sami postupci implementacije.

U petom poglavlju su prikazani rezultati rada, način

testiranja, kao i svrha samog rješenja.

II. AUTOSAR STANDARD

Osnovan 2003. godine, AUTOSAR predstavlja

međunarodno razvojno partnerstvo stranaka iz

automobilske industrije. Cilj ove saradnje bio je stvaranje i

uspostavljanje otvorene i standardizovane softverske

arhitekture za osnovne elektronske jedinice autonomnog

vozila nazvane ECU.

Bogdan Pavković, RT-RK Institute for Computer Based Systems, Novi

Sad, Srbija (e-mail: bogdan.pavkovic@rt-rk.com)

Dejan Bokan, RT-RK Institute for Computer Based Systems, Novi Sad,
Srbija (e-mail: dejan.bokan@rt-rk.com).

Jedno rješenje analize i prikaza kontrolnih

tačaka definisanih podešavanjem AUTOSAR

nadzornog časovnika

Ivana Tešević, Branko Milošević, Dejan Bokan i Bogdan Pavković

RT1.5 Page 1 of 6

mailto:ivana.tesevic@rt-rk.com

AUTOSAR standard daje set specifikacija koje opisuju

funkcionalnosti softverskih modula i realizuje zajedničke

metode daljeg razvoja na osnovu standardizovanog

formata[1]. Arhitektura ovog standarda, odnosno

AUTOSAR modela, na najvišem nivou apstrakcije

prepoznaje tri različite softverske cjeline[4] (Slika 1.):

Sl. 1. AUTOSAR model [1]

• Osnovni softver (eng. Basic software module, BSW)-

ovaj sloj se sastoji od modula koji su neophodni za

funkcionisanje višeg softverskog sloja. Slojevi od kojih se

sastoji osnovni softver su: sloj apstrakcije ECU, složeni

upravljački programi, sloj apstrakcije mikrokontrolera (eng.

MCAL).
• Izvršno okruženje(eng. Runtime environment, RTE)-

realizuje komunikaciju između softverskih komponenti i

osnovnog softvera.

•Aplikativni sloj(eng. Application Layer)-funkcionalnost

elektronskih kontrolnih jedinica je implementirana u obliku

pojedinačnih softverskih komponenti.

A. Nadzorni časovnik

Za automobilske sigurnosne sisteme kritično je pitanje

zadovoljavanja zahtjeva u realnom vremenu na

deterministički način. Da bi se udovoljilo vremenskim

ograničenjima, razvijeni su različiti mehanizmi praćenja,

kao što su nadzorni hardver ECU jedinice[7], nadgledanje

krajnjih rokova[8][9], nadgledanje vremena izvršenja 0.

Ovakav vid nadzora kreiran je kako bi se osigurao tačan

raspored zadataka0 .

Vertikalu nadzornog časovnika u AUTOSAR slojevitoj

arhitekturi čine rukovodilac nadzornog časovnika(nalazi se

u servisnom sloju eng. Service Layer), sprega nadzornog

časovnika(smještena u ECU sloju apstrakcije) i upravljač

nadzornog časovnika(smješten u sloju apstrakcije

mikrokontrolera)[12] Ovi moduli pružaju usluge za

praćenje vremena i ispravnosti izvršenja entiteta u aplikaciji

i osnovnom softveru.

B. Rukovodilac nadzornog časovnika

Rukovodilac nadzornog časovnika (eng. watchdog

manager, WdgM) je osnovni softverski modul u servisnom

nivou koji nadgleda tok programa[13]. Kada se otkrije

narušavanje unaprijed definisanih vremenskih ili logičkih

ograničenja u programskom toku, potrebno je evidentirati

grešku i preći u bezbjedno stanje nakon vremenskog

kašnjenja. Sigurno stanje se postiže ponovnim pokretanjem

ili izostavljanjem aktiviranja modula nadzornog časovnika.

Po AUTOSAR definiciji, tačke u kontroli toka

nadgledanog entiteta gdje se aktivnost prijavljuje

rukovodiocu nadzornog časovnika su kontrolne tačke.

Polja koja opisuju kontrolnu tačku su:

• ID kontrolne tačke

• Lokalni početak, lokalni kraj

• Globalni početak, globalni kraj

Lokalni prelazi predstavljaju prelaze između dvije

kontrolne tačke unutar istog nadgledanog entiteta.

Globalni prelazi su prelazi između dvije kontrolne tačke

koje pripadaju različitim entitetima.

Nadgledani entitet predstavljen je kontrolnim tačkama

kojih može biti jedna ili više. Svaki nadgledani entitet može

imati jedno ime i jedno stanje.

Kada se govori o mehanizmima nadgledanja u WdgM

modulu pominju se tri tipa nadgledanja[14]:

 • Nadgledanje u realnom vremenu (eng. Alive

Supervision) – prati frekvenciju izvršavanja određenog

softverskog dijela. To znači da rukovodilac provjerava da li

se nadgledani entitet javlja suviše često ili suviše rijetko.

• Nadgledanje krajnjih rokova (eng. Deadline

Supervision) – nadgleda vrijeme potrebno za izvršavanje

nadgledanog entiteta. Glavna svrha je provjera

vremenskog, dinamičkog ponašanja entiteta.

• Logički nadzor (eng. Logical Supervision/Program Flow

check) – nadgleda tok izvršavanja u programu.

Dva su ključna pojma koja treba pomenuti kada je u

pitanju nadgledanje i reakcija na greške, a to su vrijeme

otkrivanja greške i vrijeme reakcije na grešku.

Vrijeme otkrivanja greške (eng. Fault Detection) traje od

pojave greške do trenutka kada je ta greška otkrivena i

prijavljena sistemu.

RT1.5 Page 2 of 6

Vrijeme reakcije na grešku (eng. Fault Reaction) traje od

trenutka otkrivanja greške do ponovnog pokretanja

sistema. WdgM reakcija na grešku:

• Obavještenje iz funkcije povratnog poziva

• Ponovno pokretanje sistema

• Stopiranje okidanja nadzornog časovnika

C. Sprega nadzornog časovnika

Sprega nadzornog časovnika (WdgIf) je dio ECU

apstraktnog sloja. Uvijek se nalazi ispod rukovodioca i

iznad upravljača nadzornog časovnika. Sprega komunicira

sa upravljačkim programima ispod. Implementacija sprege

zavisi od broja upravljača[14].

D. Upravljač nadzornog časovnika

Upravljač je zadužen za pristup samoj periferiji

direktno[15] (unutrašnjem i spoljašnjem nadzornom

časovniku) i nalazi se u sloju apstrakcije mikrokontrolera.

Modul za spoljašnji nadzorni časovnik koristi druge

module za pristup spoljnom uređaju.

Sl. 2 Slojevita struktura WDG 1

III. KONCEPT RJEŠENJA

Uključen nadzorni časovnik u stvarnom sistemu može

stvarati velike probleme prilikom analiziranja nekog

problema. Stalno gašenje i ponovno pokretanje jedan su od

pokazatelja zašto je to tako. Kako bi se nastavila analiza

neke greške na projektima se obično podliježe gašenju

nadzornog časovnika i nakon toga se nastavlja sa

analiziranjem. Ovaj rad predstavlja jedan pomoćni alat

prilikom te analize koji je omogućio da pomoću komandne

linije unese željeni poremećaj i isprati lanac događaja koji

slijede nakon njega.

Na osnovu već generisanog operativnog sistema

odrađeno je parsiranje redoslijeda zadataka i AUTOSAR

generisane konfiguracije za stek modul nadzornog

časovnika. Parsirani podaci bili su neophodni za grafički

prikaz raspoređivača. Grafička predstava kontrolnih tačaka

odrađena je tako da se vodilo računa o redoslijedu, kao i

koja je kontrolna tačka dodijeljena kom zadatku. Pomenuti

grafički prikaz omogućava da se jednostavno uoči

poremećaj, tako da je grafički prikaz jedan od osnovnih

alata koji su korišteni prilikom analize i testiranja. Ulazni

parametri za parsiranje su definisani u csv i arxml formatu

(SE WCET, SE period, WCET neto, WCET abs).

Sledeći korak jeste simuliranje nadgledanja sistema

definisane AUTOSAR arhitekture. Osnovni cilj ovog

koraka jeste da prikaže što približnije slijed događaja i

grešaka na računaru, kao što je očekivano i u stvarnom

sistemu. Glavna razlika je ta što greške koje vidimo na

računaru nemaju nikakvu bezbjednosnu posljedicu po

izvršenje, već služe isključivo u svrhu analize i rezultiraće

ispisima i informativnim porukama, umjesto gašenjem

sistema.

Nakon implementacije grafičkog prikaza i simulacije

mehanizama, pristupa se analizi sistema, praćenju

ponašanja sistema pod uticajima raznih poremećaja koji su

namjerno izazvani i koji se odnose na mehanizme

nadgledanja. Namjernim izazivanjem grešaka olakšava se

analiziranje istih, očekivanih u procesu rada na stvarnom

projektu. Data je mogućnost da se predvide različiti lanci

događaja, kao i da se smanji vrijeme koje bi bilo potrošeno

na pokušaje analize problema uslijed stalnog gašenja

sistema.

Sl. 3 Dijagram rješenja

A. Rukovodilac nadzornog sistema u višejezgarnom

sistemu

Rukovodilac može biti korišten u jednojezgarnim i

višejezgarnim sistemima. U ovom radu obrađen je

rukovodilac u višejezgarnom sistemu.

Svaka instanca treba da bude nezavisna jedna od druge i

mora biti inicijalizovana njenom sopstvenom

konfiguracijom. Poziv Main funkcije je odvojen. U

stvarnom sistemu se softverske komponente izvršavaju

paralelno i vremenski nezavisno. Svako jezgro ima svoje

sopstveno vrijeme.

RT1.5 Page 3 of 6

Sl 4. Isječak iz arxml fajla

B. Sortiranje kontrolnih tačaka prema rasporedu

Parametri koji su značajni i koji opisuju izvršenje sistema

u vremenu su zadati u xml datoteci, a potrebni entiteti su u

csv datoteci. Ove dvije ulazne datoteke moraju biti

međusobno povezane i predstavljaju jednu cjelinu.

Parsiranjem ovih datoteka dobijeni su svi podaci potrebni

za simulaciju nadgledanja. Ti parametri su: naziv, perioda,

trajanje, vrijeme početka, prioritet i ID. Isječak iz arxml

fajla je prikazan na Sl 4.

Nakon izvlačenja pomenutih podataka sve kontrolne

tačke sortirane su po vremenu i po prioritetu. Kontrolna

tačka koja ima manji prioritet će biti prekinuta ako se u toku

njenog trajanja javi neka druga tačka većeg prioriteta.

Nakon sortiranja sve kontrolne tačke kreću sa izvršenjem,

baš kao u stvarnom sistemu, istim redoslijedom kako je

zahtijevano u ulaznoj datoteci i po prioritetu. Ono što je

takođe bilo bitno prikazati jeste vrijeme trajanja koje je

oponašano na osnovu ulaznih informacija.

C. Simulacija nadgledanja

Nakon uspješno obavljene inicijalizacije, sortiranja i

prozivanja kontrolnih tačaka potrebno je simulirati rad

prethodno opisanih načina nadgledanja.

Rukovodilac Main je sastavni dio izvršenja i on se

prozove po zadatom intervalu od 10 milisekundi i tada se

vrši provjera nadgledanje u realnom vremenu, nadgledanje

krajnjih rokova, logički nadzor.

Vrijeme u sistemu nadzornog časovnika je predstavljeno

u tikovima. Potrebno je simulirati vrijeme tako da odgovara

vremenu iz stvarnog sistema.

Na osnovu tog vremena se provjeravaju nadgledanja.

Provjeru nadgledanja u realnom vremenu treba obaviti tako

da se u slučaju da se kontrolna tačka ne javi u očekivanom

vremenskom intervalu na konzoli dobijemo ispis o grešci

koja se desila.

IV. PROGRAMSKO RJEŠENJE

A. Parsiranje rasporeda i sortiranje

Za ulazne podatke iskorišćene su xml i csv datoteke iz

stvarnog sistema. Parsiranje je rađeno u programskom

jeziku Python, svi podaci koji su izvučeni iz tih datoteka su

generisani i urađeno je prozivanje funkcije

WdgM_CheckpointReached().

Osnovni problem koji se javio prije prozivanja ove funkcije

bio je sortiranje kontrolnih tačaka prema rasporedu.

Sortiranje je takođe odrađeno u programskom jeziku

Python i korištene su funkcije:

•expiry_points() - funkcija koja sortira podatke koji su

izvučeni iz ulaznih datoteka parsiranjem. Sortira kontrolne

tačke po vremenu njihovog javljanja i po jezgrima.

•priority_sort() - Prethodno sortirana lista po vremenu

javljanja se sortira i po prioritetima . Ako se desi da dvije

kontrolne tačke počinju istovremeno prednost će imati

tačka sa većim prioritetom, tačka manjeg prioriteta ostaje

da čeka svoje red. Entitet može biti prekinut i u toku

izvršenja, ako se desi da je došlo do javljanja izvršioca sa

većim prioritetom, trenutni entitet ostaje u stanju čekanja

sve dok mu se ne signalizira da je prioritetniji entitet završio

sa radom.

Nakon sortiranja je generisano kojim se redoslijedom vrši

pozivanje WdgM_CheckpointReached() funkcije.

B. Implementacija rukovodioca

Prvi korak koji je odrađen jeste postupak inicijalizacije.

Svaki zadatak inicijalizovan je pomoću funkcije

WdgM_Init().

U stvarnom sistemu WDG zadatak ponavlja se kružno na

svakih 10 milisekundi. To znači da se poziv funkcije

WdgM_MainFunction() ponavlja svakih 10 milisekundi.

Ova funkcija ima ključnu ulogu jer se u njoj vrše provjere

ispravnosti. Trajanje jednog ciklusa naziva se hiper period,

Na osnovu trenutnih ulaznih parametara koji su obrađeni u

ovom primjeru koji će biti opisan hiper period je 80

milisekundi i nakon toga se završava jedan ciklus nadzora.

Nakon izvršenja WdgM_MainFunction() očekuje se neka

od reakcija rukovodioca.

•Ako dođe do greške u nadgledanju u realnom vremenu

greška će biti detektovana na kraju nadgledanog

referentnog ciklusa (eng. Alive supervision reference

cycle).

•U slučaju nadgledanja programskog toka ako dođe do

greške ona će biti detektovana na kraju svakog

nadgledanog ciklusa.

•Ako je greška u nadgledanju krajnjih rokova ona će biti

detektovana na kraju svakog nadgledanog ciklusa,

nastavak kršenja ovog vida nadgledanja detektuje se na

kraju svakog krajnji rok nadgledanog entiteta.

Ponašanje sistema nakon uočavanja neke od pomenutih

grešaka zavisi od konfiguracije i tipa poremećaja.

V. PROVJERA ISPRAVNOSTI

A. Opis testiranja

U svrhu testiranja korišteni su ulazni parametri sa

stvarnog sistema. Ovakav pristup omogućio je poređenje sa

stvarnim sistemskim greškama i utvrditi ispravnost samog

rada.

Kako je stvarni sistem čiji si ulazni parametri iskorišćeni

sadržao 3 jezgra, a ona u sistemu rade u paraleli. U ovom

rade sva tri jezgra su testirana istovremeno i softverski

spojena u jednu cjelinu, prikazan je njihov paralelizam. Na

računaru se pomoću komandne linije prati ispis rezultata,

kao rezultat testiranja dobijaju se poruke o prekršajima.

Prilikom pokretanja radi se inicijalizacija sistema.

RT1.5 Page 4 of 6

Korisnik treba da odabere jezgro na kome će nanijeti

poremećaj kao i vrstu poremećaja koju želi, promjena

WCET vremena ili greška u nadgledanju u realnom

vremenu.

Ako je u sistemu sve prošlo bez greške prilikom

izvršavanja rukovodioca prozvaće se TriggerWindow

funkcija na osnovu čega je testirana ispravnost. Vizualni

prikaz sistema bez greške dat je na Sl.5

B. Poremećaj nastao promjenom WCET vremena

Najgore vrijeme izvršenja predstavlja ukupno vrijeme

koje je dato jednom zadatku da se izvrši. Vrijednost ovog

parametra predstavljena je sa dva termina bruto i neto

WCET. Kada je riječ o ukupnom bruto vremenu možemo

reći da je to vrijeme koje protekne od početka do kraja

zadatka sa uračunatim svim prekidima od strane prioritetnih

zadataka. Dok je neto WCET vrijeme od početka do kraja

ali predstavlja samo sabrane vremenske trenutke u kojima

je aktivan dati zadatak.

Vrijednost WCET vremena koja je konfigurisana za

određeni nadgledani entitet i data u rasporedu očekivana je

vrijednost u sistemu sa kojom svi nadzori rade ispravno.

Nakon što se napravi neka promjena WCET vremena i

ispisivanja poruka o ispravnosti sistema generiše se nova

datoteka arxml koja predstavlja ulazni parametar za

vizualizaciju sistema. Ako je neka promjena unesena na

grafičkom prikazu promijenjena kontrolna tačka mijenja

boju sto se vidi na Sl 5. Greška u sistemu vidljiva je na slici

gdje su crvenom bojom markirani izvršioci kod kojih je

prijavljena greška. Kao rezultat na komandnoj liniji dobije

se poruka o svim prekršajima koje je izazvala promjena

WCET vremena na željenom entitetu.

Na osnovu vizualizacije omogućeno je lakše praćenje

dešavanja u sistemu, način na koji se nakon bilo koje

promjene izmiješaju kontrolne tačke. Simulirana je

vremenska osa i kontrolne tačke u vremenu.

C. Poremećaj u nadgledanju realnog vremena

Kada se nanese ovaj vid poremećaja u sistemu dolazi do

situacije u kojoj se određena kontrolna tačka ne prozove.

Tada sistem detektuje grešku u nadgledanju u realnom

vremenu. Primjer iz tabele takođe pokazuje grešku nad

RCtApDSC koja ima period 20 milisekundi. Možemo uočiti

da je došlo do problema kada je rukovodilac prepoznao da

se u prvih 20 milisekundi nije javila ova kontrolna tačka, a

mehanizam nadzora u realnom vremenu očekivao je da će

doći do njenog javljanja. Nakon otkrivanja problema brojač

se nije uvećao i kao status vraćena je vrijednost “nije

uspjelo”(eng. FAILED).

Kada se poveća WCET u ovom slučaju nad nadgledanim

entitetom pod nazivom ReyeQCom20ms koji je prikazan u

tabeli (T 1.) desi se poremećaj u prvih 10 milisekundi.

Očekivana vrijednost je 2.7 milisekundi jer je ovo

nadgledani entitet koji je niskog prioriteta i isprekidan je od

strane ostalih koji imaju veći prioritet. Prilikom testiranja

promijenili smo vrijednost na 3 milisekunde. Zbog

poremećaja na jednoj kontrolnoj tački i greške u

nadgledanju krajnjeg roka u prvih 10 milisekundi očita se

greška, ali se prozove i funkcija TriggerWindow.

.

.
Sl. 5 Greške na jezgru 0 nakon promjene WCET vremena nadgledanog entiteta ReyeQCom20ms

Na Sl 5 može se uočiti kako će ReyeQCom20ms zadatak imati

uticaj na sistem kada se njemu nanese vremenski poremećaj.

Takođe primjetna je lista izvršilaca koji prekidaju pomenuti

entitet zbog većeg prioriteta, pri čemu će svaki od pomenutih

prekinuti izvršenje. trenutnog. Puna linija predstavlja izvršenje

ReyeQCom20ms dok je isprekidanim poljima predstavljen

RT1.5 Page 5 of 6

period kada je posmatrani entitet u pozadini i čeka na izvršenje

zadatka sa većim prioritetom.

T 1. Ponašanje sistema nakon poremećaja 1

VI. ZAKLJUČAK

U okviru ovog rada prikazano je rješenje i način praćenja

poremećaja prijavljenih od strane nadzornog časovnika. Česte

su situacije da se u radu na realnoj platformi nailazi na

poteškoće po pitanju očekivanog ponašanja hardvera na

određene zahtjeve iz softvera. Kada govorimo o samom

nadzornom časovniku i reakciji fizičkog upravljača nekada sa

sigurnošću ne možemo da tvrdimo šta je uzrok okidanja greške

i gašenja sistema. Sigurnosno gašenje može značajno usporiti

proces analiziranja nekog problema koji sam po sebi ne mora

biti vezan isključivo za nadzorni časovnik. Takav vid

poteškoća je moguće pratiti samo isključenjem upravljača.

Simulacijom je omogućeno da se minimalizuju ta odstupanja,

predvide greške u sistemu i olakša analiza sistema. Greška koja

se desi na jednoj kontrolnoj tački može da prijavi grešku tek na

sledećoj kontrolnoj tački koja je u redu. Rad omogućava da se

isprati i predvidi takav vid prekršaja.

Kao što je prethodno pomenuto za ovaj rad je korišten već

postojeći raspored zadataka koji sam po sebi predstavlja

preduslov za početak simulacije. Budući rad obuhvatiće

unaprjeđenje postojećeg rješenja simulacijom operativnog

sistema, gdje će se voditi računa i o simulaciji raspoređivanja

zadataka kako bi se poremećaj mogao nanijeti direktno u

raspoređivanju i ispratiti cijeli proces. Ovaj vid unaprjeđenja

značajno bi mogao poboljšati analizu i predviđanje grešaka.

LITERATURA

[1] AUTOSAR, “Layered Software Architecture,” [Online],
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-

3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf., 2017-12-08

[Accessed July 2021]
[2] B. Catalin-Virgil, F. Ioan and F. Heininger, “A new trend in automotive

software: AUTOSAR concept” SACI, IEEE 8th International

Symposium, Timisoara, Romania, May 2013.
[3] Techemergence, “The Self-Driving Car Timeline –Predictions from the

Top 11 Global Automakers“, 2018.
[4] H. Fennel et al. “Achievements and exploitation of the AUTOSAR

development partnership“ SAE Technical Paper Series 2006-21-0019,

SAE International, October 2006,[Accessed July 2021]

[5] Mazen Ahmed, Mona Safar, “Formal Verification of AUTOSAR

Watchdog Manager Module Using Symbolic Execution”, IEEE 30th

International Conference on Microelectronics, 2018

[6] Mazen Ahmed, Mona Safar , “Symbolic Execution based Verification of

Compliance with the ISO 26262 Functional Safety Standard”, IEEE

14th International Conference on Design & Technology of Integrated

Systems In Nanoscale Era, 2019

[7] J. Ganssle, “Watching the Watchdog”, Embedded World, 2003.

[8] AUTOSAR , "Specification of Communication" [Online],

https://www.autosar.org/fileadmin/user_upload/standards/classic/3-

2/AUTOSAR_SWS_COM.pdf [Accessed July 2021]

[9] Michael Kunz, “OSEK OS”, March 18, 2009, http://www.uni-

obuda.hu/users/schuster.gyorgy/rtos/OSEK.pdf [Accessed July 2021]

[10] The AUTOSAR Consortium, “AUTOSAR Specification of Operating

System”, pp. 33-35, 2006.

[11] Nahmsuk Oh, P. Shirvani, E. McCluskey, “Control-Flow Checking by

Software Signatures”, IEEE Transaction on Reliability, vol. 51, Mar-
2002

[12] Texas Instruments MCUSW, “Wdg Design Document “ [Online],

http://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-

jacinto7/latest/exports/docs/mcusw/mcal_drv/docs/drv_docs/design_wd

g_top.html [Accessed July 2021]

[13] AUTOSAR, “AUTOSAR SWS Watchdog Manager“ [Online],
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
3/AUTOSAR_SWS_WatchdogManager.pdf , 2017-12-08 [Accessed

July 2021]

[14] AUTOSAR, “ Specification of Watchdog Interface“

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-

3/AUTOSAR_SWS_WatchdogInterface.pdf, [Accessed July 2021]

[15] AUTOSAR, “Specification of Watchdog Driver “[Online]

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-

3/AUTOSAR_SWS_WatchdogDriver.pdf , [Accessed July 2021]

ABSTRACT

With the development of the automotive industry and software

within it, as a technical consequence, there was a need for mandatory

integration of protection mechanisms in the embedded cores of the

operating system. One of the basic mechanisms for system protection

is the watchdog. This component aims to monitor all other components

initiated by the scheduler and thus enable the safe operation of the

system. As the problems reported by Watchdog are relatively difficult

to track and analyze in a real system, the idea came up to simulate the

operation of the Watchdog component on a computer with the same

input parameters as in a living system. This paper provides a solution

for simulating the system monitoring mechanisms of the defined

AUTOSAR architecture. The simulation makes it possible to

minimize deviations, predict errors in the system and facilitate the

analysis itself. Work can contribute to faster system development

because it allows to predict errors that will occur in the system before

implementation.

ONE SOLUTION FOR ANALYZING AND

DISPLYING CHECKPOINTS IN THE AUTOSAR

WATCHDOG CONFIGURATION
Ivana Tešević, Branko Milošević Dejan Bokan, Bogdan Pavković

RT1.5 Page 6 of 6

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_SWS_COM.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_SWS_COM.pdf
http://www.uni-obuda.hu/users/schuster.gyorgy/rtos/OSEK.pdf
http://www.uni-obuda.hu/users/schuster.gyorgy/rtos/OSEK.pdf
http://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/latest/exports/docs/mcusw/mcal_drv/docs/drv_docs/design_wdg_top.html
http://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/latest/exports/docs/mcusw/mcal_drv/docs/drv_docs/design_wdg_top.html
http://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/latest/exports/docs/mcusw/mcal_drv/docs/drv_docs/design_wdg_top.html
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogManager.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogManager.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogInterface.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogInterface.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogDriver.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogDriver.pdf

Implementation of Smooth Streaming protocol

through a generalized software framework

Miroslav Suša , Ilija Bašičević, Senior Member, IEEE

Abstract—Adaptive streaming is a technology for transmitting

multimedia content over a network such as the Internet. This way

the content is available at any time which has brought big

changes. One of the many streaming technologies is Smooth

Streaming. In addition to the transmission of content via one of

the protocols, it is necessary to ensure its reproduction. In this

paper, the implementation of the Smooth Streaming protocol

within a single media player is presented. The implementation

was performed through a generalized software framework, which

will also be discussed. The role of the framework is to facilitate

the integration of the remaining adaptive streaming protocols

into the media player.

Index Term—adaptive streaming; content playback; Smooth

Streaming;

I. INTRODUCTION

The fourth industrial revolution brought many changes in

terms of consuming multimedia content. When it comes to

content transfer, the most important innovation is Streaming

technology. Streaming makes it easier for users to access

content whenever and at any time they want, which previous

technologies could not provide. In the field of television, new

technology is completely taking over the market from the

traditional way of content broadcasting[1].

As a consequence of the development of a new way of data

transfer, standards have emerged according to which this

transfer will be performed. Some of the best known and most

prevalent today are the MPEG-DASH and Smooth Streaming

standards. In addition to the transmission of the content itself, it is

necessary to ensure its reproduction.

This paper presents an implementation of the Smooth

Streaming protocol, the creation of a generalized software

framework for managing adaptive streaming protocols, as well

as the integration of the software framework with the Smooth

Streaming protocol and a media player for content playback.

The rest of the paper is organized in the following order:

Section II discusses streaming technology and its types. Section

III shows the architecture of the media player on which the work

solution is implemented. Section IV defines a programmatic

framework for managing adaptive streaming protocols. Section

V discusses creating a library for the Smooth Streaming protocol.

Section VI shows the architecture of the media player after

applying the solution. Section VII deals with the validation of

Miroslav Suša – RT-RK Institute for Computer Based Systems, Novi Sad,

Serbia (e-mail: miroslav.susa@ rt-rk.com).

Ilija Bašičević – Faculty of Technical Sciences, University of Novi Sad, Trg
Dositeja Obradovića 6, 21000 Novi Sad, Serbia (e-mail: ilibas@uns.ac.rs).

the solution and the results. Section VIII provides a conclusion

on the work.

II. STREAMING

Streaming is a technique of continuous transmission of video

and audio material via wired or wireless internet connection.

Before the advent of streaming, playback of content from the

Internet was possible in two ways. The first way is to upload

the complete file to the device and only then is playback

possible. Another way is to use a progressive download.

A. Progressive streaming

Progressive download allows you to play content while

downloading it to your device [2]. Downloading is done

regularly, which means that not only the selected part of the file

can be downloaded, but the complete one. Any part of the

downloaded content can be played as desired. The content

transmitted in this way is of fixed quality and resolution. In

other words, only one video file can be uploaded. Since

different content resolutions require better or worse internet

traffic, in a situation where the flow is poor, progressive

downloads will often lead to transmission interruptions. In

addition, the content will be displayed differently on different

devices.

Higher resolution files take up more memory space, and the

file transfer speed depends on the internet flow which tells us

how much data the user can receive in a unit of time. If the flow is

poor and the video has a higher resolution, part of it will not be

able to be transmitted in its entirety and playback will be

delayed. In addition to downtime, progressive downloads also

cause the problem of presenting videos on devices with

different screen resolutions. For example, when playing a video

that is 720p resolution, on a screen with 1080p resolution, the

image will be stretched and pixelated.

B. Adaptive streaming

Adaptive streaming is a streaming technology based on the

HTTP (HyperText Transfer Protocol) protocol. The benefit of

using HTTP technology is the unhindered passage through the

firewall and NAT (Network Address Translation) devices that

remap IP (Internet Protocol) addresses. In addition, the

complete implementation of HTTP logic is on the side of the

content seeker, which reduces the need for a continuous

connection between the provider and the service provider.

Adaptive streaming, instead of a complete file, transmits and

plays its parts for a few seconds [3]. We call such parts of a file

its segments. Since the content is divided into segments, any

part of it can be added as desired. Just before the segment

expires, the next one to be played is delivered. After moving on

to the next segment, the previous one is deleted, and the

RTI1.1 Page 1 of 5

process takes place until the complete content expires. This

gives the impression of continuous playback of content.

Information about all video and audio files and their segments,

as well as details of the need for their transfer and playback can

be found in the manifest file.

Fig. 1. File exchange between client and server during adaptive streaming

Adaptive streaming solves the problems of progressive

download [4]. Files of different resolutions are created for the

same content. Depending on the size of the client's screen, a file

segment of the appropriate resolution is provided.

Fig. 2. Display video resolution selection for different screen resolutions.

In the typical communication scenario between a client and a

server using adaptive streaming the client first sends a request

for a manifest and receives it in response from the server. The

client then sends requests for fragments which the server

delivers.

III. MEDIA PLAYER ARHITECTURE BEFORE PROTOCOL

IMPLEMENTATION

IWedia Player (IWP) is a library written in the C ++

programming language that aims to provide a high-level player

interface. The player allows you to play audio and video

content. It is used as a part of an application written for the

Android platform and provides it with a user interface.

Fig. 3. Display of player architecture before implementing the solution.

In order for the player to enable the MPEG-DASH streaming

protocol, an IWP-DASH library was created. In addition to

defining the elements of this streaming protocol within the

dash library, the logic for adaptive streaming has been

implemented, which is closely related to the dash protocol.

Components shared between other IWedia libraries such as the

player and dash are housed in the IWedia utils library.

IV. SOFTWARE FRAMEWORK FOR MANAGING ADAPTIVE

STREAMING PROTOCOLS

When it became necessary for the media player to support, in

addition to the MPEG-DASH protocol other adaptive

streaming protocols as well, the implementation logic had to be

generalized and displaced from the dash library.

The goal of the adaptive streaming protocol management

framework is to provide the media player with an interface

through which to obtain content for playback. All protocols

aim to transfer content and regardless of their complexity, we

can see numerous similarities between them. Since MPEG-

DASH is an official international standard, it is the most

developed and provides the most opportunities during

implementation [5]. All other standards can be viewed as its

subset.

The software framework can be divided into four logical units

that have a role in downloading manifests, segments, adapting

to network conditions and creating an entrance to the library.

Fig. 4. Generalized software framework solution architecture.

RTI1.1 Page 2 of 5

A. Module for manifest download

Manifest, as mentioned, is the central document for gathering

information on the content to be transmitted. It is available on

the server along with the provided content. The type of

manifest can be dynamic, if we broadcast live content, or static,

if the content is downloaded on demand. To stream live

content, the manifest needs to be delivered periodically because

the content is constantly changing.

To provide a manifest, URI (Uniform Resource Identifier)

from which it can be downloaded is required. The download is

performed with the help of a previously implemented download

class, which needs to be provided with data about the speed,

number of attempts and download time of the manifest. As a

result of successful delivery, a string with the contents of the

manifest is obtained. After it is downloaded, the manifest is

parsed.

At the level of libraries that implement the standard, it is

necessary to implement interfaces that represent the manifest

and the factory for creating the manifest.

B. Module for segment download

Within period elements of the manifest, that contain the

initial time and duration of the content, there are adaptation

elements. Their primary purpose is to provide information

about the type of stream being transmitted. Inside the

adaptation element are elements that represent the stream. They

contain data on the flow rate required to download the stream in

a certain quality as well as information on the segments that

need to be downloaded. At the stream type level, a structure is

created that will download the segments.

Libraries of specific protocols that implement the created

interfaces define the form of stream representation as well as

the form of segments. The representation form creates

segments based on a given start time, carries information about

the number of available segments, as well as the broadcast time

period provided by the representation.

Segment download control is defined in this software

framework. The time period in which the download will be

performed is determined, the representation within which the

segments will be downloaded is selected, the ordinal number of

the next segment to be created is calculated and the creation of

the segment is initiated.

C. Module for adapting to network conditions

The network adaptation module is key to performing

adaptive streaming. Depending on the speed of the user's

Internet flow, it is necessary to correct the representation of the

stream being downloaded. The factor that influences the choice

of representation, in addition to the flow rate, is the type of

content that is downloaded. For the purpose of selecting a

representation, a selector is created that stores all available

representations and, based on the current flow and type of

content, selects one of them to be played. After the download,

the number of bits downloaded, as well as the time period

required for the download, are forwarded to the flow rate meter.

Based on the obtained parameters, the meter calculates the

current flow rate that is available when initializing the next

download.

Middle input layer

As part of the software framework, a manager has been

created to manage the processes. Its presence is necessary in the

media player that uses the library. The task of the manager is to

initiate the loading of the manifest when it comes to streaming

on demand or perform periodic loading of the manifest if a live

broadcast is performed, as well as the interruption of these

operations. In addition, the manager creates a program

representation of the adaptation stream that has the ability to

further manipulate stream representations and segments.

D. Software framework integration with the media player

In order to enable the reproduction of content by adaptive

streaming protocols, it is necessary to integrate the software

framework with media player. The integration is done by

adding a component that has access to the software framework

manager. In this way, the processes realized by the software

framework are initiated, such as taking over the manifest and

adding segments. The ultimate goal of process initiation is to

obtain segments and prepare them for reproduction.

Within the media player, there is also logic for determining

the adaptive streaming protocol that will be used, as well as

factories that will, depending on the selected protocol, create a

component that has access to the software framework.

V. SMOOTH STREAMING LIBRARY

The Smooth Streaming library is a C ++ implementation of

the Microsoft Smooth Streaming protocol used by the IWedia

player to play content. The library consists of "ismc" and "abr"

modules. The Ismc part of the library was named after the

extension of the Smooth Streaming protocol manifest client.

Within this part, the manifest is parsed and elements and

attributes representing the data collected by parsing are

realized. Abr part of the library represents the implementation

of a software framework for managing adaptive streaming

protocols.

Fig. 5. Smooth Streaming Library Components.

A. Library creation

In order to implement the protocol, it is necessary to parse

the protocol manifest and present its elements within the

library. In addition, it is necessary to provide the types of

content exchange messages defined by this transport protocol,

which are: manifest request, manifest response, segment

request and segment response.

1) Manifest request

A manifest request is sent to obtain a manifest containing all

the necessary information to reproduce the content. In order to

send this request, a URI to the manifest is required as well as

information on which extension of the manifest file is

RTI1.1 Page 3 of 5

expected. Manifest extensions differ in whether it is a server

manifest that has an ism extension or a client manifest whose

extension is ismc.

2) Manifest response

The manifest response is obtained in the form of an ismc file

with metadata related to the playback of the content. The file is a

well-formed XML (Extensible Markup Language) and consists

of the following elements: SmoothStreamingMedia, Protection,

StreamIndex, QualityLevel and StreamFragment. All of the

above elements are presented within the library as classes, and

their correlations are clearly visible and described below.

Fig. 6. Smooth Streaming library solution architecture.

a) SmoothStreamingMedia

SmoothStreamingMedia is a root element that contains all

the other elements of the manifest. The direct descendants of

this element are the StreamIndex and Protection elements. Its

attributes carry information about the main and secondary

versions of the manifest as well as whether the manifest

describes live or on-demand content. Within the attribute, the

duration of the content described in the manifest is also defined.

SmoothStreamingMedia is implemented within the library so

that its creation requires URI of manifest as well as xml files in
string format. The string is then parsed using the sub-element

names and attributes listed as constants.

a) Protection

Protection is an xml element that includes the metadata

needed to play protected content. It contains information on the

unique identification of the security system used on the given

content, as well as the encoded data that the system uses to

enable the reproduction of the content to authorized users.

b) StreamIndex

StreamIndex is the most important element within a manifest

because it contains metadata for playing a specific stream. This

means that the element provides information about the type of

content that is transmitted by a particular stream, that is,

whether it is an audio, video or text stream. Based on the stream

type, the availability of attributes within an element changes.

Only in the case of video, there is information about the

maximum available content resolution that is available, as well

as the recommended playback resolution. The number of

qualities, segments, as well as the duration of the stream are

available within this element.

b) QualityLevel

The QualityLevel element carries metadata about the playback

of a specific track within the stream. Depending on the type of

stream in which it is located, its attributes differ. For video

within the video stream, the required resolution attributes as

well as parameters specific to a particular media format are

required. When it comes to audio recording within the audio

stream, in addition to the previously mentioned attributes, we

also have data on the number of channels of the audio tape,

sampling rate, sample size, limits for optimizing audio

decoding and identification of media format used. The

attributes that each record contains are those that carry

information about the unique identification of each record and

the download speed required to retrieve a particular record.

c) StreamFragment

The StreamFragment element contains metadata about a set

of related segments in the stream. Its attributes carry

information about the start time of the segment, its duration, the

order in a series of segments as well as the possibility of

repetition. For a segment to be valid, it must contain either a

duration attribute or a start time attribute. A series of segments

is called adjacent if the start time of any segment, with the

exception of the first, is equal to the sum of the start time and

the duration of its predecessor.

3) Segment request

A segment request is created to retrieve the desired segment

from the server. To create it, it takes URI to the desired

segment, its bitrate, the name of the stream within which the

fragment is located, the start time of the desired stream, as well

as the type of response that the client expects from the server.

4) Segment response

A segment response is a response that is received after

sending a request to obtain a segment. The answer can be

complete or partial. If the answer is complete it contains media

and segment metadata, while partial responses contain only

media or metadata.

B. Framework implementation

In the Smooth streaming library it is necessary to implement

two of the four modules of the framework and they are: Module

for manifest download and Module for segment download.

2) Implementation of the module for manifest download

As mentioned earlier, it is necessary to implement the

manifest factory interface as well as the manifest interface.

a) IManifest interface

IManifest methods gather the necessary information that each

manifest should have, namely: whether the manifest is live or on-

demand, the duration of the manifest, the minimum time required

to load the manifest, as well as adding the manifesto period. All

data can only be obtained by parsing the manifest.

b) IManifest_factory

The manifest creation factory contains only one method that

instantiates a class that implements the IManifest interface. It

forwards manifest uri and the contents of the manifest that is

necessary to parse.

3) Implementation of the module for segment download

Module for segment download defines the necessary logic to

supply the parsed element data, as well as the logic for creating

segments.

a) IRepresentation

Interface methods obtain, from the QualityLevel element, data

described in the part of the paper with the same name. All data is

present in the node and is very easy to obtain.

b) IAdaptation_set

The IAdaptation_set interface is composed from set of

methods that retrieve data from the Stream_index element of the

library. All methods return the present attributes or sub-elements

RTI1.1 Page 4 of 5

of a given element.

c) ISegment

This interface is defined by a set of methods for retrieving the

Stream_fragment element attribute with the exception of the

get_uri method. The get uri method calculates the uri to a given

segment that is different from the manifest uri

d) IRepresentation.

The role of the IRepresentation interface is to create

segments, add the total number of segments, add the duration of

all segments and find the segment with a given index

The number of segments is obtained when initializing the

class of this interface by going through all segments and taking

into account their repeat attribute which tells how many times a

given segment is repeated.

During the process of calculating segments, the total duration

of all segments can be easily obtained. The timestamp of the

first and last segment is taken, or their length and repeat tag if

the timestamp is not available.

A segment with a given index is supplied by going through

all available segments, taking their duration and repeat attribute,

calculating the index of each segment and returning the

resulting one. The limitation of this method is to pass an index

that is not less than zero and that is not greater than the total

number of segments.

VI. MEDIA PLAYER ARHITECTURE AFTER PROTOCOL

IMPLEMENTATION

By removing the definition of adaptive streaming protocol

from the dash library and generalizing it, a software framework

for managing adaptive streaming protocols is obtained. This

makes it easier to use and add new adaptive streaming

protocols such as the Smooth Streaming protocol. In addition,

their integration with the player is facilitated.

Fig. 7. Display of player architecture after solution implementation.

VII. TESTING

A. Description of the test environment

The environment for testing of this solution comprises

Smooth Streaming content that can be accessed via the

network, an application for playing content, as well as an

Android P development board on which the application will be

launched.

The content playback application is written in the Java

programming language for the Android platform. It provides a

simple user interface from which content playback can be

controlled, and uses the IWedia player library interface for

playback itself.

Content preparation, implementation of the Smooth

Streaming library and software framework, as well as their

integration with the media player are described in the previous

chapters. The Android P development board connects to the

same network from which the prepared content is available to it,

and the Android application is installed and launched on it. With

this step, the test environment is ready and testing can begin.

B. Testing procedure

After installing the Android application on the board and

launching it, you get access to the list of all available streams.

Clicking on the desired stream starts playback. Playback can be

interrupted, paused or restarted at any time.

C. Test results

As stated, by clicking on the desired stream, in this case on

the stream belonging to the group of Smooth Streaming streams,

playback starts. The start of content playback always takes place

at a lower resolution until the user's internet flow is determined.

After that, if it is determined that the conditions are met,
playback continues at higher resolutions, which tells us that the

Smooth Streaming protocol has been successfully implemented.

Selecting one of the available streams that are transmitted by

other adaptive streaming protocols results in content playback.

Successful playback start shows that the generalized software

framework has been correctly implemented.

VIII. CONCLUSION

Within this paper, a solution for integration of Smooth

Streaming standards for broadcasting content is described. Also,

a generalized program framework has been implemented, which

enables easier integration of the remaining standards.

The protocol library and software framework are written in

C++. In this way, speed and flexibility are achieved. Like the

media player in which they are implemented, they can be used

on both Android and Linux platforms.

The integration framework in the media player enables easier

integration of existing, as well as the protocols that may arise in

the future which can be seen as a subset of the MPEG-DASH

protocol.

ACKNOWLEDGMENT

On this occasion, I would like to thank my colleague Nikola

Špirić on the provided support.

REFERENCES

[1] Nenad Lovcevic, Jelena Simic, Miroslav Dimitraskovic and Ilija

Basicevic “Modul za prijem i obradu JSON komandi u programskoj

podršci digitalnog TV prijemnika” 61st IcEtran conference in Kladovo,
Serbia, June 5 – 8, 2017.

[2] Stefan Lederer, Christopher Mueller,Christian Timmerer, Hermann

Hellwagner “Adaptive Multimedia Streaming in Information-Centric
Networks” IEEE Network, November 2014.

[3] Ilija Bašičević, Nenad Lovčević, Nenad Šoškić, Milan Ačanski “Internet

as Infrastructure for Digital Television” 62st IcEtran conference in Palić,
Serbia, June 11 – 14, 2018.

[4] Rubem Pereira, Ella Pereira “Dynamic Adaptive Streaming over HTTP

and Progressive Download: Comparative Considerations”, IEEE 28th
International Conference on Advanced Information Networking and

Applications Workshops (WAINA) - Victoria, Canada, May 1 2014
[5] Sunho Seo; Younghwan Shin; Jusik Yun; Wonsik Yang; Jong-Moon

Chung “Adaptive high-resolution image transmission method using

MPEG-DASH” International Conference on Information and
Communication Technology Convergence (ICTC) Jeju, Korea (South),

October 18-20, 2017.

RTI1.1 Page 5 of 5

Implementation of the GDPR Compliant

Data Handling for Smart Home Solution

Sandra Bugarin, Sandra Ivanović, Marija Antić

Abstract—The amount of personal data collected and shared in

the Internet of Things (IoT) is causing increasing concerns

regarding the user privacy in IoT. The recently introduced

General Data Protection Regulation (GDPR) is a legal framework

that sets guidelines for the collection and processing of personal

information and aims to strengthen user rights. In order to comply

with the GDPR requirements, the existing smart home system is

extended with the cloud service, responsible for user consent

management and appropriate data handling. The architecture of

the solution, as well as the results of functional and performance

testing are presented in this paper.

Index Terms— GDPR; smart home automation; IoT

I. INTRODUCTION

The users surfing the web are under a risk of privacy

violation, as the websites are collecting data about them and

may be sharing it with third party services. Recently, the

General Data Protection Regulation (GDPR) has entered into

force, with the aim to protect the user privacy, and allow them

better control over the collected data and the scenarios it is used

in [1]. According to GDPR, the services are required to inform

the users about the types of data collected and the purpose of

this action, so the users can choose to engage only with websites

and services that do not violate their privacy, or opt out of the

use of their information for particular purposes.

While the data collected by the websites usually serves only

marketing purposes, and is not necessary for the normal

operation of the website, the problem of GDPR compliance in

Internet of Things (IoT) solutions is of a more complex nature

[2]. Namely, IoT systems typically connect multiple devices

owned by a single user, and allow them to perform a certain

function together. Therefore, the exchange of data is in the

essence of IoT. On the other hand, there exists a tendency in the

IoT solutions to collect more data than actually needed for the

normal system operation, as it may become useful in the future

scenarios [3], [4]. This data should be carefully stored and

protected, as well as anonymized [5], and the users should be

provided with the mechanisms to inspect or delete the collected

data at any time [6]. Also, it is necessary to be transparent about

the ways data is processed, to inform the users timely when the

privacy policies change, and to allow

Sandra Bugarin is with OBLO Living, Narodnog fronta 21a, Novi Sad,

Serbia (e-mail: sandra.bugarin@ obloliving.com).
Sandra Ivanović is with the Faculty of Technical Sciences, University of

Novi Sad, Serbia (e-mail: sandra.ivanovic@rt-rk.uns.ac.rs).
Marija Antić is with the Faculty of Technical Sciences, University of Novi

Sad, Serbia (e-mail: marija.antic@rt-rk.uns.ac.rs).

them to opt out of the service if they do not agree to the changes.

Studies have been conducted that show that the user attitude

towards data collection depends on multiple factors, such as the

environment the data is related to (home, office, traffic), types

of data collected (video, photo, sensory data, voice), who has

access to it (government, businesses), as well as the purpose of

data collection (safety, convenience, marketing) [7]. Smart

home users are willing to allow data collection as long as it is

used only within the system, for the purpose of connectivity and

convenience [8], but seem not aware of the possible privacy

issues associated with machine learning and potentially

sensitive information that can be revealed by data analytics [9].

This information should be communicated through the privacy

policy and terms of use, in a manner that is transparent and clear

to the user, and explains why certain types of data are needed

for the normal operation of the system [10].

In this paper, we extend the existing smart home solution

with the cloud service responsible for GDPR-compliant data

handling. This service allows administrators to handle privacy

policy updates, and the users to request the export or deletion

of personal data, as well as the deletion of the user account.

First, we introduce the smart home solution architecture in

Section II. Then, in Section III the operation of the GDPR

service is explained, while the results of functional and

performance testing are presented in Section IV and Section V.

II. SMART HOME SYSTEM ARCHITECTURE

The smart home solution we extend is comprised of a

gateway, client applications (Android, iOS and web) and cloud

services.

The gateway is a key component in the smart home because

it acts as a bridge between clients and smart devices in the smart

home system. Gateway’s main purpose is to pull together all

compatible devices into a universal platform. This allows

applying control scenarios to all of them while being agnostic

of the actual communication interface – ZigBee, ZWave, and

IP nodes are seamlessly integrated into one unified device/node

network. On top of this core functionality gateway implements

network API’s for client applications, mechanism to define and

execute rules, advanced control over the home zones, firmware

upgrade, backup/restore, etc.

RTI1.2 Page 1 of 5

Fig. 1. Smart home system architecture.

Client applications provide the user interface for system

provisioning, configuration and management. They enable

users to access their home gateway in local network or

remotely over the cloud. On the other hand, the cloud is

responsible for user and gateway identity management,

mirroring the smart home gateway configuration and data,

allowing remote access for the client applications, historical

data collection and analytics.

For certain functionalities of the system to be enabled, the

user needs to provide the address of the household, i.e. their

geolocation [11]. Also, phone number and email are needed

for the purpose of smart notifications. Additionally, the

system collects and stores the state changes of all devices, in

order to provide the users with the possibility to inspect the

way certain device types have been used in the previous

period [12]. Also, the information about the local IoT

network is stored for diagnostics purposes. All of these

entries represent the data that should be treated according to

GDPR.

III. GDPR-COMPLIANT DATA HANDLING

To comply with the GDPR requirements, the microservice

is created within the smart home solution cloud, which

enhances the system with the following functionalities:

• Update of Privacy Policy and Terms of Service

• Export of Personal Data,

• Deletion of User Account

In this section, the details about the service implementation

will be presented. All of the cloud services are highly

available, and GDPR service is no exception. The simplified

architecture is presented in Fig. 2. Multiple instances of the

service implemented in Node.JS are running on the

environment. They share the long-term MongoDB data

storage, as well as the temporary Redis storage. Also, the

shared cloud storage disk is available to all services that need

to store large files, not suitable for MongoDB database. To

control the load and orchestrate tasks within the environment,

RabbitMQ is used.

Fig.2. Highly available GDPR service.

A. Update of Privacy Policy and Terms of Service

The Privacy Policy should help users to understand what

information is collected, for which purpose, and how users can

update, export, and delete their information. Information about

privacy policy and terms of service is the part of registration

process, so all new users have to read it, and agree in order to

register their smart home account.

Fig. 3. Privacy policy acceptance upon login.

The existing users that have not read the new privacy policy

well be prompted to read it and agree to it after logging onto

web or mobile applications, as presented in Fig. 3. Until they

agree to new privacy policy, users will not be able to use the

applications. Gateways connected to user's account will be

deactivated and prevented from sending any new sensory

information to the smart home cloud.

Users can reactivate their account and gateways if they

accept new privacy policy on login, or if they click on the link

to new privacy policy that has been emailed to them.

RTI1.2 Page 2 of 5

B. Personal Data Export

As already said, personal data consists of user’s personal

profile information, such as name, email, phone contact,

geolocation and address of the household. It also includes the

state history of the end devices in the system, gateway backups

and local IoT network history logs, which are stored for the

purpose of diagnostics. Therefore, the exported data contains

three groups of JSON files. The first group contains the data

from the user's profile, the second one represents the snapshot

of the gateway's current state, while the third one represents the

usage history of all devices that have been connected to user's

gateway(s).

The data export service will run on demand, under control of

administrator. It performs the following tasks:

• Database crawl for personal data,

• Compression of this data to a ZIP archive, which is

temporarily stored in the cloud, until the user downloads it,

• Deletion of outdated personal data

The collection and deletion of all data for an individual user

can be started by the administrator, upon a request from the user

(Fig. 4). Administrators can start or stop data export task that

have not been completed, and delete completed export tasks and

data file associated with them if they are older than 15 days.

Also, they can monitor the progress of currently running data

collection tasks. Administrators are not able to view the

contents of the exported data files or to remove data export

tasks that still haven’t completed.

 Fig. 4. Export data flow

When the user makes a personal data export request, they will

be notified via email that their request has been acknowledged.

A similar notification will be sent to the administrator, with the

link that allow to monitor that export task. When the export task

has been completed, another notification will be sent, this time

with a HTML link to data export file. Download link will be

available for the next 15 days. After this period, the export task

and the associated export data file will be removed.

By default, only single process per backbone instance is

allowed to execute data collection and compression tasks.

Reason for this is intense I/O and CPU utilization (for DB crawl

and data compression, respectively). Every process will be

given a certain amount of time to complete it (e.g. 5 minutes)

by placing the key-value pair in redis with the same expiration

time. Given that database and redis are the only shared state

between backbone instances, they can be used for tracking of

task progression: if one of the instances that is running

collection task crashes or restarts, time for task completion will

expire and this task will fail.

C. User Account Deletion

At any time, a user can request to delete their account.

Administrators are obliged to fulfil this request, by performing

the account deletion operation via the administrative portal –

Fig. 5. During this process, all of the gateways assigned to the

user will be un-assigned from the user account, and all personal

data from the cloud will be deleted.

Fig. 5. Account deletion flow

However, the device usage data will be kept for analytics

purposes. This data is in anonymized state, which means that it

does not contain any information that can be traced to the

original user.

IV. FUNCTIONAL VERIFICATION

A. Privacy Policy Acceptance and Modification

During the process of account creation, the user is asked to

agree to the terms of service and the privacy policy.

The administrator can upload the new privacy policy and

terms of service documents using the web portal for system

administration – Fig. 6.

Fig. 6. Privacy policy and terms of service update.

RTI1.2 Page 3 of 5

Fig. 7. Modal dialog prompting the user to accept new privacy policy.

On next login attempt, every user will be prompted to accept

new privacy policy and terms of service via modal dialog – Fig.

7. Until they accept, they will not be able to use the applications.

B. Data Export

On the user profile, a button is implemented which allows

them to request the export of personal data. This button is

disabled if another request is already processed. This tab also

contains a link to personal data when collection task is finished

– Fig. 8. Implications are, that a new data export request can be

made after 15 days (guaranteed duration of the valid export

link) plus the time needed to perform the data export request.

Fig. 8. User requesting personal data export.

From the administrator side, the status of the pending, current

and past data export tasks can be monitored, as in Fig.

9.

Fig. 9. Administrative panel for export task monitoring.

V. PERFORMANCE TESTING

We have tested the implemented solution to asses the average

time needed to prepare the export ZIP file with user data,

depending on the data size. Typically, the size of the exported

data is 5-10 MB, although for the setups with many devices it

can increase up to 30 MB. The time needed for data export is

presented in Fig. 10. It can be observed that the data export can

be performed in less than 10 s for typical setups, while for the

larger setups the time needed increases to the order of minutes.

However, since the user will be informed by the notification

when this process is finished, the performance of the solution is

acceptable for the practical purposes.

Fig. 10. Time needed to export data depending on the total size of the data file.

VI. CONCLUSION

In this paper, one implementation of the GDPR-compliant

data handling in smart home solution has been presented. The

cloud service was created, that handles the relevant aspects of

data handling and user consent management, such as the update

of terms of use and privacy policy, data export and account

deletion. The implemented functionality has been verified, and

it has been shown that the times needed for data export are

acceptable. In the future work, this solution will be extended to

allow users the finer granulation over the types of data collected

and services enabled. For example, the users may want to opt

out of the advanced functionalities, based on data analytics and

machine learning, while still wishing to allow the exchange of

data needed for the basic system operation.

ACKNOWLEDGMENT

This research has been supported by the Ministry of

Education, Science and Technological Development through

the project no. 451-03-68/2020-14/200156: “Innovative

scientific and artistic research from the FTS activity domain”.

REFERENCES

[1] A. Tsohou, E. Magkos, H. Mouratidis, G. Chrysoloras, L. Piras, M.

Pavlidis, J. Debussche, M. Rotoloni, B. Gallego-Nicasio Crespo,

“Privacy, security, legal and technology acceptance elicited and

consolidated requirements for a GDPR compliance platform,”

Information and Computer Security, vol. 28, no. 4, pp. 531-553, Oct.

2020
[2] P. Porambage, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov, A. V.

Vasilakos, “The Quest for Privacy in the Internet of Things,” IEEE Cloud

Computing, vol. 3, no. 2, pp. 36-45, Mar. 2016
[3] S. Wachter, “The GDPR and the Internet of Things: a three-step

transparency model,” Law, Innovation and Technology, vol. 10, no. 2, pp.

266-294, Sept. 2018
[4] S. Watcher, “Normative challenges of identification in the Internet of

Things: Privacy, profiling, discrimination, and the GDPR,” Computer

Law & Security Review, vol. 34, no. 3, pp. 436-449, June 2018
[5] C. Perera, R. Ranjan, L. Wang, S. Khan and A. Zomaya, “Big Data

Privacy in the Internet of Things Era,” IT Professional, vol. 17, no. 3, pp.

32-39, May 2015

RTI1.2 Page 4 of 5

[6] A. D. Kounoudes, G. M. Kapitsaki, “A mapping of IoT user-centric

privacy preserving approaches to the GDPR,” Internet of Things, vol.
11, no. 100179, Sept. 2020

[7] H. Lee, A. Kobsa, “Understanding user privacy in Internet of Things

environments,” Proc. of World Forum on Internet of Things (WF-IoT),

Dec. 2016
[8] Moataz Soliman, Tobi Abiodun, Tarek Hamouda, Jiehan Zhou,

ChungHorng Lung, “Smart Home: Integrating Internet of Things with

Web Services and Cloud Computing,” International Conference on

Cloud Computing Technology and Science, Dec. 2013
[9] S. Zheng, N. Apthorpe, M. Chetty, N. Feamster. “User Perceptions of

Smart Home IoT Privacy”, Proc. of the ACM on Human-Computer.

Interactiion. vol. 2, no. CSCW, pp. 1-20, Nov. 2018
[10] K. Renaud,L. A. Shepherd, “How to make privacy policies both

GDPRcompliant and usable,” International Conference on Cyber

Situational Awareness, Data Analytics and Assessment (CyberSA), Nov.

2018
[11] M. Matić, M. Tucić, M. Antić, R. Pavlović, “Using online third party

geolocation services to improve smart home user experience,” Serbian

Journal of Electrical Engineering vol. 17, no. 1, pp. 83-94, Feb. 2020
[12] S. Ivanović, M. Antić, I. Papp, N. Jović, “Data Acquisition, Collection

and Storage in Smart Home Solutions,” Proc. of 6th International

Conference on Electrical, Electronic and Computing Engineering
(IcETRAN), May 2019

RTI1.2 Page 5 of 5

Abstract— Development and improvement of efficient

techniques for parallel task scheduling on multiple cores

processors is one of the key issues encountered in parallel and

distributed computer systems. The purpose of process

distribution improvement in parallel applications is in increased

system performance, reduced application execution time,

reduced losses and increased resource utilization.

This paper presents combined adaptive load balancing

algorithm based on domain decomposition and master-slave

algorithms and its core scheduling adaptive mechanism that

handles load redistribution according obtained and analyzed

data. Selection of distribution algorithm, based on collected

parameters and previously defined conditions, proved to deliver

increased performances and reduced imbalance. Results of

simulations confirm better performance of proposed algorithms

compared to the standard algorithms reviewed in this paper.

Index Terms— parallel programming, load balancing

algorithm, tash scheduling, adaptive algorithm.

I. INTRODUCTION

Distributed computer systems enables the delivery of

computing resources necessary to solve complex problems

with requirements that exceed the capabilities of the most

powerful personal computers. High-performance computers,

as one of the powerful elements of distributed computer

systems, lead to complex solutions by using computer

simulations enabling progress in all scientific fields. Parallel

processing supports execution of several processes and

instructions simultaneously, with a goal to save time and

execute faster and more efficient complex applications in

scientific and industrial applications. [1] [2].

The focus of many researches in the parallel processing

field is process of finding optimal distribution of tasks in

order to increase efficiency, reduce execution time of parallel

applications and reduce communication time of computer

resources. In order to achieve the highest parallel application

efficiency, it is crucial to optimize the assignment of tasks to

parts of the distributed computer system (cluster nodes and

its CPU cores) and monitor their execution.

The subject of this research was combined adaptive

algorithm (CAA) [3][4], which uses combination the static

and dynamic load balancing algorithms to improve the

performance of independent parallel tasks scheduling without

significantly complicating the whole process. It uses an

adaptive innovative mechanism for choosing load balancing

algorithm for distribution of unexecuted autonomous tasks

Luka Filipović is with the University Donja Gorica, Oktoih 2, Podgorica,

Montenegro (e-mail: luka.filipovic@udg.edu.me).

Božo Krstajić is with the Faculty of electrical engineering, University of

Montenegro, Džordža Vašingtona bb, Podgorica, Montenegro (e-mail:

bozok@ucg.ac.me).

Tomo Popović is with the Faculty of Information Systems and

Technologies, University Donja Gorica, Oktoih 2, Podgorica, Montenegro

(e-mail: tomo.popovic@udg.edu.me).

depending on the segments in which losses are the least and

by limiting the algorithm at times when it causes losses.

II. LOAD BALANCING ALGORITHMS

Load balancing in parallel processing is defined as process

of achieving parallelism by redistributing the load of parallel

segments during the execution of a parallel program [5] [6].

The primary goal of load balancing algorithms is to find the

optimal execution schedule that defines the initial execution

time and the execution order of all tasks that run on a

particular resource. Load balancing of parallel applications is

process of reducing computation time achieved by reducing

communication time, synchronization time between

processes and waiting time due to uneven process distribution

[7].

The imbalance of parallel applications most often occurs

due to uneven load between cores, excessive communication

between cores or waiting of group of cores for others to finish

assigned jobs [8]. In a real distributed environment, resource

load varies over time and it is not always possible to improve

the use of resources that are completely free or equally

loaded. It is not possible to determine or predict the length of

processes that run on separate computers or delays due to

communication between computers. Therefore, there is a

longer execution of the parallel application and a decrease in

resource utilization. The end of the execution of a parallel

application or the beginning of the postprocessing phase

directly depends on the execution time of the part of the

application on the core that is assigned the most process or

the processor with the lowest frequency.

Load balancing algorithms are divided as static and

dynamic, depending on the type of job scheduling. Static load

balancing algorithms have good usability and efficiency on

homogeneous clusters while they execute tasks on all cores

which have similar duration. Performance of programs using

these algorithms is reduced at the end of the runtime without

possibility of rescheduling. One of widely used static

algorithms is domain decomposition algorithm. On the other

side, dynamic algorithms can give better efficiency on

heterogeneous system, but make unnecessary communication

during executing time. The master slave algorithm is a one of

the typical representatives of dynamic algorithms. Domain

decomposition and master-slave algorithms have their

advantages and disadvantages depending on the

characteristics of the resource, the specific parallel

application for which load balancing is performed and the

duration of processes that are executed in parallel [9-11].

Combined adaptive load balancing algorithm

for parallel applications
Luka Filipović, Božo Krstajić, Member IEEE, Tomo Popović, Senior Member IEEE

RTI1.3 Page 1 of 5

mailto:luka.filipovic@udg.edu.me
mailto:bozok@ucg.ac.me
mailto:tomo.popovic@udg.edu.me

Adaptive algorithms are advanced dynamic algorithms

with adaptive strategy for task distribution scheme that is

activated depending on the load change of the distributed

system during operation.

III. COMBINED ADAPTIVE LOAD BALANCING ALGORITHM

The combined adaptive algorithm (CAA) is successor an

improved version of combined algorithm (CA) [12]. It

presents an adaptive decision model that selects an adequate

algorithm based on data on the state of the resource on which

the parallel application is running and the duration of finished

tasks.

In the preprocessing phase, as in the CA algorithm, the

input data is divided and tasks are prepared for execution.

Before starting parallel simulations, the analysis of the

distributed resource configuration is performed and the

obtained data are used in the later analysis.

In the parallel processing of the combined adaptive load

balancing algorithm, three execution phases stand out (Figure

1):

Fig 1. Execution phases of the proposed CAA algorithm

In the first phase of the combined adaptive algorithm, the

domain decomposition algorithm is executed. It has the

highest efficiency and the lowest losses in the initial phase of

program execution. The algorithm stops working when the

first (“fastest”) core completes the assigned job (Tmin) and

sends instructions to the other cores to stop working after

completing the task they are processing at that point. The

described procedure reduces the losses of the first execution

phase to a minimum.

In the second phase of the algorithm, based on the amount

and duration of performed tasks, cluster configuration and its

load, an adaptive approach is used to select the algorithm for

the scheduling of the remaining tasks in third phase. Upon

initiating an interrupt at the end of the first phase, each CPU

core sends to a predefined core a data containing the duration

of the performed tasks. The predefined core receives the sent

data and processes them, making an array with the number of

executed tasks for each core and through executed and

unexecuted tasks and selects the algorithm to be executed in

the third phase according to the defined decision algorithm.

The decision on the algorithm in third phase is made on the

basis of the following parameters:

 the homogeneity of allocated resources,

 the total number of assigned cores,

 the numbers of completed tasks for each core

individually and

 the execution time of each task individually.

The homogeneity of the allocated resources (the

examination of whether they can be considered homogeneous

or heterogeneous) is performed by comparing the

performance values of the allocated nodes of the distributed

resources. A measure of the performance of an individual

resource can be core frequency, node memory or node

network speed. Depending on the architecture of the

distributed system and the type of tasks, one or more node

performance measures can be taken. In the presented

research, the core frequency (Hz) was used as a measure of

the node performance of the distributed system.

The total number of assigned cores is defined when the

application is started.

The number of completed tasks per core represents the part

of the total number of tasks performed up to the moment Tmin,

when the first core performed the assigned tasks and initiated

the interrupt, for each core separately. The data is expressed

as a sequence whose number of elements is equal to the

number of assigned cores, and the elements are the numbers

of completed tasks for each core individually. The total

number and type of tasks depends on the parallel application

being executed and the input data, and the division is done

before the parallel processing.

The execution time of each individual task is a matrix that

contains the data on which core the task was executed and the

duration of each task (ms) that was completed.

Based on the above parameters, the conditions for selection

of an adequate distribution algorithm in the third phase can

be defined. These conditions are defined by variables Ui that

have binary values. Thus, the variable Ui takes the value 1 if

the i-th condition is met, and otherwise Ui takes the value 0.

The first and eliminatory condition (Ue) for the selection of

the distribution algorithm is the condition that the remaining

number of tasks is less than or equal to the number of

available cores. If the conditions Ue (Ue = 1) are met, the DD

algorithm is selected for execution in the third phase, ie each

of the remaining tasks is assigned one core for execution.

If the eliminator condition is not met (Ue = 0), the choice

of algorithm is made based on a combination of the following

conditions:

 U1 - cluster homogeneity condition: this condition is

fulfilled (U1=1) if CPU cores of the same or

approximate operating clock are assigned, ie. if the

standard deviation of the operating clock of all cores

is less than the set value;

 U2 - number of cores condition: this condition is

fulfilled (U2 = 1) if the number of cores is less than a

predefined number of cores, ie if the losses of the

master core in the MS algorithm cannot be ignored;

 U3 - condition of uniformity of the number of

performed tasks: this condition is fulfilled (U3 = 1) if

the number of performed tasks for each core is

approximate, ie. if the value of the standard deviation

of the number of completed tasks per core is less than

the predetermined value;

 U4 - condition of uniformity of duration of performed

tasks: this condition is fulfilled (U4 = 1) if the duration

of performed tasks per core is approximate, ie. the

Domain decomposition

P
re

ra
sp

o
d

je
la

Domain decomposition

Master-slave

Tmin

Domain decomposition

A
lg

o
ri

th
m

 s
e

le
ct

io
n

Domain decomposition

Master-slave

Tmin

I phase III phase

II
phase

RTI1.3 Page 2 of 5

value of the standard deviation of the execution time

of each task per core is less than the predefined value.

The decision algorithm checks the fulfillment of conditions

that depend on the values of the parameters. Choice of the

algorithm itself adapts to the current performance of the

allocated resources and the state of the performed tasks in the

first phase. Thus, the proposed adaptive algorithm determines

whether the domain decomposition or master-slave algorithm

will be executed in the next phase based on the fulfillment of

the defined conditions according to the principle: the more

conditions are met, it determines the choice of DD algorithm

in the third phase and vice versa.

In order to enable additional adaptation of the decision

algorithm to a specific application and distributed system,

each of the conditions can be weighted with real coefficients

Ki, Ki∈ [0,1] which enables the exclusion of some conditions

or assigning greater or lesser importance to some of the

conditions. This does not apply to an eliminatory condition

that is considered independently of the other conditions. The

coefficients Ki are assigned a maximum value of 1 if this

condition is fully taken into account, while Ki = 0 excludes

the influence of this condition from the influence on the

choice of algorithm. Coefficients should be defined

separately for each application and distributed resource

depending on previously obtained results and experiences.

Finally, based on the above conditions, we can define the

decision function on the basis of which we select the

algorithm in the third phase:

 𝑈 = ∑ 𝐾𝑖 ∗ 𝑈𝑖4
𝑖=1 . (1)

The threshold value of the decision function U should also

be defined, on the basis of which one or another algorithm is

selected for the third phase (DD or MS). Since the maximum

of the function U is achieved by the fulfillment of the

conditions Ki*Ui and that determines the choice of the DD

algorithm, then half of the maximum value of the function U

is taken as the threshold value, ie

P =
∑ Ki4
𝑖=1

2
 . (2)

Therefore, if it’s satisfied

 𝑈 ≥ 𝑃 (3)

it is necessary to select the DD algorithm in the third phase

or the MS algorithm if condition is not satisfied.

Figure 2. shows a schema of the decision making process

for the selection of algorithm in second phase. As already

mentioned, based on the presented parameters, defined

conditions and coefficients, the algorithm for the distribution

of tasks in the third phase is selected.

Fig 2. Scheme of the decision making process for the selection of algorithm

in Phase II

The selected algorithm (DD or MS) is executed in the

third phase.

If the DD algorithm is selected, each core receives a

portion of the list of unfinished tasks. Each core gets assigned

one of the remaining tasks to solve if the remaining number

of tasks is less than or equal to the available number of cores

(condition Ue). Otherwise, the number of assigned tasks for

each core is determined in proportion to the number of tasks

completed in the first phase on each core separately.

In the case of selecting the MS algorithm, the core that

performed the analysis in the second phase is determined as

the master core. It contains information with a list of all

unfinished tasks that are assigned to slave cores for execution

in the third phase of the algorithm.

The proposed CAA algorithm will increase efficiency and

shorten the execution time of parts of a parallel application in

the third phase according to the interruption of the execution

of the first phase, the analysis of the state of resources, the

adaptation from the second phase and the redistribution of

tasks.

The efficiency of the CAA algorithm has been improved

due to process reallocation, reduced kernel latency for new

instructions, and improved resource utilization by adapting

the allocation to the distributed system architecture and

application-specific. Therefore, the execution time of the

proposed algorithm will be shorter than the execution time of

the standard DD algorithm if measured under the same

conditions. The CAA algorithm is similar to the CA

algorithm in the case of deciding that a dynamic process

START

Input parameters for decision

making, coefficients Ki

Ue

Ue

no

U1, U2, U3, U4

U PDD in III yes no MS in III

END

yes

U = Ki ∗ Ui

4

i=1

P =
∑ Ki4
𝑖=1

2

RTI1.3 Page 3 of 5

allocation along with the MS algorithm is required in the third

stage.

The disadvantages of the proposed CAA algorithm are the

interruption of task execution at the end of the first phase and

the duration of adaptation in the second phase. Interrupting

the execution of tasks in the first phase may increase the

duration of this phase if there are one or more tasks whose

duration is significantly longer than the duration of other

tasks. This phenomenon would cause an increase in the

duration of the first phase, which may affect the performance

of the entire algorithm. In that case, the efficiency would be

the same as with the classical DD algorithm. The second

phase, due to its short duration, cannot significantly affect the

overall efficiency of the parallel application.

The proposed CAA works as a DD algorithm during the

period of its maximum efficiency and stops working when its

efficiency starts to decline. The proposed adaptive algorithm

will have a significantly better performance than the domain

decomposition algorithm in the case when the basic algorithm

has low efficiency due to interruptions and redistribution of

tasks.

The CAA algorithm will have better performance than the

MS algorithm because the MS algorithm does not execute

tasks on the master core and generates more communication

losses than the proposed CAA algorithm. The MS algorithm

will have lower efficiency than the proposed algorithm

because it starts as a DD algorithm and redistributes and

selects the algorithm for execution based on parameters in

order to achieve better use of resources and efficiency.

In case of large losses during third phase, it is possible to

re-initiate the interruption and repetition of the decision

algorithm, ie adaptation based on new parameters, re-

selection of the algorithm and its start to get the best use of

resources.

IV. THE ANALYSIS OF SIMULATION RESULTS

For the purposes of research and testing of the subject

algorithms, a parallel version of the crossbar commutator

performance simulator (CQ) [13] was used, as a numerically

demanding example of a parallel application with several

independent processes. The algorithms were tested on

different distributed computing environments and run under

different resource loads. Each simulation was performed ten

or more times and the averaged results of the execution time

are presented here. The performance of the combined

adaptive algorithm was verified on the example of a 16-port

CQ simulator with 1,000,000 requests and 3072 generated

tasks. Simulations performed on the Paradox HPC cluster of

the Institute of Physics in Belgrade. At the time of the

simulation, the cluster consisted of 106 computing nodes

based on two octa-core Xeon 2.6GHz processors with 32GB

of RAM and NVIDIA® Tesla ™ M2090 cards. The

performance of the combined adaptive algorithm is compared

with the performance of the algorithms that make it up.

Simulations were performed on 16, 32, 64 and 128 cores. The

input files were copied to the nodes on which the simulations

were run in the preprocessing phase, thus reducing the impact

of communication between the nodes.

In the presented simulations, the value of standard

deviation 10% of the average value of the core operating

clock was used for condition U1. A threshold of 32 cores is

defined for condition U2. For conditions U3 and U4, the value

of the standard deviation is 25%. The coefficients used in

these simulations are K1 = 0, K2 = 1, K3 = 1 and K4 = 0.5.

Priority in decision making is given to the number of cores on

which the simulation is performed and the number of

performed tasks per core. A lower priority was given to the

duration of the tasks, and due to the coefficient K1 = 0, the

influence of cluster homogeneity was not taken into account.

The average results of parallel application execution with

DD, MS and CAA algorithm for different number of used

cores are shown in Figure 3.

Figure 3. Average execution time of simulations using DD, MS and CAA

algorithms on 16-128 cores

The combined adaptive algorithm completed simulations

faster than the domain decomposition and master-slave

algorithms in all conditions. The best results and the greatest

benefits due to the redistribution of tasks were determined in

cases of performing simulations on a number of cores. The

simulations showed the longest execution time with the

master-slave algorithm, especially on a small number of cores

due to its previously described shortcomings.

The domain decomposition algorithm performed

simulations faster than the master-slave algorithm. The input

data was transferred before the simulations and most tasks

were performed at approximately the same time, as shown in

Figure 3. Therefore, the static distribution proved to be

sufficient and the domain decomposition algorithm showed

better performance than the master-slave algorithm.

Figure 4. Savings during algorithm execution and comparison between

combined algorithm and domain decomposition and master slave

RTI1.3 Page 4 of 5

Figure 4 shows the execution time savings between the

combined adaptive algorithm and the algorithms that make it

up. The domain decomposition algorithm required more time

than the combined adaptive algorithm due to the static

distribution throughout the execution process. The difference

between the combined adaptive and domain decomposition

algorithms ranges from 1.7% to 8.2%. The biggest difference

was recorded when executing the application on 128 cores.

The differences between the combined adaptive algorithm

and the master-slave algorithms are due to the loss of the

master-slave algorithm due to the distribution of tasks and

communication between cores during the entire program

execution process. The execution time difference between the

combined adaptive and master-slave algorithms ranges from

15.5% to 21.9%. The inability to execute tasks on the master

core produced losses during execution on a smaller number

of cores. Increased communication between cores throughout

the execution of the simulation caused the largest difference

between the results listed on 128 cores.

Figure 5. Selected algorithm in the third phase of CAA

Figure 5. shows the results of the selection of the algorithm

in the second phase according to the received and analyzed

data and the decisions made at the end of the second phase.

The domain decomposition algorithm was chosen in most

cases when the simulation was performed on 16 cores,

because the execution was detected on less than 32 cores and

an even number of tasks that needed to be redistributed. On

the other hand, master-slave was chosen in cases of

simulations on 32 or more cores because the decision

algorithm from the second phase based on parameters

discovered the number of available cores, different number

and duration of performed tasks and selected this dynamic

algorithm for the third phase.

V. CONCLUSION

The paper presents an original adaptive load balancing

algorithm for parallel applications that combines the

operation of static and dynamic algorithms. Domain

decomposition and master slave algorithms were used on the

basis for the proposed algorithm, as one of the most common

algorithms in practice. As none of the algorithms provides

good results in a wide range of applications and types of

distributed systems, the following research was based on the

idea of combining the mentioned algorithms in order to

improve the parallelization performance without

complication of the algorithm. Based on the identified

advantages and disadvantages of standard algorithms, a

combined adaptive algorithm is proposed. The idea of

combined algorithms is to work in the phases when composite

algorithms have the best performance. The advantages of the

proposed solution are following:

 improved parallel application efficiency and cluster

utilization in relation to basic algorithms due to task

redistribution and reduced execution time;

 parameters and conditions for the selection of

algorithms have been identified according to the

status of resources and the point of execution of the

application and determine a more adequate static or

dynamic distribution of the process by an adaptive

strategy

 weighting coefficients (Ki) adjust the adaptive load

balancing algorithm and parallel application to the

infrastructure

 applicability of the proposed adaptive part of the

decision algorithm is possible in any load balancing

algorithm and

 the proposed algorithm is applicable to all parallel

applications consisting of several independent tasks.

The paper presents the results of executing domain

decomposition, master-slave, combined and combined

adaptive algorithm on different computer resources with the

help of numerically demanding parallel application of CQ

simulator. Comparison of the results of simulations with

different loads and configurations of distributed resources

confirms the better performance of the proposed algorithm in

relation to the basic algorithms considered in the paper.

ACKNOWLEDGMENT

This research is supported in part by the EuroCC project,

grant agreement grant agreement 951732 EuroCC-H2020-

JTI-EuroHPC-2019-2.

REFERENCES

[1] S. Tanenbaum and M. van Steen, Distributed Systems: Principles and

Paradigms, 2nd Edition, Pearson Education. Inc., 2007.

[2] B. Barney, Introduction to Parallel Computing, Lawrence Livermore

National, 2012.

[3] L. Filipovic, “Combined adaptive load balancing algorithm for

parallelization of applications”, PhD thesis, University of Montenegro,

Faculty of Electrical engineering, 2019.

[4] L. Filipovic and B. Krstajic, "Combined load balancing algorithm in

distributed computing environment," Information Technology and

Control, vol. 45, no. 3, pp. 261-266, 2016.

[5] H. D. Karatza and R. C. Hilzer, "Parallel Job Scheduling in

Homogeneous Distributed Systems," Simulation, vol. 79, 2003.

[6] J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan and C.-W. Tseng,

"Dynamic Load Balancing of Unbalanced Computations Using

Message Passing," in Parallel and Distributed Processing Symposium,

2007, IPDPS 2007, IEEE International, Long Beach, CA, USA, 2007.

[7] T. Rauber and G. Rünger, Parallel Programming for Multicore and

Cluster Systems, Springer, 2010.

[8] D. Thiébaut, Parallel Programming in C for the Transputer, 1995.

[9] V. Sarkar. Partitioning and Scheduling Parallel Programs for

Multiprocessors. MIT Press, 1989.

[10] W. D. Gropp. Parallel Computing and Domain Decom-position. In:

Fifth Conference on Domain Decompo-sition Methods for Partial

Differential Equations, 1990, pp. 249-361.

[11] S. Sahni. Scheduling Master-Slave Multiprocessor Systems. IEEE

Transactions on Computers, 1996, Vol. 45, No. 10, 1195-1199.

[12] L. Filipovic, B. Krstajic. Modified master-slave algorithm for load

balancing in parallel applications. ETF Journal of Electrical

Engineering, 2014, Vol. 20, No. 1, 74-83.

[13] M. Radonjic and I. Radusinovic, "CQ Switch Performance Analysis

from the Point of Buffer Size and Scheduling Algorithms," in Proc. of

20th Telecommunication Forum TELFOR 2012, 2012

RTI1.3 Page 5 of 5

Abstract— Syntax analysis is an important part of natural
language processing. The biggest challenge to defining a natural
language syntax analyzer is the inability to define unambiguous
formal grammars that describe the language. Because of this,
rule-based syntax analyzers need to be enhanced using statistics
to allow us to predict which syntax tree is most likely. In order
to do this, a corpus of tagged sentences in the target language is
needed. The creation of this corpus is long and tedious work.
Because of this, this paper implements a visual tool for creating
such a corpus for the Serbian language. A component of this tool
is the syntax analyzer, which generates all the possible syntax
trees based on the defined grammar such that an expert may
choose one of them. The expert may also create entirely new
syntax trees.

Index Terms—Natural language processing (NLP); Syntax

analysis; CYK; Annotated syntactic corpora; Serbian language

I. INTRODUCTION
Natural language processing is a branch of computer

science that teaches computers to understand and manipulate
human language. Natural language processing is a
combination of computer science, linguistics and machine
learning. Many NLP techniques are already developed and
applied for the English language but applying those
techniques to different languages can be quite a challenge.
Serbian language is under-researched in the context of natural
language processing. Since the Serbian language and the
English language do not belong to the same language group,
many approaches designed for the English language need to
be significantly modified in order to be used in the Serbian
language or cannot be used at all.

Syntax analysis or parsing, in general, is the process of
analyzing character strings according to the rules of a given
formal grammar. It is typically encountered in fields of
natural languages, computer languages or data structures. In
Natural language processing, syntax analysis is one of the
most important phases because it builds a great foundation to
natural language understanding. Syntax analysis decides
whether a sentence written in natural language conforms to
the rules of a formal grammar and thus whether a sentence is
valid or not. Designing a quality syntax parser is extremely
significant for designing a semantical analyzer, since syntax
parsing precedes semantic analysis. Also, syntax analysis has
its own role in Rule-based Machine Translation, Information
Extraction, Question Answering systems, etc.

Teodora Đorđević is with the Faculty of Electronic Engineering,
University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
teodora.djordjevic@elfak.ni.ac.rs).

Suzana Stojković is with the Faculty of Electronic Engineering,
University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
suzana.stojkovic@elfak.ni.ac.rs).

This paper describes designing a graphic tool for syntax
analysis of the Serbian language based on the syntax analyzer
designed in [1]. This tool is implemented as a web application
that can analyze and visualize sentences using the
implemented parser. It also enables the user to draw
completely new syntax trees and save them.

II. RELATED WORK
In linguistics, a corpus usually represents a collection of

texts. The main purpose of a corpus is to be used as a tool in
language study. In order to study and analyze language data,
having a corpus is essential.

The English language is most widely researched language
and thus the largest number of corpora exists for the English
language.

Corpora contain texts that are sourced from natural
contexts in order to be as close to the natural language as
possible. There are many types of corpora that are used in
natural language processing such as reference corpora, which
are fairly balanced sets of texts that accurately describe a
standard language, or specialized corpora which contain texts
from a particular area, such as movie reviews, magazine texts,
etc. A very important category of corpora are annotated
corpora which contain additional information such as part of
speech tags, lemmas, metadata, additional tags, etc.
Annotated corpora can thus be used in supervised learning
scenarios when attempting to infer this additional data based
on the text given.

There are many publicly available corpora online for
various languages. These corpora can be accessed either
directly online via web browser, through specialized APIs to
search the corpora, or can also be downloaded in their
entirety.

Most modern language processing is done using
computers. This means that modern corpora must be
electronically readable documents. The first such document
for the English language was The Brown Corpus of Standard
American English [2]. This corpus consists of one million
words of American English texts printed in 1961. In order to
ensure high quality and to make the corpus useful for a wide
range of applications, the corpus compiled texts from 15
different categories. Keeping in mind the huge increase in
processing power, as well as that the Internet generates more
linguistical data than ever before, this corpus is now
considered small.

An example of a modern corpus of the English language
that is quite big is the Corpus of Contemporary American
English (COCA) [3]. COCA is probably the most widely used
corpus of English, with over one billion words. Many corpora
for the English language can be found at [4].

Besides the English language many other languages of the
world are being researched in the field of syntax and semantic

A Tool for Sentence Syntax Structure Markup
for The Serbian Language

Teodora Đorđević, Suzana Stojković University of Niš, Faculty of Electronic Engineering

RTI1.4 Page 1 of 5

analysis and are thus being compiled into language specific
corpora. One such corpus is the Quranic Arabic Corpus [5],
which is an annotated linguistic document, that shows the
Arabic grammar, syntax and morphology for each word in the
Quran. The research paper [6] describes a specialized
annotated corpus for the Chinese language, used for
analyzing clinical texts. This corpus is annotated with part-
of-speech tags, syntactic tags, entities, assertions, and
relations.

For the Serbian language, given that it is spoken by only
12 million people in the world as a first language, there is not
a large number of corpora such as English or Chinese. In the
last few years, there has been development of open, freely
available resources and technologies for computer processing
of texts in the Serbian language. This includes annotated
language corpora and some of the corpora are listed below.

1. SETimes.SR [7] – it is based on the SETimes parallel
corpus of newspaper articles. This is a manually
annotated corpus of texts written in the standard
Serbian language. This corpus is used for training and
evaluation of computer models on a number of natural
language processing problems. It contains 3891
sentences. The SETimes.SR corpus is annotated using
morphosyntactic notation, lemmas, syntactic
dependencies, and named entities.

2. srWac [8] - the Serbian web corpus, which was built
by crawling the .rs top-level domain in 2014. It
contains 555 million tokens and over 25 million
sentences arranged in about 1.3 million documents.

3. MULTEXT-East [9] - is a multilingual dataset for
language research. This project consists of mainly
Central and Eastern European languages, including
Serbian.

4. ReLDI-NormTagNER-sr 2.1 [10] - is a manually
annotated corpus of Serbian tweets. It is meant for use
in the fields of tokenization, sentence segmentation,
word normalization, morphosyntactic tagging,
lemmatization and named entity recognition of non-
standard Serbian.

As mentioned earlier, there is a corpus that has marked
dependency syntax at the sentence level, but there is still no
corpus for the Serbian language that contains fully marked
syntax trees. Precisely for this reason, the idea arose to create
such a tool that will enable the creation of a corpus of
syntactic trees for the Serbian language.

There are some visualization tools for drawing syntax
trees, but they are mostly limited to inputting a syntax tree,
and then getting a visualization of that tree. The tools which
expect user to enter syntax trees and then visualize it are
shown here [11, 12]. The tool where the user can draw syntax
tree from scratch is TreeForm [13]. This tool offers wide
palette of elements that can be drawn in order to create a
syntax tree. There are several simpler solutions than
TreeForm, such as [14][15]. All these tools are only intended
for visualizing syntax trees. They do not support using a
syntax parser in the background, which would generate
syntax trees based on the entered sentence as suggested in this
paper.

III. THE FUNCTIONALITY OF THE NOTATION TOOL

A. Syntax Analyzer
The parser that was created in [1] achieved excellent

performance and performed real-time parsing. This parser
consists of three components:

Fig. 1. The Architecture of Notation tool

RTI1.4 Page 2 of 5

1. POS Tagger – when a sentence is forwarded to the
syntax analyzer it is necessary to extract POS tags
first, because a syntax analyzer can only recognize
tags, not actual words. This tagger is explained in
detail in [1]. The tagger returns tags that have special
meaning. For example, some of the valid tags are ‘nn’
(noun in nominative), ‘vm’ (main verb), ‘sl’
(preposition in front of locative). Every POS of the
Serbian language has its own abbreviation, where
every letter has its own meaning. These tags are then
forwarded to syntax analyzer, and later displayed in
syntax trees above actual words of the sentence.

2. CYK Parser – this parser is implemented to achieve
optimal performances while analyzing sentences.
Also, this parser, as defined in [1], is capable of
recognizing all the syntax trees, like the parser in
NLTK [16], but with significantly reduced parsing
time.

3. Postprocessor – this layer is added because the
number of syntax trees that are generated based on
grammar designed for CYK Parser was large. To
reduce this number, a series of rules is defined. These
rules eliminate syntax trees that aren’t consistent with
Serbian grammar. The postprocessing phase reduced
the number of syntax trees by 54%.

The problem with this syntax analyzer, despite adding a
postprocessing phase, is that it generated multiple trees for a
single sentence. In order to solve this problem, it is necessary
to add statistics that will enable to generate only one syntax
tree as a result of a syntax analysis. To be able to implement
statistical parsing, it is necessary to have a corpus of marked
sentences, which is not the case for the Serbian language. For
this reason, the idea of creating a visual tool arose. This tool
will enable simple drawing and visualization of syntax trees
and thus lead to the generation of a corpus of marked
sentences that will be used further.

The notation tool works as follows:
1. The user enters the sentence they want to tag
2. The sentence is forwarded for processing to a parser that

returns the resulting syntax trees
3. The syntax trees are displayed to the user
4. The user can choose one of the following options:

• Select the correct tree,
• Change the tree that is the most similar to the

correct tree - by adding nodes, changing the node
name, deleting nodes, and switching places with
nodes, or

• Create a new tree in case all the suggested trees
are wrong

5. The correct tree is uploaded and stored in the database.

The architecture of the implemented system is shown in

Figure 1.
The new component of the syntax analyzer is called

reduction component. This component is added specifically
for this tool.

The grammar created for the Serbian language contains a
huge number of rules because the Serbian language is very
complex. Considering that due to the implementation of the
CYK algorithm, it was also necessary to transform the
grammar so that it would be in Chomsky's normal form, a
large number of auxiliary shifts were introduced. The syntax
tree created in this way was too large to be displayed to the

user of any system and this is the reason for introducing a
reduction component.

This component aims to transform the syntax tree so that it
no longer contains auxiliary rules, as well as that it does not
contain shifts that have been introduced to make syntax
analysis simpler and more robust.

The goal of reduction is to transform the syntax tree,
generated by using a more complex grammar, into a simpler
tree, corresponding to a simpler grammar. The main purpose
for introducing the reduction component is to visualize the
trees in a way that domain experts would expect by
abstracting away implementation details. Also, reduced
syntax trees are smaller and easier to display. After
confirming the final tree for input sentence, it is necessary to
return syntax tree to original form. This is achieved by using
transform component. This component accepts syntax tree in
simpler grammar and transforms that tree to original
grammar. The transformed tree is then forwarded to backend
application and saved in a database.

Figures 2 and 3 show how a part of the syntax tree looks
with and without reduction. The reduced syntax tree is
significantly smaller and thus much easier to display. An
entire syntax tree without reduction would be impossible to
fit in the page of the notation tool. The syntagm shown in
figures 2 and 3 is “Moja divna drugarica”, meaning “my
wonderful friend” in Serbian.

Fig. 2. Part of the syntax tree without reduction

Fig. 3. Part of the syntax tree with reduction

RTI1.4 Page 3 of 5

B. The Notation Tool

This component is implemented as a web application so
that users can use it as easily as possible. This approach was
chosen to avoid any installation. The application itself is
divided into three parts:

1. Frontend

2. Backend

3. Database.
The role of the Frontend is to enable:

1. Entering a sentence whose analysis should be
performed

2. Displaying of all syntax trees generated by the
parser

3. Selecting a syntax tree that is correct - the user can
view a list of all syntax trees that the parser returned
and check the one that is correct. This sends a
request to the server with the intention to save that
tree in the database.

4. Syntax tree modification - if the syntax tree is not
completely correct, but with a few minor changes it
could become correct, the tool offers the possibility
to make the following syntax tree changes:

• adding a new node - it is necessary to select the node
to which we want to add a new descendant and select
the name that will be in that node. After interacting
with the component, the tree structure is
automatically updated to display the changes.

• deleting a node - if it is necessary to remove a node,
the tool offers the option to select that node and then
delete it.

• renaming a node - if the tree structure is adequate
and an element is incorrectly recognized and it has
the wrong name, the tool allows the user to rename
that node.

• swapping nodes - this option exists in case the nodes
are correctly recognized but they have been
misplaced. It is possible to swap the places of these
nodes, but only if they have the same parent. This
option was introduced because a new node is always
added to the end of the list of children, and if the
node is deleted, a new node should be added in its
place. Since the new node is always added as the last
child, this functionality allows the user to place the
node in any arbitrary position.

5. Drawing a completely new tree - the tool offers
space for drawing a new tree, where on one side of
the control there is a list of possible nodes and
arrows for connecting nodes, and on the other side
there is a space for drawing - canvas. It is possible
to transfer nodes from the palette to the drawing
space, as well as to connect these nodes with arrows.
When nodes are added and names are populated, the
tool offers the ability to make a tree structure out of
these nodes, as well as to send that tree further to the
server to be stored in the database.

6. Sending a tree to the database – within the tool
there is a service whose methods are called to
interact with the server.

The role of the backend application is to enable:

1. Route for frontend application where a sentence
can be analyzed – when a frontend application
sends GET request the backend application forwards
this sentence to the syntax analyzer described
earlier. This syntax analyzer is written in Python, so
it is necessary to call Python script which returns
generated syntax trees for given input.

2. Route for saving the chosen tree in the database
– when an expert reviewed the syntax trees and
chose or drew the correct one. This syntax tree is
saved along with tags and sentence that has been
analyzed.

IV. THE EXAMPLES OF THE NOTATION TOOL

Figure 4 shows the welcome page. There is a start analysis

button that a user can click, and this will open a form for
entering the sentence.

Figure 5 shows a form where the user can enter a sentence

for syntax analysis. That sentence is forwarded to the backend
application. The backend application sends the sentence to
the syntax analyzer by calling Python scripts.

The drawing of syntax trees was implemented using the
canvas element in HTML and Canvas API in JavaScript.
Below are shown pictures of different options which this tool
offers.

Fig. 6. One of the syntax trees that parser generated

Figure 6 shows the result that parser returned. As can be
seen there are three syntax trees generated for this

Fig. 4. Welcome page

Fig. 5. Enter sentence form

RTI1.4 Page 4 of 5

sentence. The second syntax tree is shown in figure 4. The
start symbol of the grammar is S, the level below S
represents syntactic structures. After that, there are POS
tags that tagger returned and finally words of the sentence.
The menu above the drawn syntax tree has three options:
1. Interrupting the current analysis and analyzing a new

sentence (leads to the form where the sentence is
entered),

2. A page where it is possible to build a completely new
tree for the current sentence,

3. Confirmation of the current tree - forwarding the
selected tree by sending a POST request to the server,
where the syntax tree is sent as the request body, after
which the syntax tree for the entered sentence is stored
in the database.

Fig. 7. Node removal

Figure 7 displays the menu for deletion of a node. First, it
is necessary to select the node that is going to be altered. The
selected node is colored black to stand out from other nodes.
After node selection, the application opens the menu where
the user can add a new node to the selected one, change the
selected node’s name or delete the selected node. Figure 7
shows that option for deletion is chosen. If the user wants to
rename the node, it is necessary to select the rename option
from the displayed menu. After that, the user needs to enter a
new node name and confirm it. The third option in the menu
is to add a new node. When a node to which a new node is
added is selected, it is necessary to enter a name for the new
node to be added.

Figure 8 shows the canvas where the user can draw a
syntax tree from scratch.

V. CONCLUSION

The notation tool has been carefully created so that it has

the simplest interface with the intention of being used
primarily by domain experts - philologists. By using this tool,
users are able to tag sentences in the simplest possible way,
and thus quickly and efficiently create a corpus for the
Serbian language.

After launching this site on the web, it is necessary to hire
a set of domain experts who will tag sentences using the tool
and create a corpus of sentences. After collecting a sufficient
number of sentences, it is expected that these sentences will
be used to further improve the Serbian language parser.

ACKNOWLEDGMENT
This work has been supported by the Ministry of

Education, Science and Technological Development of the
Republic of Serbia.

REFERENCES

[1] T. Đorđević, S. Stojković: "Different Approaches in Serbian Language
Parsing using Context-free Grammars", Proceedings of 7th
International Conference on Electrical, Electronic and Computing
Engineering IcETRAN, Etno-Selo Stanišići, Bosnia and Herzegovina
(Online conference), pp. 588-591, September 28-30. 2020.

[2] N. W. Francis, H. Kucera, “Brown Corpus Manual” , Technical report,
Department of Linguistics, Brown University, Providence, Rhode
Island, US, 1979.

[3] M. Davies, The Corpus of Contemporary American English,
2008, www.english-corpora.org/coca/, 13.06.2021.

[4] English Corpora, https://www.english-corpora.org, 12.06.2021.
[5] The Quranic Arabic Corpus, https://corpus.quran.com, 10.06.2021.
[6] B. He, B. Dong, Y. Guan, J. Yang, Z. Yang, Q. Yang, J. Cheng, C. Qu,

“Building a comprehensive syntactic and semantic corpus of Chinese
clinical texts”, Journal of Biomedical Informatics, vol. 69, pp. 203-217,
2017.

[7] V. Batanović, N. Ljubešić, T. Samardžić, “SETimes.SR – A Reference
Training Corpus of Serbian”, Conference on Language Technologies
& Digital Humanities, Ljubljana, Slovenia, pp. 11-17, 2018.

[8] N. Ljubešić, F. Klubička, “{bs,hr,sr}WaC - Web Corpora of Bosnian,
Croatian and Serbian”, Proceedings of the 9th Web as Corpus
Workshop (WaC-9), Gothenburg, Sveden, pp. 29-35, April, 26. 2014.

[9] MULTEXT-East,
https://www.clarin.si/repository/xmlui/handle/11356/1041,
10.06.2021.

[10] ReLDI-NormTagNER-sr 2.1,
https://www.clarin.si/repository/xmlui/handle/11356/1240,
05.06.2021.

[11] Syntax tree generator, http://mshang.ca/syntree/, 26.07.2021.
[12] phpSyntaxTree, http://www.tycho.iel.unicamp.br/phpsyntaxtree/?,

26.07.2021.
[13] TreeForm, https://sourceforge.net/projects/treeform/, 26.07.2021.
[14] Trees, https://www.ling.upenn.edu/~kroch/gifdir/Trees3-

animation.GIF, 27.07.2021.
[15] Linguistic Tree Constructor,

https://ltc.sourceforge.io/screenshots.html, 27.07.2021.
[16] S. Bird, E. Klein, E. Loper, Natural Language Processing with Python,

Sebastopol, USA, O'Reilly Media, 2009

Fig. 8. Drawing syntax tree using canvas

RTI1.4 Page 5 of 5

Abstract—Professional men’s tennis is a demanding sport

which greatly benefits from various approaches to performance

analysis. More specifically, a complex network theory can be

used to model and explain the dynamics of players and

tournaments, based on the recorded matches. In this paper,

played matches are used to model a social interaction between

players. Several undirected weighted networks are constructed

to model the ATP tour matches from 2018 to 2020. Moreover, the

three most dominant players on the tour (the “Big Three”) were

observed and analyzed using ego networks approach. The chosen

time frame further allowed for the exploration of impact of

COVID-19 on the dynamics of the ATP tour. Different network

properties were explored, such as small world phenomenon,

core-periphery model applicability, community structure, and

the rich club phenomenon. Our results based on network theory

approach showed that analyzed networks expose similar

topological properties, despite the lower numbers of tournaments

held in the year 2020.

Index Terms—collaboration network analysis; community

detection; ego networks; men’s tennis; network modelling.

I. INTRODUCTION

Computational analysis of the results of sports

competitions, as well as the performance of teams and

individual athletes, has long been present in various sports.

The development of data science and artificial intelligence, as

well as the possibility of processing large amounts of data,

have enabled new approaches to analyze the performance of

both teams and individual players. In addition to traditional

statistical methods, new methods have been developed, such

as collaboration analysis and various prediction techniques.

Several methods based on network science were

successfully applied to the analysis of team performance in

collective sports, such as football [1][2], basketball [3], and

water polo [4]. Furthermore, applications in individual sports

are known, such as men's [5][6][7] and women's tennis [8],

boxing [9], chess [10], cricket [11], etc. The goal of this paper

is to further explore the usage of complex network analysis

methodology in the field of men’s tennis.

Balša Knežević is with the University of Belgrade - School of Electrical

Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
balsa.knezevic@etf.bg.ac.rs).

Miloš Obradović is with the University of Belgrade - School of Electrical

Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
miobra@etf.bg.ac.rs).

Predrag Obradović is with the University of Belgrade - School of

Electrical Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia
(e-mail: predrag.obradovic@etf.bg.ac.rs).

Marko Mišić is with the University of Belgrade - School of Electrical

Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
marko.misic@etf.bg.ac.rs).

The world of tennis tournaments is a complex system that

consists mainly of players, the tournaments they play and the

matches they have played in those tournaments. Inherently,

such a system is very convenient to model with an appropriate

collaboration network. Most often, such a system is modeled

by players representing the nodes of the network, while the

matches that the players play are in some way depicted by the

edges in the network.

In this paper, the state of men’s professional tennis in the

three years from 2018 to 2020 is modeled and analyzed.

Similar analyses have already been done in the past for men’s

tennis in singles [5][7] and doubles [6]. In the meantime, great

changes have taken place in the world of tennis. That

primarily refers to more than a decade of domination of tennis

players from the so-called "Big Three" to which Roger

Federer, Rafael Nadal, and Novak Djokovic belong.

Moreover, the COVID-19 virus pandemic affected the holding

of tournaments in 2020, while tennis tournaments in 2018 and

2019 took place regularly. This allowed for comparative

analysis and additional remarks on the impact of the COVID-

19 virus pandemic. Therefore, various research methods have

been applied in the paper, such as quantitative and qualitative

analysis of the collaboration network, community detection,

analysis of ego networks of members of the "Big Three", data

visualization, etc.

The paper is divided into several sections. The second

section describes the studied data sets and provides an

overview of the used methodology. The third section presents

the results of the research which are then discussed.

Appropriate quantitative and qualitative analyses of the data,

as well as the produced visualizations, are given. The last

section provides guidelines for future work and a brief

conclusion.

II. DATA SETS AND METHODOLOGY OF ANALYSIS

This section presents the primary dataset and

transformations performed on it in order to construct the

dataset used for analysis. Furthermore, this section contains

the methodology of analysis.

A. Data sets

This paper analyzes the results of men’s singles matches

played on the ATP tour in the period from 2018 to 2020.

Although data from earlier years are available, this timeframe

was chosen with the intent to include years 2018 and 2019

which are two consecutive years with regularly held

tournament seasons, and the year 2020 which was influenced

by the epidemic of COVID-19 disease. Thus, it is possible to

Modeling the ATP tour matches:

A social networks analysis approach

Balša Knežević, Miloš Obradović, Predrag Obradović, and Marko Mišić, Member, IEEE

RTI1.5 Page 1 of 5

mailto:balsa.knezevic@etf.bg.ac.rs
mailto:miobra@etf.bg.ac.rs
mailto:predrag.obradovic@etf.bg.ac.rs
mailto:marko.misic@etf.bg.ac.rs

determine the influence of pandemics, as the dataset includes

both the influenced data points and the two years of regular

tennis seasons used as reference points.

The match data was taken on 12/22/2020 from a repository

maintained by Jeff Sackman [12] and forms the primary data

set for analysis. At the time of analysis, the tennis season for

2020 was completed. The primary data set consists of files

containing data on matches in singles competition in the

specified period, a list of all players ever ranked on the ATP

list, data on the ranking of active tennis players on the ATP

list in the period from 2010 to 2020. Match data contains

information about the tournament, players, match results with

statistics, and the performance of both players during the

match. According to the author, the primary data set is largely

refined and complete, but there may be certain inconsistencies

or incompleteness where the data was not available.

The primary data set contains data on 7117 matches in the

specified period. In addition, the data set contains data on

54,975 players who at some point during the observed period

had at least 1 point on the ATP list. If several players have the

same number of points, then they can share the same ranking

on the ATP list, depending on other parameters.

The secondary data set was formed based on the primary

dataset, as a refined and cleaned version of it. The data

cleaning was performed according to the needs and goals of

the research. During the process of cleaning and refinement,

some data not necessary for the research itself was

intentionally omitted, such as data on players who did not

play any matches in the observed period, certain contradictory

data, as well as redundant information (columns) that were not

used in the analysis. The final secondary data set included

data on 7117 matches, as well as data on 581 players.

B. Methodology of analysis

Firstly, a thorough statistical analysis of the dataset was

conducted. Analyzed properties include the average number

of tennis matches in certain years, the average number of

tournaments in which tennis players participate, and the

ranking of tennis players depending on the number of matches

or tournaments played. Most interesting results are presented

in the following section. Following the statistical analysis, the

refined data set of tennis players and their mutual matches

were used to create multiple collaboration networks. These

networks were then further studied using methods of complex

network theory.

Tennis tournaments are grouped in a season that lasts for a

whole year. Therefore, three independent networks were

constructed, each holding data for a specific year (N-18, N-19,

N-20). Additionally, to allow the analysis of the whole data

set, the three networks were aggregated into N-T. The four

networks together are referred to as N-series networks.

As per common practice in the field of social network

analysis, the network is represented through a set of nodes

that describe the actors within the social network and the

edges that represent social relations. In the case of networks

used in this paper, the nodes of the network are tennis players

who played at least one official ATP match in the analyzed

period. The two tennis players are connected if they have

played at least one official ATP match. The weight of the

edge represents the number of matches that the tennis players

played with each other. The networks are undirected.

In addition to networks representing all players and

matches, the ego networks of the members of the "Big Three"

were constructed for each year. These consist of prominent

ego nodes, their direct connections with the neighbors, as well

as the mutual connections of the neighbors. Furthermore,

these three ego networks were unified, and then aggregated

They were used to analyze the core-periphery property and the

topology of the core of the N-series networks.

Community detection was performed by the Louvain

method over the entire network, as well as over the aggregated

ego network. For this purpose, a set of filtered and reduced

networks was constructed. Clustering strength was evaluated,

and the rich club phenomenon was examined.

Python programming language was used to collect and

refine data, model the network, and calculate specific metrics

using the NetworkX package [13] for network analysis. Gephi

[14] was used to visualize and determine network metrics.

III. RESULTS

This section presents the results of the research. The first

subsection explores the basic properties of N-series networks,

while the rest explores the derived ego networks and

community detection.

A. Basic properties of N-series networks

A statistical analysis of networks N-18, N-19, N-20, and N-

T was conducted. Basic quantifiable features of those

networks are presented in Table 1. As expected, the number of

tournaments and matches held in 2020 is significantly lower

due to the pandemic. This is further reflected in the weighted

and unweighted degrees of nodes. However, looking only at

the statistical data does not give the whole picture, as it would

lead one to believe that year 2020 was significantly different

from the previous two years. Only after applying the complex

network theory methods discussed below one can give a

proper conclusion about the impact of COVID-19 on the

dynamics of the observed data sets.

TABLE I

METRICS OF CONSTRUCTED N-SERIES NETWORKS

 N-18 N-19 N-20 N-T

Players (nodes) 419 364 345 581

Edges 2489 2378 1325 5330

Matches 2974 2696 1447 7117

Tournaments total 138 123 67 328

Tournaments hard surface 81 80 46 207

Tournaments clay surface 47 34 20 101

Tournaments grass surface 10 9 1 20

Avg. weighted degree 13.79 15.28 8.39 24.50

Avg. unweighted degree 11.88 13.07 7.68 18.35

Network density 0.03 0.04 0.02 0.03

Avg. shortest path length 3.13 3.04 3.18 3.23

Diameter 11 9 9 10

Avg. clustering coefficient 0.17 0.19 0.14 0.26

RTI1.5 Page 2 of 5

Networks N-18, N-19, and N-20 have an exceptionally low

density and a relatively low average shortest path length.

Given the low average local clustering coefficient, the

networks do not express the small-world property. This is in

contrast with previous works in the field [15], but the

discrepancies come from a completely different network

model. These observations also stand for the aggregated

network N-T, as the aggregation does not significantly

increase the density nor strengthen the clustering.

Another interesting observation can be made about the

average weighted and unweighted degrees. As shown in Table

1, the relative difference between weighted and unweighted

degrees is small for networks N-18, N-19, and N-20. This

shows that an average pair of tennis players rarely meet more

than one time per season. Similarly, in the aggregate network

N-T, the annual expected number of matches played by a pair

of players is lower than 2. Given the bracket organization of

tennis tournaments and loser-go-home policy, only the best

players are expected to play multiple matches in a tournament.

This leads to the probability of two players meeting in a

tournament being quite low, even if they both play in the

tournament. In addition, a low annual number of tournaments

leads to a low number of annual matches and further

decreases the possibility of two players meeting.

A further discussion on this topic can be made when

tournament seeding is taken into consideration. The

probability of the first and second seed in a tournament gets

further artificially lowered, as they are seeded in opposite

sides of the bracket and are unable to meet before the finals. If

a pair of players is consistently seeded with the top two seeds,

this can lead to a measurable decrease in the weight of the

edge connecting them.

B. Analysis of ego networks

Looking only at the average number of matches played

does not show the whole picture and unravel the true topology

of the constructed networks. Therefore, a distribution of the

number of matches played during the observed period has

been calculated and is shown in Fig. 1. As can be seen, many

players have only played one or two matches and are thus

very isolated, suggesting a core-periphery topology.

Fig. 1. Distribution of the number of matches played during the three years

from 2018 to 2020. The distribution largely resembles a Pareto distribution.

Fig. 2. EGO-T, a unified ego network of the “Big Three” for the period from

2018 to 2020. The size of the node represents weighted node degree and

nodes are colored based on clustering.

As stated in the section about methodology, to check if N-

18, N-19, N-20, and N-T networks follow the core-periphery

model and unravel the topology of the cores of specified

networks, several ego networks centered around the members

of “Big Three” were constructed. Annual ego networks of

Djokovic, Nadal, and Federer were then unified into EGO-18,

EGO-19, and EGO-20. Together with these ego networks,

their aggregated network EGO-T, shown in Fig. 2, was built.

Clustering the EGO-T network using the Louvain method

[16] and tuning the resolution to give 3 clusters reveals a very

interesting phenomenon. The original ego nodes bind stronger

to some of the other nodes in the network than between

themselves. This is in concert with the aforementioned

observation about the bracket system and seeding principles

influencing the edge weights on the very top of the ATP list.

Exploring the number of nodes and edges of N-series

networks included in EGO-series networks can help us

explore the properties of the core of N series networks. These

statistics are therefore shown in Table 2.

TABLE II

METRICS OF EGO-SERIES NETWORKS

 EGO-18 EGO-19 EGO-20 EGO-T

Nodes 81 88 57 136

Nodes covered 19.33% 24.17% 16.50% 23.4%

Edges 691 744 202 2563

Edges covered 27.76% 31.28% 15.24% 48.08%

Given the percentage of all players and matches included in

EGO-series networks, it is obvious that even EGO-T which

aggregates other EGO networks and enhances the core

property can not be considered a core by itself. Further

exploring this topic, the Rombach core finding algorithm [17]

was applied to find cores of N-18, N-19, N-20, and N-T,

giving cores with 234, 200, 193, and 315 players,

respectively. These cores are much larger than EGO series

networks and include most of the players.

However, a remark has to be made about the EGO-T

network and the percentage of matches included in it. Even

though EGO-T is more than two times smaller than the core

of N-T, it includes 48.08% of all matches recorded in N-T,

RTI1.5 Page 3 of 5

which is an astounding amount. This means that matches

between the players from EGO-T represent nearly half of all

the ATP matches played from 2018 and 2020 and could be

used to study some phenomena on a smaller, but

representative, group of players, without drastically

compromising the number of matches included in the data.

C. Community detection and the rich club phenomenon

To discover a more fine-grained structure in the constructed

networks, in addition to exploring network cores, the Louvain

method was used once again to find communities in N-18, N-

19, N-20, and N-T. Before running the Louvain method, all

nodes with degrees lower than 3 were removed from N-18, N-

19, and N-20 to avoid the formation of forced and unnatural

clusters due to modularity optimization. Characteristics of

these reduced networks, aptly named R-18, R-19, and R-20 (R

standing for “reduced”), are shown in Table 3. Moreover, a

similar procedure was applied to N-T, removing all players

with less than 5 matches during the three years, giving us R-T,

a reduced network of total aggregated data.

TABLE III

METRICS OF R SERIES (REDUCED) NETWORKS

 R-18 R-19 R-20 R-T

Nodes 244 203 181 287

Nodes retained 58.23% 55.77% 52.46% 49.40%

Edges 2292 2190 1159 4889

Edges retained 92.09% 92.09% 87.47% 91.73%

Communities 9 6 8 7

Avg. clustering coeff. 0.22 0.24 0.18 0.32

The process of node removal is validated by looking at the

percentage of nodes and edges retained in the reduced

networks. As we can see in Table 3, 49.40% of players played

91.73% of matches during the observed three-year period.

This phenomenon can also be seen in Figure 1. As the

distribution of the number of matches loosely follows a Pareto

distribution, it is to be expected that a rich-club phenomenon

can express itself when considering the number of matches as

“wealth”. This is somewhat validated by looking at EGO-T,

as it consists of a small group of players which bind strongly

to each other and monopolize the number of matches over the

observed period.

Communities formed by the Louvain modularity clustering

are grouped by average rating during the period. This is to be

expected, as players of similar ratings choose to play and

qualify for the same class of tournaments and are more likely

to meet each other. However, the clustering is still not

strongly expressed, as can be seen from the average local

clustering coefficients.

IV. CONCLUSION

Studying interactions of men’s tennis players proved to be

interesting in several aspects. Motivated by the available data,

several undirected weighted networks with node metadata

were constructed, analyzed, and characterized and multiple

common phenomena in the field of complex network theory

were explored. Those include small world phenomenon, core-

periphery model applicability, community detection, and the

rich club phenomenon. In addition, the authors’ own

experience with the topic helped explain many of the observed

properties and the given explanations are one of the biggest

results of this paper, as they give a much better understanding

of the dynamics of men’s tennis and are a result of social

network analysis and network theory approach to the problem.

In addition, provided network models clearly show an

impact of the COVID-19 pandemic on the tennis world,

through a smaller number of matches and participants.

However, the network theory methodology applied in this

paper also shows that the topological properties of the data

(such as clustering properties, rich club and small-world

phenomena, core-periphery property) stay largely the same,

which could not be inhered by naive statistical analysis of the

primary data set.

This paper and the constructed networks form a strong

basis for further exploration of the topic, including the

analysis of mixing patterns in the data depending on the

ratings of players, geographical locations of tournaments,

affiliations of players, etc. Furthermore, the data in network

form is much more suitable for solving some regularly asked

questions in the field, such as ranking and match outcome

prediction using graph convolutional networks or graph

attention models. Lastly, the provided networks are an ideal

model for the problem of choosing the representatives of the

international tennis community, touching upon the problem of

choosing the dominating set of the graph.

ACKNOWLEDGMENT

This work has been partially funded by the Ministry of

Education, Science, and Technological Development of the

Republic of Serbia. Grant numbers III44009 and TR32047.

REFERENCES

[1] T. Grund, “Network structure and team performance: The case of
English Premier League soccer teams”, Social Networks, 34(4), pp.682-

690, 2012.

[2] J. Gama, M. Couceiro, G. Dias, V. Vaz, “Small-world networks in
professional football: conceptual model and data”, European Journal of

Human Movement, 35, 85-113, 2015.

[3] F. M. Clemente, F. M. L. Martins, D. Kalamaras, R. S. Mendes.
“Network analysis in basketball: Inspecting the prominent players using

centrality metrics”, Journal of Physical Education and Sport, 15(2),

212, 2015.
[4] P. Passos, K. Davids, D. Araújo, N. Paz, J. Minguéns, J. Mendes,

“Networks as a novel tool for studying team ball sports as complex

social systems”, Journal of Science and Medicine in Sport, 14(2), 170-
176, 2011.

[5] F. Radicchi, “Who is the best player ever? A complex network analysis

of the history of professional tennis”, PloS one, 6(2), e17249, 2011.

[6] K. Breznik, “Revealing the best doubles teams and players in tennis

history”, International Journal of Performance Analysis in Sport, 15(3),
1213-1226, 2015.

[7] U. Michieli, “Complex Network Analysis of Men Single ATP Tennis

Matches”, arXiv preprint arXiv:1804.08138, 2018.
[8] M. Kostić, D. Drašković, “Complex Network Analysis of Women's

Singles Tennis Matches”, Telecommunications Forum (TELFOR),

Belgrade, Serbia pp. 1-4, IEEE, 2020.
[9] A. G. Tennant, C. M. Smith, J. E. Chen C, “Who was the greatest of all-

time? A historical analysis by a complex network of professional

boxing”, Journal of Complex Networks, 8(1), cnaa009, 2020.

RTI1.5 Page 4 of 5

[10] N. Almeira, A. L. Schaigorodsky, J. I. Perotti, O. V. Billoni, “Structure

constrained by metadata in networks of chess players”, Scientific
reports, 7(1), 1-10, 2017.

[11] S. Mukherjee, “Identifying the greatest team and captain—A complex

network approach to cricket matches”, Physica A: Statistical Mechanics
and its Applications, 391(23), 6066-6076, 2012.

[12] J. Sackmann, Repository tennis_atp, available on:

https://github.com/JeffSackmann, accessed: 22.12.2020.
[13] A. A. Hagberg, D. A. Schult, P. J. Swart, “Exploring network structure,

dynamics, and function using NetworkX”, Proceedings of the 7th

Python in Science Conference (SciPy2008), Pasadena, CA USA, pp.
11–15, August, 2008.

[14] M. Bastian, S. Heymann, M. Jacomy, (2009, March). “Gephi: an open

source software for exploring and manipulating networks”, Proceedings

of the International AAAI Conference on Web and Social Media, vol. 3,

no. 1, 2009.
[15] H. Situngkir, “Small world network of athletes: Graph representation of

the world professional tennis player”, Available at SSRN 1001917,

2007.
[16] V. D. Blondel, J. L. Guillaume, R. Lambiotte, E. Lefebvre, “Fast

unfolding of communities in large networks”, Journal of statistical

mechanics: theory and experiment, (10), P10008, 2008.
[17] M. P. Rombach, M. A. Porter, J. H. Fowler, P. J. Mucha, “Core-

periphery structure in networks”, SIAM Journal on Applied

mathematics, 74(1), 167-190, 2014.

RTI1.5 Page 5 of 5

https://github.com/JeffSackmann

Abstract - This paper aims to examine and compare the file
system capabilities of container virtualization and the native
host. Different virtualization categories are mentioned with a
focus on OS level types. We have described the importance of
container virtualization and its contribution to virtualization
popularization. Also, the paper contains a detailed description of
the Docker container-based virtualization, its mode of operation,
as well as the advantages and disadvantages it possesses. Since
the main purpose of this work is to measure the host and Docker
file system throughput, one of the best open-source benchmarks
is chosen and presented - FileBench, through which all tests were
performed. With a practical example, we have shown the file
system performance comparisons considering Docker containers
and host physical machine.

Keywords - Docker; containers; virtualization; benchmark;
FileBench; file system; performance; comparison.

I. INTRODUCTION

There is rapid development in the IT industry, while
hardware and software are changing daily. Hardware
development is accompanied by software solutions that aim to
make the most efficient use of performance. We strive for
solutions that will meet today's standards, asking ourselves
what the best use is and how to optimize the available
resources so that the requirements and user needs are met.

Some of the most important characteristics in hardware
manufacturing are the development costs and time [1]. The
above brings us to one of the indispensable topics of today in
the IT world - virtualization.

The question is whether virtualization is a better solution
and how cost-effective it is, whether it is possible to achieve
the desired results with virtualization, and what the limitations
are.

There are several varieties of virtualization types, and it can
be said for all of these varieties to be usable, with some being
more simplified, that is, less decomposed than others. One of

Borislav Đorđević – Institute Mihailo Pupin, Volgina 15, 11000 Belgrade,
Serbia, (borislav.djordjevic@pupin.rs)

Darko Gojak – VISER, School of Electrical and Computer Engineering of
Applied Studies, Belgrade, Serbia (darkogojak@gmail.com)

Nikola Davidović – University of East Sarajevo, Faculty of Electrical
Engineering, Vuka Karadzica 30, 71123 East Sarajevo, RS, BiH,
(nikola.davidovic@etf.unssa.rs.ba)

Valentina Timčenko - Institute Mihailo Pupin, School of Electrical
Engineering, Belgrade, Serbia (valentina.timcenko@pupin.rs)

the variations is that virtualization can be divided into eight
types: hardware virtualization, network virtualization, storage
virtualization, memory virtualization, software virtualization,
OS level virtualization, data virtualization, and desktop
virtualization.

The type of virtualization covered in this paper is "OS level
virtualization", whose instances are sometimes called
containers. One of the most common associations when
mentioning container instances is the well-known Docker [2].
In this paper, the Docker container’s file system is examined
and compared with the host file system performance.

As the popularity of container virtualization has been
growing over time, so have questions about the performance
of this type of virtualization. It is hard to talk about container
virtualization without mentioning the increasingly prevalent
Docker. The ease of installation and use, as well as simplicity
of containers management, made Docker a good candidate for
file system testing. Another benefit of using it is that Docker
containers are lightweight, time savers (it takes less than a
minute to build one instance) and besides that, they are
consuming a small amount of disk space, so those instances
will not affect the host significantly.

Thus, in this paper, the response of the file system of the
native operating system and Docker container-based
virtualization was researched, and then a comparison of the
obtained results was made.

II. RELATED WORK, OBJECTIVE, AND MOTIVATION

As hardware is developing fast today, in terms of storage
size, its response speed, as well as processing power, there is
an inevitable question about the efficient use of physical
machines, which are in most cases underused, or their full
potential is not reached [3]. In this regard, scientific research
deals with the consideration of further efficiency
enhancements possibilities and the mentioned issues.

There is a growing debate about whether virtual solutions
are always better and whether they can be expected to largely
compete with physical machines [4], [5]. As a big part of the
hardware resources in many cases remain unused, there is a
lot of room left for the possibility of implementing virtual
instances and consideration of the most optimal use.

As the main goal of this paper is to compare the
performance of the file systems, with equal settings and the
same conditions of the benchmark used for host and Docker

File system performance comparison of native
operating system and Docker container-based

virtualization

Borislav Đorđević, Member, IEEE, Darko Gojak, Nikola Davidović and Valentina Timčenko,
Member, IEEE

RTI2.1 Page 1 of 6

containers, we resorted to the method of comparative analysis
through FileBench workloads, where four were selected,
namely: fileserver, webserver, varmail and randomfileaccess.
In our opinion, these are some of the best options for file
systems workload testing procedures.

After setting the hypothesis, where it was expected that the
physical machine dominates in all fields of given loads
comparing to the containers, we proceeded with the
application of the experimental method and obtained results
that fully justified the assumptions. Based on the comparative
analysis method, the obtained results confirmed the initial
estimates and expectations, which is proved through the given
equations as well as through workloads.

For better understanding and a clearer picture of the
container's service capacity, measurements were also
performed by increasing the number of Docker instances that
worked in parallel, starting from one, until reaching four
instances, where all of those were used simultaneously. The
decrease of their power was observed and examined.

III. HOST OS AND DOCKER

To install the Ubuntu 20.04 operating system on the host, in
this case with hardware characteristics shown in Tables 1 and
2, 1024 MiB of RAM is required at least. With Desktop
image, which is the most common, there is the ability to try
Ubuntu without changing the current computer system. There
is also a Server install image that can be only permanently
installed on the machine, but without a graphical user
interface.

Experienced users are increasingly opting for Ubuntu when
it comes to container operations. We can say that the most
important item for security, performance, and quality is the
Linux kernel, which always has the latest versions of the
kernel accompanied by up-to-date security features. All of the
above-mentioned is the reason why the world's largest cloud
operators opt for Ubuntu operating system to run their
containers [6].

Most users will agree and say that Docker became
synonymous with container technology, as it had the greatest
impact on popularization. But container technology is not a
new term, it has been built into Linux in LXC form for more
than ten years, and similar virtualization at the operational
level systems was offered by: FreeBSD jails, AIX Workload
Partitions, and Solaris Containers [7].

Unlike hypervisor virtualization, container virtualization
does not have a hypervisor that would be used as a layer of
abstraction, isolation of operating systems and applications
from the host operating system. There are two types of
hypervisors: type 1, which is mounted directly on the
hardware, whereas, on the other hand, we can say that the
Docker engine is like type 2, which depends on the host
operating system, where the Docker container would be in the
virtual machine role (Figure 1) [8].

Fig. 1. Docker container-based virtualization

There is a belief that container virtualization is less secure
compared with hypervisor virtualization because if
weaknesses can be found in the host's kernel on which the
containers are located, it could allow intrusion into the
containers. The same can be said for the hypervisor, but since
the hypervisor provides far less functionality than the Linux
kernel (which usually implements file systems, networking,
application process controls, etc.) it leaves much less space for
attack. In recent years, great efforts have been made to
develop software to improve container security. For example,
Docker and other container systems now include a signing
infrastructure that allows administrators to sign container
images to prevent the deployment of unreliable containers [9].

Below is a simple description of docker client-server
architecture. Docker client communicates through REST API,
over network interface or UNIX sockets with Docker daemon
which does building, running and distributing containers
(Figure 2) [10]. It is not mandatory that Docker daemon has to
run on the same operating system as the Docker client, which
can also be connected to a remote daemon [11].

Fig. 2. Docker architecture

RTI2.1 Page 2 of 6

Some Linux distributions are designed for running
containers and Docker such as Project Atomic [12], Photon
OS, RancherOS, etc. [13]. Since 2016, Docker containers
have also been able to run on Windows operating system and
managed from any Docker client or through Microsoft
PowerShell [14].

Docker can also work on popular cloud platforms [15],
including Amazon Web Services, Google Compute Engine,
Microsoft Azure, Rackspace, etc. [16].

IV. HYPOTHESIS OF EXPECTED BEHAVIOUR

To make it easier to understand how the results were
obtained, the following formulas were derived:

SWRWSRRRWKLD TTTTТ (1)

In equation 1, the TWKLD notation stands for the total
processing time for each workload. This is followed by a
random - TRR and a sequential - TSR reading time, while the
TRW notation indicates the random write time, and TSW stands
for sequential write time. The following formula represents
the expected file system access time for each individual
workload:

HKJFBFLMETADIRW TTTTTTТ (2)

The TW notation above represents the total time required to
complete all operations on the ongoing workload. The
following notations represent the time required to complete all
operations related to: directory - TDIR, metadata - TMETA, free
list - TFL, file block - TFB, journaling - TFJ and house-keeping
- THK. There are two candidates for file system performances
that are covered in this paper and they are:

1. native HostOS
2. native HostOS + Docker engine + containers

1. The Ubuntu 20.04 operating system is installed on the
host with its default file system, and since the Docker
containers are running on it, the native host will play a major
role in terms of file system performance. For a better
comparison with the host, Ubuntu image is pulled and run on
all four container instances. Thus, benchmark and the host file
system characteristics depend on the time needed to process
benchmark-generated workload, and are noted in the
following formula as TW:

)_,(FShOSBenchfnHostTW (3)

2. The docker engine has the biggest impact on
performance after the host and its file system where everything
takes place. As mentioned, HostOS, Docker engine, and
containers run on the host file system, except for Docker
volumes and self-storage. The benchmark, the host file system
characteristics, and Docker engine mapping depend on the

time needed to process benchmark-generated workload, in the
following formula noted as TW:

)_,_,(FShOSengineDBenchfDOCKERTW (4)

The obtained performance results of the file system of the host
and Docker container were predicted by the given formulas.
So, as expected, the host was in the lead through all
workloads, which was confirmed by the calculation from
equation 3. There are small differences in throughput in all
segments between the single running container and the host.
This lag in the performance of the container was caused by the
Docker engine, which was also confirmed by equation 4.
After monitoring the throughput of these instances, the
following conclusion was made:

Single Docker container is slightly behind the host
performances by all measurements, while for any increase of
containers running in parallel by one instance, the
deterioration in throughput power should be expected.

V. TEST CONFIGURATION AND BENCHMARK APPLICATION

There are various tools, benchmarks that can measure
performance in order to examine the capabilities of physical
machines as well as the capabilities of virtual solutions. Some
benchmark tools are open-source, while others are
commercial solutions. Depending on the purpose of the tests,
we can opt for one of the most adequate tools. For these
measurements, a FileBench is chosen as one of the most
suitable benchmarks.

FileBench is a storage and file system benchmark. It uses
its own Workload Model Language (WML) that can allow I/O
specification of application behavior. It is one of the best-
known open-source tools, which, unlike most of the tools that
mainly rely on predefined workloads (which cannot be
changed in most cases), allows workload modifications as
well as adaptation to the specificities of the purpose for which
the testing is performed.

Installing a FileBench benchmark is quite simple after
downloading the software package. However, on Ubuntu, it
requires a few more commands than on Centos operating
system, for instance, where it is possible to install it with a
simple "yum install filebench" command. Additionally, there
is a difference in the installation of the benchmark between
two versions covered in this paper. In the first part of the
installation, as the configuration files are not included in the
repo, they have to be created. Therefore, for the last stable
version, it is necessary to run the following commands if they
are not installed, respectively: libtoolize, aclocal, autoheader,
automake, --add-missing, autoconf.

The second part of the installation requires the installed
gcc, flex and bison in order to run FileBench [17]. This part is
the same as in the 1.5-alpha3 version, except that in this
version it is the only step and it involves running the
following commands, respectively: ./configure, make, make
install.

RTI2.1 Page 3 of 6

In order to measure as accurately as possible and to obtain
as better results as possible, Ubuntu 20.04 operating system
was installed on the host (hardware shown in Tables 1 and 2)
only for this file system test purpose, which after the
installation of the benchmark had no other applications that
could disrupt the operation of this tool in any way. Also,
containers had nothing but installed FileBench.

After everything is set, there is still one thing left to do and
that is disabling ASLR (address space layout randomization)
by changing the value of randomize_va_space to “0” (zero),
otherwise, the workloads will be blocked in the stage of
running.

TABLE I
HARDWARE CONFIGURATION OF THE HOST

Component Characteristics
Processor AMD Ryzen 5 3600X, 3.8GHz –

4.4GHz, 6 Core, 12 Thread
Cache L1 Cache 384KB, L2 Cache 3MB, L3

Cache 32MB
Memory 16Gb DDR4, 3200MHz
SSD Kingston A2000 SA2000M8/500GB
Motherboard GIGABYTE B450M DS3H

TABLE II

SSD characteristics

Capacity 500GB
DRAM DDR4
Interface NVMe™ PCIe Gen 3.0 x 4 Lanes
Form factor M.2 2280
NAND 3D TLC
Sequential
Read/Write

up to 2.200/2.000MB/s

Random 4K
Read/Write

up to 180.000/200.000 IOPS

VI. TESTS AND RESULTS

Each measurement was done in three rounds per host and
per each container instance, after which the average value was
taken for results. The obtained measurements of individual
container performances were then compared with the results
obtained while testing the host. The throughput of each
container was observed in cases when only one container
instance was started, when two instances were running in
parallel, and when three and then four containers were
running at the same time.
File system performance tests were conducted on the latest
stable version of FileBench - 1.4.9.1 and 1.5-alpha3 version
where throughput was measured in MB/s. For the purposes of
this experiment, four of the over fifty predefined workloads
were selected. On both versions, the performance of the
filesystem was tested via three workloads that were used to
emulate applications, namely: fileserver, webserver and
varmail. On the last stable version, an additional workload
was included - radnomfileaccess. The following is a brief

description of workloads that were used and covered with
formulas (1) and (2): Fileserver – It mimics the elementary
I/O activity of a file server. It performs a sequence of creating,
deleting, adding, reading, writing, and attribute operations on
a directory tree; Webserver - Mimics elementary I/O activity
of a web server. Produces an open-read-close sequence on
multiple files in a directory tree, plus appends a log file;
Varmail - Imitates elementary I/O activity of a mail server
that saves each e-mail in an isolated file (/var/ mail/server). It
contains a set of multiple threads of the following operations
in a particular directory: create-add-sync, read-add-sync, read,
and delete; Randomfileaccess - Uses random variables that are
user-defined entities, and these entities are formulated by a
random distribution that is used to select a random value that
is returned with each use [18].

It is hard not to mention virtual clusters when Docker
containers are used. Testing could take on a completely
different dimension if any container orchestration platforms
such as Kubernetes were used, where containers would
combine and pool their serving powers [19]. But the purpose
of these tests was to compare the file system performance of
the host and individual container.

The parameters shown in Tables 3 and 5 are set with
default values. The values for the four specified parameters
(number of files - nfiles, average file width, and size -
(meandirwidth, meanfilesize), as well as the number of
threads - nthreads) are the same in both versions of the
benchmark. The time for executing each of the workloads is
set to 60 seconds, which is the default value for most of the
predefined workloads.

TABLE III
PARAMETERS OF THE SOURCE CODE *.F FILES (1.4.9.1 VERSION)

Workload
(runtime 60s)

Fileserver Webserver Varmail RFA

nfiles 10.000 1.000 1.000 10.000
meandirwidth 20 20 1.000.000 20
meanfilesize 128k 16k 16k Random
nthreads 50 100 16 5

TABLE IV
BENCHMARK RESULTS (MB/S), 1.4.9.1 VERSION

Instance Fileserver Webserver Varmail RFA
Host 3866.6 1001.5 187.4 19081.8
1 container 3746.1 962.8 180 18190.1
2 containers 1764.4 695.9 158.3 9438.5
3 containers 1170.5 528.5 137.2 5300.7
4 containers 651.7 458.8 117.2 3809.8

Fig. 3. Fileserver test results from Table 4

RTI2.1 Page 4 of 6

Fig. 4. Webserver test results from Table 4

Fig. 5. Varmail test results from Table 4

Fig. 6. Randomfileaccess test results from Table 4

A. Measurements performed on version 1.4.9.1

The host had better performance in all four categories
which is shown in Table 4. The obtained results were proved
by formulas (3) and (4). Starting with the fileserver
environment, there is a small throughput difference of 3 % in
favor of the host compared to a single container. Then, as
expected, by increasing the number of containers by one, the
serviceability also decreases, so that the performance of the
two running containers drops by more than twice, i.e. 54%.
Performance with three running containers deteriorated by
70% and with four instances the results showed it to be 83%
(Figure 3).

For webserver tests, the results are as follows. The
throughput at the host instance is 4% higher when compared
to a single running container, while for two running containers
that gap is 30%. With three and four containers in running
state, we can see the degradation of 47% and 54%,
respectively (Figure 4).

In the case of varmail environment, the single running
container has lower performances by 4%, two containers by
16%, and three and four containers by 27% and 37%
compared to the host (Figure 5).

The randomfileaccess workload also had poorer container
results, showing performance declines of 5, 51, 72, and 80%
when having 1, 2, 3, and 4 containers in running state,
respectively (Figure 6).

TABLE V
PARAMETERS OF THE SOURCE CODE *.F FILES (1.5-ALPHA3 VERSION)

Workload
(runtime 60s)

Fileserver Webserver Varmail

nfiles 10.000 1.000 1.000
meandirwidth 20 20 1.000.000
meanfilesize 128k 16k 16k
nthreads 50 100 16

TABLE VI
BENCHMARK RESULTS (MB/S), 1.5-ALPHA3 VERSION

Instance Fileserver Webserver Varmail
Host 4072.6 3333.8 163.5
1 container 4007.1 3080.1 133.4
2 containers 1696.7 1563.5 111.2
3 containers 704.6 1160.8 88.5
4 containers 451.4 952.6 76

Fig. 7. Fileserver test results from Table 6

Fig. 8. Webserver test results from Table 6

Fig. 9. Varmail test results from Table 6

RTI2.1 Page 5 of 6

B. Measurements performed on version 1.5-alpha3

Within a FileBench version 1.5-alpha3, the expected results
were obtained, which is verified by formulas (3) and (4). As
well as in the latest stable version the host dominates (Table
6). In the fileserver case, a single container performance does
not significantly differ from the host and it is lower by 2%,
while for two container instances in running state the drop is
much bigger, 58%. For three and four instances it is 83% and
89%, respectively per container (Figure 7).

With webserver workload tests we have a throughput
deterioration comparing to host, namely 8% for a single
container, 53% in the case of two instances, 65% for three
running containers, and 71% per instance in the case of four
containers running (Figure 8).

 As for varmail, the host throughput is higher by 18%
compared to a single container, while for two instances there
is gap of 32% per instance, it is 46% for three instances and
54% for all four containers (Figure 9).

VII. CONCLUSION

According to the shown tests, the host had better
performance in all segments compared to Docker containers
which justifies the hypothesis. During performance
monitoring through all four workloads, a slight differences in
throughput between the host and single container is
noticeable. As we can see in the obtained measurement
results, the increase of the number of container instances
decreases their service power, which also differs from
workload to workload. Those are expected results, and
accordingly, depending on the load, we can determine
whether containers are suitable and if they will meet the
requirements for which container instances were originally
intended.

This is only a small segment in testing the host and Docker
container capabilities, as there are over forty predefined tests
left, as well as many variations of modifying existing and
writing your own workloads that can be processed. Since
FileBench workloads can be easily managed it leaves a lot of
room for future measurements and comparisons with the
results of other benchmarks that are not so flexible in terms of
tests.

Today, it is known that hardware development is
increasingly focusing on multi-core solutions that can process
many instructions in a very short time. That leaves plenty of
room for further processing of power and resources, which is
suitable for the normal and smooth operation of virtual
solutions. Virtualization is not always the answer to
everything, for some purposes virtualization simply does not
achieve the desired results so in that case, the only choice is a
physical machine. But in most cases, security, productivity,
and cost-reducing benefits outweigh all problems, and
therefore Docker virtual solutions and virtualization, in
general, are increasingly gaining in popularity.

ACKNOWLEDGMENT

The work presented in this paper has partially been funded
by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia.

LITERATURE

[1] C. Walls, “Hardware and software development; what’s the cost?,”
2018 [online]:
https://www.embeddedcomputing.com/technology/software-and-
os/hardware-and-software-development-what-s-the-cost

[2] IBM Cloud Team, IBM Cloud. Containers vs. VMs: What’s the
difference? IBM, 2020. [online]:
https://www.ibm.com/cloud/blog/containers-vs-vms

[3] Spiceworks. The 2020 State of Virtualization Technology, 2019.
[online]: https://www.spiceworks.com/marketing/reports/state-of-
virtualization/

[4] K. Thompson, “Hardware vs. Software development: Similarities and
Differences,” Cprime, 2015. [online]:
https://www.cprime.com/resources/blog/hardware-vs-software-
development-similarities-and-differences/

[5] T. Collins, “Virtual servers vs physical servers: Which is best? 10
March,” Atlantech, 2020. [online]:
https://www.atlantech.net/blog/virtual-servers-vs-physical-servers-
which-is-best

[6] Canonical. Why is Ubuntu #1 OS for containers? Ubuntu, 2018.
[online]: https://ubuntu.com/containers

[7] S. Hogg, “Software Containers: Used More Frequently than Most
Realize,”, Networkworkd, 2014 [online]:
https://www.networkworld.com/article/2226996/software-containers--
used-more-frequently-than-most-realize.html

[8] U. Hiwarale, “Anatomy of Docker,” [online]. 2018 Nov [Accessed 24
February 2021]. Available from: https://itnext.io/getting-started-with-
docker-1-b4dc83e64389

[9] P. Rubens, “What are containers and why do we need them?,”, Cio,
2017 [online]: https://www.cio.com/article/2924995/what-are-
containers-and-why-do-you-need-them.html

[10] N. Poulton, Docker Deep Dive, JJNP Consulting Limited, Lean
Publishing. Leanpub book, 2018.

[11] Docker. Docker overview. [online]: https://docs.docker.com/get-
started/overview/#docker-architecture

[12] SP. Kane, K. Matthias, “Atomic hosts,” in Docker: Up and Running.
2nd ed. O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472; 2018.

[13] JM. Scheuermann, “A Comparison of Minimalistic Docker Operating
Systems,” Inovex, 2015. [online]: https://www.inovex.de/blog/docker-a-
comparison-of-minimalistic-operating-systems/

[14] M. Friis, “Build and run your first Docker Windows Server container,”
Docker, 2016. [online]: https://www.docker.com/blog/build-your-first-
docker-windows-server-container/

[15] C. Ward, “The Shortlist of Docker Hosting,” CloudBees, 2016. [online]:
https://www.cloudbees.com/blog/the-shortlist-of-docker-hosting/

[16] J. Turnbull, “Installing Docker,” In The Docker Book. CC BY-NC-ND
3.0; 2018.

[17] G. Amvrosiadis, “FileBench,” GitHub, 2016 [online]:
https://github.com/filebench/filebench

[18] V. Tarasov, “Predefined personalities. [online]. 2016 Jul [Accessed 24
January 2021]. Available from:
https://github.com/filebench/filebench/wiki/Predefined-personalities

[19] IM. Aidan, H. Sayers, “Using a Kubernetes cluster,” in Docker in
Practice. Manning Publications Co. 20 Baldwin Road PO Box 761
Shelter Island, NY 11964; 2016.

RTI2.1 Page 6 of 6

Performance comparison of native host vs. ESXi
hypervisor-based virtualization

Borislav Đorđević, Member, IEEE, Srđan Milenković, Nikola Davidović and Valentina Timčenko, Member,
IEEE

1

Abstract – The main objective of this paper is performance
comparison of hypervisor-based virtualization with VMware
ESXi virtual machines and native host machine. From all
performance classes, for the needs of this research we have chosen
the evaluation of the file system performance. The measurements
are carried out under equivalent conditions and by a unique test
method, using the Filebench software, which guarantees equality
and independence from the impact of hardware and operating
system characteristics. As the base operating system we have used
CentOS 7.7 with the latest updates, while ESXi 6.7 was used as the
hypervisor. Performances are compared for the native host
machine and ESXi server with one, two and three virtual
machines (VM) running simultaneously. We have also analysed
the expected behaviours, verified the assumption with Filebench
testing software, and provided the concluding remarks for this
papers research topic.

Key words – Virtualization; Filebench; Hypervisors; ESXi;

VMware; CentOS; Virtual Machines

I.INTRODUCTION
2

In IT world, the term virtualization refers to the act of
creating a virtual version of something, or it is the process of
creating and running a virtual instance of a computer resource
in a layer abstracted from the actual hardware. It is used to
describe virtual computer hardware platforms, storage devices,
network resources, server infrastructure, etc. We can
experience virtualization in almost all segments of today’s
computer technology. The main idea behind virtualization is a
very simple and came from the corporative approach: the need
to satisfy the increase in the utilization of available hardware
resources, while at the same time reducing the costs of the
infrastructure. Virtualization did exist as a technology even
some 30 years ago, but the hardware of those days could not
exploit the full usage that virtualization brought, so it was
disregarded until progress was made in computer technology
giving to virtualization a new meaning, shaping it to what it
looks today. Nowadays, thanks to this technology it is possible
to run multiple independent operating systems on one physical
server. Some of the benefits that virtualization provides are
primarily related to saving the necessary physical space that
would be needed for the accommodation of the devices and also

1Borislav Đorđević – Institute Mihailo Pupin, Volgina 15, 11000 Belgrade,

Serbia, (borislav.djordjevic@pupin.rs)
Srđan Milenković - School of Electrical and Computer Engineering of

Applied Studies, Vojvode Stepe 283, 11000 Belgrade, Serbia,
(smilenkovic1992@gmail.com)

the electrical energy consumption that would inevitably be used
for powering such devices. Today, the use of virtualization in a
simple way increases server availability and isolation, making
it one of main reasons why these technologies are so popular
[1]. When using these technologies it is important to mention
that the level of hardware utilization of servers without
virtualization is in the range of 15% of its maximum capacity,
while with the use of virtualization technologies the utilization
raises to more than 70%. These technologies however come
with a price, or to be exact, with the retention or even increasing
availability of resources, while it is realistic to expect a
somewhat lower performance of virtualized systems when
compared to the non-virtualized systems, which is the main
topic of this paper.

There are several virtualization types: virtualization of
hardware, software, desktop, data, network, memory, storage,
etc. We are focused on hardware virtualization. Hardware
virtualization implies the use of a hypervisor, a layer that acts
as a mediator between the host and virtual machine, which is
nothing more than a simulated computing environment that
can, but does not have to be equal to the physical environment
that it simulates. In addition to the classification by the location
of the hypervisor layer, the hardware virtualization also
depends on what type of virtualization is provided, and can be
categorized as: full, hardware-assisted, and paravirtualization.

Full (native) virtualization is a virtualization technique that
completely simulates the underlying hardware. Hardware-
assisted virtualization (Intel VT-x or AMD-V) is platform
virtualization approach that enables efficient full virtualization
using help from hardware capabilities, primarily from host
processors. In this situation, the processor simulates hardware
that does not have to be the same as physical. Paravirtualization
is an enhancement of virtualization technology in which a guest
operating system is modified prior to the installation inside a
virtual machine in order to allow all guest OS within the system
to share resources and successfully collaborate, rather than
attempt to emulate an entire hardware environment [2].

The remainder of this paper will be structured as follows.
Section II provides a brief description of the technologies that
are mentioned in the paper and a short review of related work
for this project. Section III provides the description of the

Nikola Davidović – University of East Sarajevo, Faculty of Electrical
Engineering, Vuka Karadzica 30, 71123 East Sarajevo, RS, Bosnia and
Herzegovina, (nikola.davidovic@etf.ues.rs.ba)

Valentina Timčenko - Institute Mihailo Pupin, School of Electrical
Engineering, Belgrade, Serbia, (valentina.timcenko@pupin.rs)

RTI2.2 Page 1 of 6

performance-measuring tool that we have used for this
experiment. In Section IV, we present a short description of the
architecture of the used hypervisor. Section V presents the
hypothesis and methodology used to achieve performance
comparison. In Section VI, we present the test environment and
configuration for the experiment. Test results for our
benchmarks’ tests are presented in Section VII. In Section VIII,
we draw conclusions to the work made in this paper.

II. RELATED WORK AND OBJECTIVE

This paper is primarily devoted to analysis of the
performances of hypervisor-based virtualization with one of the
most commonly used hypervisors. The hypervisor serves as a
layer between the virtual machine’s operating system and the
host’s physical memory, providing data integrity and isolation
of VMs. Thanks to hardware-assisted virtualization which is
accomplished via EPTS (extended page tables, for Intel
chipsets) or RVI (rapid virtualization indexing, for AMD) we
have a large increase of speed compared to software memory
virtualization [3]. The paper considers advantages of using
virtual machines while creating modern network infrastructure;
as well as describes an experiment using common test
environments and programs for measuring and analysis of
hypervisors and their performances. Benchmarking is a popular
approach nowadays for many devices and general I/O
performance analysis, whereas the special attention is put on
the problem of fast input/output support [4-6].

Main contribution of this paper is the examination of the
performances of the native host operating system and
hypervisor-based virtualization of VMware ESXi [7] [8]. As
the technology that was used for this research is relatively new,
there are not many references in literature that research with
similar environments, tools, and test characteristics. The goal
of this paper is to examine the file system performance of the
generated workload through Filebench software tool for: (1)
mail server scenario which is dominated by random read and
random write components; (2) web server scenario where
random read components dominate; (3) file server scenario in
which both random and sequential components are equally
represented; and (4) random file access scenario dominated by
random read component [9].We have set up a model for the file
system performance analysis of the native host and ESXi based
virtual machines. The results of this experiment should give us
a full picture of how the performance of a native machine
compares to the performance of a hypervisor-based virtual
machine.

III. FILEBENCH

Filebench is a software test environment (usually called a
benchmark) used to measure the performance of various parts
of an operating system. What sets Filebench apart from other
benchmarks is the fact that it is equipped with several
predefined workloads, which allows users to easily test their
systems in various forms (most popular forms being a mail
server or a file server) [10]. Presently many benchmarks hard
code the workloads they generate quite rigidly, meaning that a

user can specify some of the basic workload parameters, but
cannot really control the execution flow of the workload in
detail. Filebench gives its users freedom to define workloads
using a Workload Model Language (WML). WML is mainly
composed of four main parts: fileset, process, thread, and
flowop.

A standard Filebench test is executed in two stages: fileset
pre-allocation and a workload execution. First part of any
workload execution is defining a fileset that it uses. A fileset is
a named collection of files and to define it a user must specify
its name, path, number of files, and a few other optional
attributes that can be included in a filesets creation. After
defining a fileset the next step are the processes in WML that
represent real UNIX processes which are created by Filebench
during the test. Every process is made of one or more threads
representing an actual POSIX threads and every thread
executes a loop of flowops. A single flowop is a representation
of a file system operation that is translated to a system call by
Filebench.

The ending of a WML file usually contains one of two “run”
commands (run and psrun) that tell Filebench to allocate the
defined filesets, prepare the required number of UNIX
processes and threads, and start a cycled flowops execution.
After completing a run, Filebench gives a number of different
metrics, where the most important one for the user is operations
per second. This is the total number of executed flowop
instances (in all processes and threads) divided by the time it
took for a full run of the workload. To generate a workload and
start the measurement of a particular part of the system, one
must execute the filebench -f workload.f command.

IV. ESXi HYPERVISOR

VMware ESXi (Elastic Sky X “integrated”) is a type-1
hypervisor developed by VMware for deploying and serving
virtual machines that was made from its predecessor ESX.
Type-1 hypervisors run directly on the host's hardware to
control the given hardware and to manage guest operating
systems, and for this reason they are mainly called bare
metal hypervisors (Figure 1). A guest operating system runs on
another level above the hypervisor.

Fig. 1.Type-1 (bare metal) hypervisor

VMware ESXi is a hypervisor that runs on the host server

hardware without the underlying operating system. ESXi
provides a virtualization layer that abstracts the CPU, storage,

RTI2.2 Page 2 of 6

memory and networking resources of the physical host into
multiple virtual machines. That means that applications
running in virtual machines can access these resources without
direct access to the underlying hardware. VMware refers to the
hypervisor used by VMware ESXi as VMkernel and it receives
requests from virtual machines (as processes that run on top of
it) for resources and presents the requests to the physical
hardware [12-14]. The kernel also provides means for running
all processes on the system, including management
applications and agents as well as virtual machines. It has
control of all hardware devices on the server, and manages
resources for the applications as shown in Figure 2 [15]. The
main processes that run on top of VMkernel are:

 Direct Console User Interface (DCUI) — the low-
level configuration and management interface, accessible
through the console of the server, used primarily for initial
basic configuration.
 The VMM, virtual machine monitor, which is the

process that provides the execution environment for a virtual
machine, as well as a helper process known as VMX. Each
running virtual machine has its own VMM and VMX process.
 Various agents are used to run and enable high-level

VMware Infrastructure management from remote applications.
 The Common Information Model (CIM) system is the

interface that enables hardware-level management from remote
applications via a set of standard APIs.

Fig.2.VMware ESXi architecture

V. HYPOTHESIS OF EXPECTED BEHAVIOUR

Since we are using a Type-1 hypervisor that works directly
on hardware, the total processing time for each workload TW can
be described by the following equation:

TW = TRR + TRS + TWR + TWS (1)

where TRS and TRR represent sequential and random read time

respectively, while TWR and TWS represent random and
sequential write time respectively. For every specific workload
we have an expected access time for the file system which
includes five components as shown in following equation:

TWORKLOAD = TD+TM + TFL+TFB+TJ +THK (2)
where TWORKLOAD represents the overall time for finishing all

operations on the current workload, and TD, TM, TFL, TFB, TJ,

THK represent time needed for completing all operations related
to directory, metadata, free list, file block, journaling and
house-keeping operations in the file system, respectively.

In this study we have a specific situation where there are two
sides which have identical settings of the operating system
(CentOS) and the file system (XFS), used in the performance
testing: (1) Native machine (hostOS) and (2) ESXi +
VMs(guestOS).

1. Native hostOS: The time to process the generated

workload depends on the benchmark interaction with the
hostOS file system and also the characteristic of the file system.

Total time to process the workload, TW(native) is defined as:

TW (native) =f (benchmark, hostOS_FS) (3)

2. ESXi + VMs(guestOS): The time to process the

generated workload (TW(ESXi)) in this case depends on the
benchmark interaction with guestOS file system, the
characteristic of the file system and the virtualization
processing component of the ESXi hypervisor (ESXi_proc) is
as in the following formula:

TW (ESXi) =f (benchmark, guestOS_FS, ESXi_proc) (4)

Since we use the same settings as the native machine for our
virtual machines, the benchmark interaction and characteristics
of the file system on the guest will be the same as the ones on
the native machine. The virtualization processing component
depends on the virtualization type and hypervisor processing as
in the following formula:

ESXi_proc = f (virt_type, hyp_proc) (5)

In the context of virtualization type, ESXi uses full

virtualization, which is further enhanced with one of the
technologies (depending on hosts’ CPU) for hardware assisted
virtualization. In the context of the hypervisor processing it is
important to consider the delay, which represents the time
required for the hypervisor to receive requests from virtual
hardware of a guest OS and forward them to the hosts' hardware
for proccessing. The delay can be explained as following:
virtual machines generate workload, which passes from a VM
through the hypervisor onto the hosts’ hardware. First the
benchmark application generates the workload which is passed
on for further processing to the hypervisor. The second part
happens inside the hypervisor and is defined as the interaction
between guest workload and VM image file. Generated
workload is passed on the hypervisor, which maps it into
requests for VM large image files. Lastly the hypervisor's
mapping process generates input files as requests for real disk
drivers on the hosts’ hardware. The time needed for generating
those requests depends on the hypervisor’s file system and
caching capabilities.

The expected outcome according to formula (3) is that the
native host will perform better than ours ESXi virtual
machines. Virtual machines have a complex data path, formula
(5), where data must pass through guest OS file system and the
hypervisor onto machine hardware. Therefore, it is expected

RTI2.2 Page 3 of 6

that a degradation of the ESXi VM performance will happen
compared to the native host machine, formula (4).

We have investigated a few cases for the this paper: firstly,
the performace of a native host machine, then the performance
of a single ESXi VM running and lastly the performance of
several virtual machine running at the same time. In general,
we expect:

- Native host to perform better when compared to ESXi with one
virtual machine running.

- Running several instances of the ESXi virtual machines,
n*ESXi VMs (n=1,2,3…), should have a significant
performance degradation compared to the native host.

VI. TEST ENVIRONMENT CONFIGURATION

The assumption of an adequate testing is the application of a
single hardware configuration, the same operating system, and
measurement methodology for all test procedures as mentioned
before. The hardware configuration contains all the
components necessary for a modern-day computer, and in this
case, it is a home-based system of the newer generation (Table
1). CentOS version 7.7 is selected as the operating system,
which is currently one of the most popular Linux distribution.

During the installation process we opted for Gnome
graphical interface installation option with essential packages
and programs for a graphical environment. The XFS file system
characteristics and layouts are shown in Table 2. Filebench is a
program designed to measure the performance of file systems
and storages, and it is capable of generating multiple workload
types that simulate environments when using certain
servers/services such as mail, web, file, database, etc. Before
starting tests, we made sure that all available updates were
installed. Each virtual machine was given 4 GB of RAM.

TABLE I

HARDWARE CONFIGURATION OF THE TEST PC

MB Gigabyte B75M-D2V

RAM DDR3 1330 MHz, 16 GB

CPU Intel

Model Pentium G860

Cores 2 /2 threads

Speed 3.00 GHz

Cache(L1,L2,L3) 2x32kB; 2x256kB, 3MB

SSD Samsung SSD 860 EVO

Interface SATA 6Gbps

Capacity 250 GB

OS CentOS 7.7.1908.el7

This benchmark behaviour is controlled using files with the
extension *.f that are written in Workload Model Language,
that can be edited in any text editor. The use for individual
measurements involves putting a command from a terminal
with root privileges using the name of the *.f file as an
argument.

TABLE II
FS LAYOUT

FILE SYSTEM SIZE MOUNT

/DEV/MAPPER/DATA-ROOT 35 GB /

/DEV/SDA1 4 GB SWAP

/DEV/SDA2 1024 MB / BOOT

VII.TESTS AND RESULTS

The focus of this paper was to measure the performance of
hard disks and data-flow in one of the more popular
virtualization systems, especially in cases where several
instances of virtual machines are being used. The main idea
was: as the number of instances increases, there is a significant
drop in performance and this drop is constant on any hardware-
software configuration. Benchmark of the host computer
without virtualization was taken as a reference point for file
system performance in these tests.

A number of modified files of the source code fileserver.f,
webserver. f, randomfileaccess.f and varmail.f were used
during the tests, which are thus testing the files, web and the
mail server environments, respectively. The changes were
taken into consideration when setting the benchmark
parameters in a way to provide as realistic as possible
exploitation conditions. And while the location (/ bench), the
I/O block size (iosize = 1M) and the average size of the add-on
(meanappendsize = 16k) are common denominator for all tests,
the parameters such as the number of files (nfiles), the average
depth of the directory (meandirwidth) the average file size
(meanfilesize), cache and the number of threads (nthreads) are
changed on a case-by-case basis (with * .f files). The defined
settings are retained throughout the entire benchmark test and
are displayed in Table 3. For an easier view in the following
table the name of each benchmark workload has been
abbreviated with their initials (file server (FS), web server
(WS), mail server (VMail) and random file access (RFA).

TABLE III

SETTINGS OF THE SOURCE CODE IN THE *.F FILES

 FS WS VMail RFA

nfiles 10.000 1.000 1.000 10.000

meandirwidth 20 20 1.000.000 20

meanfilesize 16k 16k 16k

nthreads 50 100 16 5

cached false

The duration of each test was 120 seconds, which is also

stated in the *.f files, with the goal of acquiring the most
realistic results. Special attention was paid to keep the OS clean
and the impact of any external subject on system components
was reduced to the minimum. After performing a reference
measurement of the host computer without virtualization, ESXi

RTI2.2 Page 4 of 6

was installed and three virtual machines were generated. Tests
were conducted in a way that one virtual machine was first
started and measured, then two and three machines
simultaneously. From the generated data, the final conclusions
were made by calculating the average values of the results.

TABLE IV

BENCHMARK RESULTS (MB/S)

 FS WS VMail RFA

Host 401.6 127.9 51.4 7379.5

1VM 230.4 67.6 45.7 3646.0

2VM 122.3 42.8 24.4 2126.9

3VM 78.2 24.9 14.8 1498.6

Table 4 shows the data we collected from workloads running

in the test environment (again we used the same abbreviations
like in Table 3). Data from Table 4 are shown on the next few
figures, with remarks on the performance displayed in each. All

of the measures shown in the following figures are displayed in
megabytes per second (MB/s).

Fig. 3. Webserver.f workload test results

The characteristics of the webserver.f workload with our
specification (100 threads) is that random reads dominate, there
are some random write components, while the sequential
components are not present. Here we observe that native host
OS performs much better than in the case with one instance of
the ESXi virtual machine (Figure 3). In the case of this
workload, instantiation of more than one ESXi virtual machine
brings some performance degradation but not significant.

Fig. 4. Fileserver.f workload test results

The characteristics of the fileserver.f workload with fifty
threads, are that both random and the sequential components
dominate, but there is also a large number of I/O requests and
much heavier data flow. A general notion is that, in the case
for one virtual machine instance, the ESXi is significantly
weaker than in the case of the native host OS. In the case of
fileserver.f workload, when two virtual machines are
instanced, the performance is further degraded by
approximately the same amount as in the previous case (with
one virtual machine). Instancing a third virtual machine brings
very little performance degradation (Figure 4).

Fig. 5. Varmail.f workload test results

The characteristics of the varmail.f workload with our
specification (16 threads) are that the components of random
read and write are dominating, while the sequential components
are not present, as it is shown in Figure 5. The special
characteristic is that the components of the random write are
synchronous, so each write will end up on the disk. The general
notion for one instance is that performances of ESXi virtual
machine are close to the native host OS. However, synchronous
entries cancel the effects of cashing, so there are minor
differences between native host OS and one instance of ESXi
virtual machine. In the case of varmail.f workload, the
instantiation of more than one ESXi virtual machines does not
bring significant performance degradation.

0

40

80

120

160

 native 1vm 2vm 3vm

127.9

67.6
42.8

24.9M
B

/s

0

100

200

300

400

500

 native 1vm 2vm 3vm

401.6

230.4

122.3
78.2M

B
/s

0

20

40

60

 native 1vm 2vm 3vm

51.4
45.7

24.4

14.8

M
B

/s

RTI2.2 Page 5 of 6

Fig. 6. Randomfileaccess.f workload test results

The characteristics of the randomfileaccess.f workload with

five threads are that random reads dominate, while the
sequential components are not present as shown on figure 6.
We set up this workload so that cache would not be used. As
we observe, the native host OS performs significantly better
compared to one instance of ESXi virtual machine running.
After starting second and third instances of ESXi virtual
machines, we were able to observe that performance
degradation is still present but it is not too significant.

The acquired benchmark results are fully expected and in
line with the theoretical assumptions. The ESXi hypervisor and
the hardware assisted full virtualization model show clear
limitations on the data flow, in particular with the increase in
the number of active virtual machines that cause even greater
sharing of processors’ resources and its increased use for
hardware simulation. The addition of new instances of virtual
machines is even more decreasing the achieved data flow,
which means that new virtual machines cannot be added to the
indefinite, as the performance of the whole system degrades per
virtual machine added.

VIII. CONCLUSION

The introduction of virtualization has led to major changes
in the use and deployment of information technology.
Virtualization technology has a significant impact on reducing
hardware investment as well as reducing operating costs, while
also providing many additional benefits other than server
consolidation. The great expansion of cloud computing in
recent years has also contributed to the accelerated
development of virtualization technologies and in the
foreseeable future virtualization will always have an increased
application in information technologies. It is also reasonable to
expect, given the development of information technology
today, that virtualization techniques will continue to improve
and that the performance gap between virtualized systems and
native systems will narrow in the future.

The results of our measurements showed that a native
machine works convincingly better in most cases than a virtual
machine based on ESXi hypervisor and full virtualization, as
we assumed in our hypothesis of expected behaviour. Virtual
machines running on the ESXi hypervisor have lower
performance than a native machine, and in three of the four tests
the performance degradation is approximately 50% when we

have only one instance of a virtual machine running. The
performance degradation is even greater with the introduction
of more virtual machines. In one of the tests (mail server), the
performance degradation between a native and a single virtual
machine is not large, but with the introduction of new virtual
machines into the test environment, the performance
degradation of virtual machines becomes extremely
pronounced. Future research may include a different approach
where instead of comparing native machine vs. virtualized one,
we compare different types of similarly structured virtualized
machines or systems. With this research, we have proven that
virtual systems still cannot reach the performance of non-
virtualized systems, but as technologies evolve at an
accelerated pace, we hope that in the future the performance of
virtual machines will reach or be equal to regular non-
virtualized machines.

ACKNOWLEDGEMENT

The work presented in this paper has partially been funded by
the Ministry of Education, Science and Technological
Development of the Republic of Serbia.

LITERATURE

[1] C. Jiang, B. Luo, J. Wang, J. Zhang, Y. Wang, W. Shi, “Energy efficiency
comparison of hypervisor,” Proc. 2016 Seventh International Green and
Sustainable Computing Conference (IGSC), pp. 1-8, 2016.

[2] Correia, "Hypervisor based server virtualization" in Encyclopaedia of
information Science and Technology, IGI Global, 2015, pp. 1182-1187.

[3] W. Huang, J. Liu, B. Abali, D. K. Panda, “A case for high performance
computing with virtual machines,” Proc. of the International Conference
on Supercomputing. ACM, pp. 125-134, 2006.

[4] G. Casale, S. Kraft, D. Krishnamurthy, ”A model of storage I/O
performance interference in virtualized systems,” Proc. of 31st
International Conference on Distributed Computing Systems Workshops,
pp. 34-39, 2011.

[5] J. Che, Q. He, Q. Gao, D. Huang, “Performance Measuring and
Comparing of Virtual Machine Monitors,” Proc. of 5th International
Conf. Embedded and Ubiquitous Computing. EUC2008, Vol. 2,
Piscataway, NJ, USA, pp. 381–386, 2008.

[6] A. Bhatia and G. Bhattal, "A comparative study of various hypervisors
performance," International Journal of Scientific and Engineering
Research, vol. 7, no. 12, pp. 65-71, 2016.

[7] J. Hwang, S. Zeng, F. Y. Wu, and T. Wood, “A component-based
performance comparison of four hypervisors,” Proc. of 2013 IFIP/IEEE
International Symposium. IEEE, pp. 269-276, 2013.

[8] Pousa, Duarte; Rufino, José, “Evaluation of type-1 hypervisors on
desktop-class virtualization hosts,” IADIS International Journal on
Computer Science and Information Systems. ISSN 1646-3692. 12:2, p.
86-101, 2017.

[9] H. Kazan, L. Perneel, M. Timmermann, “Benchmarking the performance
of Microsoft Hyper-V server, VMWare ESXi and Xen hypervisors,”
Journal of Emerging Trends in Computing and Information Sciences, vol.
4, no. 12, pp. 922-933, 2013.

[10] Filebench project, Available: https://github.com/filebench/filebench/wiki
[11] VMware vSphere Documentation: https://docs.vmware.com/en/VMware-

vSphere/index.html
[12] VMware ESXi 6.7 project: https://docs.vmware.com/en/VMware-

vSphere/6.7/vsphere-esxi-vcenter-server-67-storage-guide.pdf.pdf
[13] VMware, Inc. white paper. “Virtualization Overview”.

https://www.vmware.com/pdf/virtualization_considerations.pdf
[14] VMware, Inc. white paper. “The Architecture of VMware ESXi,”

p. 3, 2020.
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/t
echpaper/ESXi_architecture.pdf

0

2000

4000

6000

8000

 native 1vm 2vm 3vm

7379.5

3646
2126.9

1498.6M
B

/s

RTI2.2 Page 6 of 6

Abstract — This paper presents the comparison of two
representatives of type 1 hypervisors: Proxmox VE and VMware
ESXi. Hypervisor acts like a lightweight operating system and
runs directly on the host’s hardware. The measurements are
carried out on the same server and under the equivalent
conditions, with the Linux Ubuntu 20.10 as the guest operating
system using the Filebench 1.5-alpha1 software. The goal of this
paper is to show an impact of different number of virtual
machines on the performances of various file system and
highlight the best combination. The results have been illustrated
in graphical form.

Keywords — Virtualization; Hypervisor; Proxmox; ESXi;
Filebench; virtual machine

I. INTRODUCTION

 The virtualization is considered as one of the most
important topics in IT. It allows a single computer/server to
use multiple operating systems simultaneously. It also helps in
reducing the costs, because they can run multiple different
services on a single server, leading to more efficient server
utilization, easier system maintenance, and reduced hardware.
As the power of a computer unit has significantly increased
since 1960s when the IBM's presented its visionary idea of
virtualization, this solution became popular in system
implementation and maintenance [1].

There are several approaches for virtualization in IT
environments: hardware, software, desktop, data, network,
memory, storage, etc. The hardware virtualization implies the
use of a hypervisor, which is an additional layer that lies
between hardware and operating system (OS) and makes a
slight delay for when accessing the resources for virtualized
environment, providing lower performances when compared
to bare metal or non-virtualized system [2], [3].
Actually, hypervisor is specialized firmware and/or software
installed on single hardware that allows hosting of the VMs.
 There are two types of hypervisors (Figure 1): type 1, that
is executed directly on hardware and manages guest OSs

Borislav Đorđević - Institute Mihajlo Pupin, Volgina 15, 11000 Belgrade,

Serbia, (borislav.djordjevic@pupin.rs)
Valentina Timčenko - Institute Mihajlo Pupin, Volgina 15, 11000

Belgrade, Serbia (valentina.timcenko@pupin.rs)
Nenad Nedeljković - VISER, School of Electrical and Computer

Enginering of Applied Studies, Belgrade, Serbia
(nedeljkovic1nenad@gmail.com)

Nikola Davidović – University of East Sarajevo, Faculty of Electrical
Engineering, Vuka Karadzica 30, 71123 East Sarajevo, RS, BiH,
(nikola.davidovic@etf.unssa.rs.ba)

(ESXi, Proxmox); and type 2 that is executed on the host OS
(VirtualBox, VMware Workstation).

Figure 1. Hypervisor types and differences [4]

 As the type 1 hypervisor has direct access to hardware,
while type 2 hypervisor accesses hardware through host OS,
we assume that type 1 hypervisor provides more scalability,
reliability, and better performance [5].

II. RELATED WORK, OBJECTIVE AND MOTIVATION

This research is focused on the performance comparison of
two type-1 hypervisors and results analysis. Since
virtualization is the primary solution for systems ranging from
small firms to large corporations, the arising question is: what
is the best solution on the market? Some recent research
addresses this issue from different perspectives, mostly
considering VMware, KVM and Hyper-V hypervisors, and
basing the results on Filebench or Bonnie++ [6]. This paper
can provide a new picture of the situation since almost no
research has focused on the Proxmox solution versus a
commercial solution such as ESXi.

The primary goal of this paper is to compare performance
using ESXi and Proxmox hypervisors on identical hardware,
same VM parameters and the same guest OS – Linux Ubuntu
20.10 with ext4 as main file system (FS). Also, the disk we
are testing has contained one of the three FSs: ext4, xfs or
btrfs. Since we have used a Filebench workloads for testing,
our idea was to find the best FS for each test. Selected
workloads are: varmail, webserver and fileserver.

We have defined the mathematical model, measured the
performances and interpreted the obtained results based on the
mathematical model and hypotheses.

ESXi and Proxmox: FileSystem Performance
Comparison for Type-1 Hypervisors

Borislav Đorđević, Member, IEEE, Valentina Timčenko, Member, IEEE, Nenad Nedeljković, Nikola
Davidović

RTI2.3 Page 1 of 6

III. MATHEMATICAL MODEL

Variable TW is calculated in accordance with the equation
(1), and shows the total processing time for each workload.

 W RR SR RW SWT T T T T (1)

Variables TRR and TSR represent random and sequential read
time, and TRW and TSW random and sequential write time.
There is an expected access time for every specific workload
for the FS, which include following components:

 WORKLOAD DIR META FL J HKT T T T T T (2)

TWORKLOAD represents the overall time for finishing all
operations on the current workload, TDIR the time needed to
run all directory-related operations, TMETA the time needed to
complete all metadata operations, TFL the time needed to go
through all free lists operations, TFB the time needed to carry
out direct file blocks operations, TJ the time needed to
complete journaling operations and THK the time needed to run
housekeeping operation within the FS [7].

We have two candidates whose performances we compare:

1. Proxmox + VMs (guest OS).
2. ESXi + VMs (guest OS).

1. Proxmox + VMs (guest OS): The time to process the
generated workload (TW(Proxmox)) in this case depends on the
benchmark interaction with guestOS FS, the characteristic of
the FS, Virtual Hardware processing and the virtualization
processing component of the Proxmox hypervisor (PVE-proc)
is calculated in accordance to the following formula:

TW(Proxmox) = f(BENCH, guestOS-FS, VH-proc, PVE-proc,

hostOS-FS) (3)

2. ESXi + VMs (guest OS): The time to process the

generated workload (TW(ESXi)) in this case depends on the
benchmark interaction with guestOS FS, the characteristic of
the FS, Virtual Hardware processing and the virtualization
processing component of the ESXi hypervisor (ESXi-proc) is
calculated in accordance with the following formula:

 TW(ESXi) = f(BENCH, guestOS-FS, VH-proc, ESXi-proc,
hostOS-FS) (4)

Since we are using the same settings for VMs on both
hypervisors, the virtualization processing component will
depend on the virtualization type and hypervisor processing as
provided in the following formula:

PVE-proc = f (virt_type, hyp_proc) (5)
ESXi-proc = f (virt_type, hyp_proc) (6)

We are predicting the following:
 Based on the practical experience, it is expected that

ESXi will produce better performance.

 Multiple VMs to have a significant performance drop
compared to just one VM.

IV. FILE SYSTEMS

Linux FS is generally a built-in layer of a Linux OS used to
handle the data management of the storage.

A. EXT4

The ext4 (fourth extended filesystem) is a journaling FS for
Linux, and is developed as the extension of the ext3 [8]. It has
the following characteristics [9]:

 Maximum FS size of up to 1 EB and maximum file size
of nearly 16 TB.

 Hashed B-tree organizes and finds directory entries.
 Online defragmentation tool (e4defrag), which performs

defragmentation of individual files or the whole FS.
 Easily detectable corruptions of files by metadata

checksumming.

B. XFS

XFS is a high-performance journaling FS created by Silicon
Graphics, Inc (SGI) in the last decade of 20th century [10]. It
has the following characteristics [9]:

 Maximum FS size and maximum file size of nearly 8
EB.

 B+ tree organizes and finds directory entries.
 Delayed allocation for minimizing fragmentation and

increasing performance.
 Implemented direct I/O for high throughput and non-

cached I/O for DMA devices.

C. BTRFS

Btrfs ("better FS", "b-tree F S") is a copy-on-write (COW)
FS based on B-trees. It was initially designed at Oracle
Corporation in 2007 for the use in Linux [11]. It has the
following characteristics [9]:

 Maximum FS size and maximum file size of nearly 16
EB.

 B-tree organizes and finds directory entries.
 Online defragmentation, offline FS check.
 Background based fixing errors on redundant files.

V. VMWARE ESXI AND PROXMOX

ESXi is an enterprise-class, type-1 hypervisor developed by
VMware for deploying and serving VMs (Figure 2). It runs
directly on hardware and significantly improves system
performance [12]. The major part of architecture is VMkernel
and processes that run on top of it. VMkernel has control of
all hardware devices on server, manages resources and
handles system processes. It receives requests from VMs for
resources and presents the requests to the physical hardware
[13].

Figure 2. ESXi architecture [14]

RTI2.3 Page 2 of 6

The main processes that run on top of VMkernel are: [13]
• Direct Console User Interface (DCUI) — the low-level

configuration and management interface, accessible through
the console of the server, used primarily for initial basic
configuration.

• The VM monitor, which is the process that provides the
execution environment for a VM, as well as a helper process
known as VMX. Each running VM has its own VMM and
VMX process.

• Various agents used to enable high-level VMware
Infrastructure management from remote applications.

• The Common Information Model (CIM) system: CIM is
the interface that enables hardware-level management from
remote applications via a set of standard APIs.

VMware uses VMFS. It is a special high-performance
clustered FS. The main feature of this segment is ability to be
shared by being simultaneously mounted on multiple servers.
The VMFS datastore can be extended to span over several
physical storage devices that include SAN LUNs and local
storage. This feature allows you to pool storage and gives you
flexibility in creating the datastore necessary for your virtual
machines. [12]

Proxmox Virtual Environment – PVE (Figure 3) is a bare-

metal hypervisor (runs directly on the hardware), to run VMs
and containers. It is an open-source project, developed and
maintained by Proxmox Server Solutions GmbH. For
maximum flexibility, they implemented two virtualization
technologies: full virtualization with KVM (Kernel-based
Virtual Machine) and container-based virtualization (LXC)
[15].

Figure 3. Proxmox architecture [15]

Proxmox uses a Linux kernel and is based on the Debian
GNU/Linux Distribution. The source code is released under
the GNU Affero General Public License, version 3. KVM was
the first hypervisor to become part of the native Linux kernel
(2.6.20). It is implemented as a kernel module, allowing
Linux to become a hypervisor simply by loading a module.
Benefits from the changes to the mainline version of Linux is
optimization of hypervisor and the Linux guest Oss [16].

Proxmox natively supports running LXC (LinuX
Containers) containers from the UI. These are similar to
docker containers but behave more like a traditional VM.

Performance of KVM virtualization was the focus of this
paper.

The main features for Proxmox VE [17]:
 Live migration;
 High availability;
 Scheduled backup;
 Command-line (CLI) tool;
 Flexible storage;
 OS template.

VI. TESTING

 The assumption of adequate testing is the application of a
single hardware configuration, the same OS, and
measurement methodology for all tests. The used server
configuration has respectable hardware components although
it is does not represent the latest technology.

The OS used is Ubuntu version 20.10, the latest instalment
of Linux distribution (Table 1). During the installation
process, we opted for minimal installation option which
installs only essential packages and programs. The system
disk uses EXT4 while the test disk is EXT4, XFS, or BTRFS.

All tests were performed using Filebench tool. Latest
release of Filebench software was installed following
instructions provided on the official GitHub repository of this
project. Filebench is a program designed to measure the
performance of FS and storage, and it can generate multiple
workload types that simulate environments when using certain
servers/services such as mail, web, file, database, etc. [18].
Before starting any tests, we made sure that all available
updates were installed. Each VM was given 4 GB of RAM
and 4 CPU cores.

TABLE I
SERVER TEST ENVIRONMENT

HP ProLiant DL380 G7

Component Characteristic

CPU 2 x Intel Xeon
E5540 QuadCore
2.53GHz

RAM 32GB DDR3

Storage Controllers HP Smart
Array P410i

Hard Drive 1 HP 10K SAS
146GB(DG0146)

Hard Drive 2 HP 7.2K SAS
500GB(MM0500)

PVE hostOS-FS ext4

ESXi hostOS-FS VMFS

The VM parameters are shown in Table 2. All used VMs
have identical characteristics.

TABLE II
VIRTUAL MACHINE PARAMETERS

Component Characteristic

RTI2.3 Page 3 of 6

vCPU 4

RAM 4GB

Disk 12GB + 32GB

OS Linux Ubuntu
20.10

FS ext4

Tested FS ext4/xfs/btrfs

The focus of this paper is on measuring disk performance

by comparing two hypervisors combined with three different
FSs using 1, 2, or 3 VMs at the same time. It is expected that,
as the number of VMs increases, performance will decline
significantly in any combination.

Filebench is a very powerful and very flexible tool able to
generate a variety of FS - and storage-based workloads. It
implements a set of basic primitives like create file, read
file, mkdir, fsync and uses WLM (the Workload Model
Language - WML) to combine these primitives in complex
workloads [18].

The files used for our benchmark were varmail.f,
webserver.f, and fileserver.f. Those files are included in the
Filebench software installation package, and were minimally
edited to suit our needs.

The duration of each the tests was set to 120 seconds,
which is the only change we made in *.f files with the goal of
making the most realistic results. During the test execution, it
was ensured that the impact of any external subject on system
components was reduced to the minimum. The benchmark is
run 3 times and the average value of the test is taken as final.

First, Proxmox VE was installed on server and nine VMs
were generated, 3 for every FS. Tests were conducted in a
way that one VM was first started and measured, then 2 and 3
VMs simultaneously. After that, disk is formatted and ESXi
was installed. By the same principle, everything is applied to
ESXi. From the generated data, the final conclusions were
made by calculating the average values of the results.

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Figure 5. Varmail workload test results

 TABLE III
BENCHMARK VARMAIL RESULTS

Varmail 1VM -
(MB/s)

2VM -
(MB/s)

3VM -
(MB/s)

esxi - ext4 2.6 1.3 0.9

esxi - xfs 3.5 1.6 1.2

esxi - btrfs 3.5 1.8 1.0

pve - ext4 3.0 1.5 1.1

pve - xfs 3.5 1.7 1.2

pve - btrfs 3.9 1.9 1.5

Figure 5 and Table 3 show Varmail test results. Varmail

emulates I/O activity of a simple mail server that stores each
e-mail in a separate file (/var/mail/ server). The workload
consists of a multi-threaded set of create-append-sync, read-
append-sync, read and delete operations in a single directory.
16 threads are used by default [19].

For the Varmail workload, which is characterized by the
dominant random reads and random writes, where random
writes are represented by the synchronous transfers covered
by equations (3) and (4), the main differences are components
3 (VH-proc), 4 (hypervisor-proc) and 5 (hostOS-FS).

When looking at the number of VMs, the combination of
pve-btrfs was the best in each category, while esxi-btrfs and
esxi-xfs had the same overall results with the ESXi
hypervisor. We can conclude that the BTRFS FS is the best
choice for a mail server.

0.0
200.0
400.0
600.0
800.0

1000.0
1200.0
1400.0

1VM - (MB/s) 2VM - (MB/s) 3VM - (MB/s)

esxi - ext4 esxi - xfs esxi - btrfs

pve - ext4 pve - xfs pve - btrfs

 Figure 6. Webserver workload test results

TABLE IV
BENCHMARK WEBSERVER RESULTS

Webserver 1VM -
(MB/s)

2VM -
(MB/s)

3VM -
(MB/s)

esxi - ext4 453.5 238.4 171.2

esxi - xfs 507.2 235.1 228.3

esxi - btrfs 720.0 677.5 419.1

pve - ext4 1243.9 864.9 595.0

pve - xfs 1284.1 940.5 561.8

pve - btrfs 928.8 808.0 544.7

Figure 6 and Table 4 show Webserver test results.

Webserver emulates simple web-server I/O activity and
produces a sequence of open-read-close on multiple files in a
directory tree plus a log file append. 100 threads are used by
default [19]. The Webserver workload is characterized by a
dominant random read component as covered in equations (3)
and (4), while the main differences are components 3 (VH-

RTI2.3 Page 4 of 6

proc) and 5 (hostOS-FS). In both cases, VH-proc is Full-
Hardware virtualization, but in Proxmox it is realized through
QEMU. A large difference in performance in favor of
Proxmox was observed in this test. The overall results of pve-
xfs is 2.87 times better than esxi-xfs.

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Figure 7. Fileserver workload test results

TABLE V
BENCHMARK FILESERVER RESULTS

Fileserver 1VM -
(MB/s)

2VM -
(MB/s)

3VM -
(MB/s)

esxi - ext4 63.3 32.0 17.4

esxi - xfs 44.4 16.7 13.8

esxi - btrfs 45.1 33.2 10.7

pve - ext4 73.4 41.3 21.4

pve - xfs 47.6 29.0 18.3

pve - btrfs 52.5 26.4 20.4

 Figure 7 and Table 5 show Fileserver test results.
Fileserver - Emulates simple file-server I/O activity. This
workload performs a sequence of creates, deletes, appends,
reads, writes and attribute operations on a directory tree. 50
threads are used by default [19].

For the Fileserver workload, which is characterized by all
kinds of data transfers, when considering equations (3) and
(4), the main difference is component 5 (hostOS-FS).
As ESXi uses VMFS, which is a clustered FS and represents a
higher level of abstraction, while Proxmox uses EXT4, and
the best FS in this test was EXT4, we conclude that this ruled
in favor of Proxmox.
 As in the previous two tests, this time too Proxmox came
out as the winner but with a slightly smaller difference. We
also have a match in the choice of FS: EXT4 gave the best
overall results in both hypervisors.

VII. CONCLUSION

 In this paper, we tested two respectable type 1 hypervisors:
the commercial VMware ESXi solution and the open-source
solution - Proxmox. Although it was expected that, due to its
importance and big impact in the IT world, ESXi would
provide better results, this did not happen. Proxmox won each
comparator hypervisor + file system test. This was best seen
during the webserver test where they were better almost 3

times and the third (VH-proc) and fifth (hostOS-FS)
components of formulas (3) and (4) came to the fore.

If we only look at the performance of the FS, we get an
interesting distribution. EXT4 performed best on fileserver,
XFS on webserver, and BTRFS on varmail test.

For all 3 workloads we noticed that Proxmox is
significantly better than ESXi. In the context of formulas (3),
(4), (5), (6), we consider that the first two components,
BENCH and guestOS-FS, in equations (3) and (4) have the
same effect on for both hypervisors. The 3rd and 4th
components, VH-proc, PVE-proc and ESXi-proc, differ
significantly, where we notice that Proxmox is better.
However, the main reason for Proxmox's victory is the 5th
component (hostOS-FS). ESXi used a higher level of
abstraction such as VMFS which slowed it down in this case,
while Proxmox used a basic level of FS such as EXT4.

When we summarize all the test results, the used virtual
machine operating system and hypervisors hostOS-FS, we can
say that Proxmox is more optimized for Linux distribution.

The Proxmox virtualization system can be particulary
useful for people starting their own business in small steps,
without requiring additional costs. This does not mean that
large companies do not use it. As already mentioned, this is an
Open-Source solution and help for some of the possible
problems can be found in a community where the number is
unknown. If you still want to be insured, you can subscribe to
the team of people behind this solution - Proxmox Server
Solutions GmbH on more than favorable terms.

Interesting ideas for future work and research is to add fast
Solid State Disks, comparative analysis of hypervisors using
container virtualization or testing a different hypervisor such
as Xen and Microsoft Hyper-V to determine which one
achieves the best results.

ACKNOWLEDGMENT

 The work presented in this paper has partially been
funded by the Ministry of Education, Science and
Technological Development of the Republic of Serbia.

REFERENCES

[1] S. Meier, IBM Systems Virtualization: Servers, Storage, and Software,
First edition, Redpaper, 2008.

[2] F. Bazargan, C. Yeun, J. Zemerly, “State-of-the-Art of Virtualization,
its Security Threats and Deployment Models”, International Journal for
Information Security Research. 3. 10.20533/ijisr.2042.4639.2013.0039,
2013.

[3] N. Yaqub, “Comparison of Virtualization Performance: VMware and
KVM“, Master Thesis, Department of Informatics, Uviversity of Oslo,
Norway, 2012.

[4] C. Taylor, 2020, What is a Hypervisor Server?, accessed 14 May 2021,
https://www.serverwatch.com/virtualization/hypervisor-server/

[5] P. Vasconcelos, F. Araújo, G. Freitas, T. Marques, “KVM, OpenVZ
and Linux Containers: Performance Comparison of Virtualization for
Web Conferencing Systems”, International Journal of Multimedia and
Image Processing. 6. 10.20533/ijmip.2042.4647.2016.0039, 2016.

[6] B. Đorđević, N. Maček, V. Timčenko, “Performance Issues in Cloud
Computing: KVM Hypervisor’s Cache Modes Evaluation”, Vol. 12,
No. 4, pp 147-165, 2015. http://uni-
obuda.hu/journal/Dordevic_Macek_Timcenko_60.pdf,

[7] D. Vojnak, B. Ðorđević, V. Timčenko, S. Štrbac, “Performance
Comparison of the type-2 hypervisor VirtualBox and VMWare

RTI2.3 Page 5 of 6

Workstation”, 27th Telecommunications Forum (TELFOR), Belgrade,
Serbia, pp. 1-4, doi: 10.1109/TELFOR48224.2019.8971213, 2019.

[8] THE EXT4 FILE SYSTEM, accessed 16 May 2021,
https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-
ext4

[9] D. Vujičić, D. Marković, B. Đorđević, S. Ranđić, “Benchmarking
Performance of EXT4, XFS and BTRFS as Guest File Systems Under
Linux Environment”, 2016.

[10] THE XFS FILE SYSTEM, accessed 16 May 2021,
https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-
xfsBtrfs

[11] O. Rodeh, J. Bacik, C. Mason, (2013). “BTRFS: The linux B-tree
filesystem”, ACM Transactions on Storage (TOS).
9.10.1145/2501620.2501623, 2013.

[12] E. Sosa, Mastering VMware NSX® for vSphere®, First edition,
Indianapolis, Indiana, John Wiley & Sons, 2020.

[13] VMware, “The Architecture of VMware ESXi”, Technical White
Paper, 2007.

[14] B. Laurent, 2020, VMs Everywhere, accessed 24 May 2021,
https://littlecorner.info/post/virtualization/

[15] Proxmox Server Solutions Gmbh, “Proxmox VE Administration
Guide”, 2021.

[16] S. Aiiy, “Comparative analysis of proxmox VE and xenserver as type 1
open source based hypervisors”, International Journal of Scientific and
Technology Research. 7. 72-77, 2018.

[17] S. Cheng, Proxmox High Availability, First edition, Birmingham,
England, Packt Publishing, 2014.

[18] V. Tarasov, E. Zadok, S. Shepler, “Filebench: A Flexibile Framework
for File System Benchmarking”, Vol. 41, No. 1, 2016.

[19] Filebench, 2017, accessed 23 April 2021,
https://github.com/filebench/filebench/wiki

RTI2.3 Page 6 of 6

Snort IDS system visualization interface
Nadja Gavrilovic, Vladimir Ciric, Nikola Lozo

University of Nis, Faculty of Electronic Engineering, Nis, Serbia

Abstract—Over the past decades, the rapid Internet develop-
ment and the growth in the number of its users have raised
various security issues. Despite numerous available security tools,
the exchange of data over the Internet is becoming increasingly
insecure. For this reason, it is of great importance to ensure the
security of the network in order to enable the safe exchange
of confidential d ata, a s w ell a s t heir i ntegrity. O ne o f t he most
important components of network attack detection is an Intrusion
Detection System (IDS). Snort IDS is a widely used intrusion
detection system, which logs alerts after detecting potentially
dangerous network packets. The next step in successful network
protection is the analysis of logged alerts in search of deviations
from normal traffic t hat m ay i ndicate a n i ntrusion. T he g oal of
this paper is to design and implement a visualization interface
that graphically presents alerts generated by Snort IDS, classifies
them according to the most important attack parameters, and
allows the users to easily detect possible traffic irregularities. An
environment in which the system has been tested in real-time is
described, and the results of attack detection and classification
are given. One of the detected attacks is analyzed in detail, as
well as the method of its detection and its possible consequences.

Index Terms—IDS, snort, network intrusion detection, visual-
ization interface

Nadja Gavrilovic is with the Faculty of Electronic Engineering,
University of Nis, Aleksandra Medvedeva 14, Nis, Serbia (e-
mail:nadja.gavrilovic@elfak.ni.ac.rs).

Vladimir Ciric is with the Faculty of Electronic Engineering,
University of Nis, Aleksandra Medvedeva 14, Nis, Serbia (e-
mail:vladimir.ciric@elfak.ni.ac.rs).

Nikola Lozo is with the Faculty of Electronic Engineering, University of
Nis, Aleksandra Medvedeva 14, Nis, Serbia (e-mail:nikolalozo@elfak.rs).

RTI2.4 Page 1 of 1

Abstract — Homomorphic Encryption allows third party to

receive encrypted data and perform arbitrarily computations on

that data while it remains encrypted, despite not having the

secret decryption key. This enables many new secure

applications in cloud environments. For a long time, a key issue

with the homomorphic encryption was its low performance

which made it unusable in production environments. Advances

in the last ten years in the field of homomorphic encryption

resulted in several new schemes and software libraries which

implement them. These homomorphic schemes have improved

performance, but there is still a question whether the

improvements would justify their use in production

environments. In this paper we evaluated features and

performances of several new homomorphic encryption

mechanisms: BGV, BFV and CKKS.

Keywords — Homomorphic Encryption; Performance; Secure

Multiparty Computation.

I. INTRODUCTION

Homomorphic encryption allows computations on

ciphertext without the knowledge of the secret key, or more

precisely it allows performing computations on the encrypted

data, without decrypting them [1]. Homomorphic encryption

allows a third party (e.g., cloud, service provider) to perform

certain computable functions on the encrypted data while

preserving the features of the function and format of the

encrypted data and without being able to see its content.

Homomorphism of the first asymmetric encryption algorithms

(RSA) over some mathematical operations (e.g.

multiplication) was known since these algorithms were

invented almost fifty years ago. Such schemes which support

partial set of mathematical operations are known as partially

homomorphic. Cryptographic mechanisms that support

arbitrary level of computations on ciphertext (multiplication,

addition, rotation) without the knowledge of the secret keys

are known as Fully Homomorphic Encryption (FHE) systems.

The increased popularity of cloud-based services on one side

and the need to preserve data privacy led to the new interest in

homomorphic encryption research which would enable secure

multiparty computation in the cloud environment. One could

imagine the use of AI or machine learning algorithms on the

data which is encrypted and invisible to the AI system

provider, thus preserving data privacy only for the data owner.

An example of such a scenario where homomorphic

encryption mechanisms are deployed is given in Figure 1. In

this example the user sends and stores the data in the

encrypted form on the cloud server. The data is processed on

the server in the encrypted form, and the results which remain

in the encrypted form are sent back to the user who can

decrypt the data and use the result.

Fig. 1. An example of client-server HE scenario

The biggest obstacle for the use of homomorphic

encryption schemes was the fact that there were no FHE

mechanisms which had reasonable performance.

Computations were by several orders of magnitude slower

than the operation on unencrypted data which made any such

solution too resource expensive. However, in the last ten years

a breakthrough happened in the area and a set of new

homomorphic encryption schemes emerged. Modern fully

homomorphic encryption schemes use complex algorithms on

lattice structures and Ring-LWE (Ring Learning With Errors)

mechanism [2]. In addition to the homomorphic property, it is

believed that these algorithms are resistant to quantum

computer attacks because nowadays there are no known

algorithms that would use the properties of quantum

computers to break these algorithms in polynomial time.

Following the appearance of new fully homomorphic

encryption schemes, a set of programming APIs and libraries

which implement different schemes emerged as well. In this

paper we are assessing the set of capabilities and performance

of three homomorphic encryption schemes (BGV, BFV,

CKKS) and are discussing the suitability and constraints of

these schemes for use in the cloud-based environments for

secure multiparty computations. Performance assessment of

the new FHE schemes has not been explored a lot in the

literature. We believe that this paper will provide a better

insight into the current state of the work on FHE and its

suitability for real use case scenario deployments.

The paper is organized as follows. Section II gives an

overview of the related work in the field of the performance

evaluation of the FHE schemes. The most important

properties of homomorphic encryption and the classification

Performance comparison of homomorphic

encryption scheme implementations

Goran Đorđević, AET Europe The Netherlands, ETF Beograd, Milan Marković, Panevropski

Univerzitet Apeiron Banja Luka, Pavle V. Vuletić, ETF Beograd

RTI2.5 Page 1 of 6

of the homomorphic encryption schemes are presented in

Section III. The main features and description of modern HE

schemes: BGV [3], BVF [4] and CKKS [5] are elaborated in

Section IV. In Section V is shown results of experimental

analysis. Conclusions are given in Section VI.

II. RELATED WORK

Related work about the FHE schemes is spread across the

papers in the relevant sections, while this section contains

only those papers which were dedicated to FHE performance

evaluation. Experimental results related to BGV scheme with

value of ciphertext modulus q=130 are given in [1]. Viand et

al. in [6] compare the features of Palisade, Microsoft SEAL,

and HELib homomorphic encryption libraries. In addition,

this paper gives statistical compiler tests of BVF scheme

implemented in the SEAL library in a graphical form without

presenting precise numerical values. Melchor et al. [7]

compared the performance of three libraries HELib, SEAL

and FV-NFLlib for large plaintext moduli of up to 2048 bits.

Finally, Lepoint et al. [8] compare the performance of two

older homomorphic schemes. Unlike the previous work, in

this paper we give experimental results for BGV with broader

range of values ciphertext modulus q and results for other

modern homomorphic schemes: BFV and CKKS that are not

covered in [1].

III. PROPERTIES OF HOMOMORPHIC ENCRYPTION

There are four main types of homomorphic schemes [1]:

• Partially Homomorphic Encryption (PHE). The PHE

scheme enables either any number of addition or any

number of multiplication operations over encrypted data.

• Somewhat Homomorphic Encryption (SHE) allows both

addition and multiplication, but it can perform a limited

number of operations. “Somewhat” means it works for

some functions f.

• Fully Homomorphic Encryption. The scheme allows any

number of addition or multiplication operations. “Fully”

means it works for all functions f. An FHE scheme can

evaluate unbounded depth.

• Levelled Homomorphic Encryptions (LHE). This scheme

can evaluate arbitrary polynomial-size circuits.

Homomorphic Encryption should support two main

homomorphic operations:

• Additive Homomorphic Encryption;

• Multiplicative Homomorphic Encryption.

Homomorphic encryption is additive, if [9]:

Enc (m1 + m2) = Enc (m1) + Enc (m2); ∀m1, m2 ∈ M.

Homomorphic encryption is multiplicative, if [9]:

Enc (m1 * m2) = Enc (m1) * Enc (m2); ∀m1, m2 ∈ M.

The most popular classes of homomorphic schemes are

(given with their main properties):

• Boolean circuit (Fastest Homomorphic Encryption in the

West (FHEW) [10] and Fast Fully Homomorphic

Encryption over the Torus (TFHE) [11]):

o Plaintext data are coded as bits;

o Computations are performed by using Boolean

circuits.

• Modular integer arithmetic (BGV, BFV):

o Plaintext data are coded as integer modulo a

plaintext;

o Computations are expressed as integer modulo

arithmetic.

• Approximate number arithmetic (CKKS):

o Plaintext data are coded as real (or complex)

numbers;

o Computations are performed in a way similar to

floating-point arithmetic but dealing with fixed-

point numbers.

Modern HE mechanisms are based on usage of lattice

cryptography with errors LWE [12]. Lattices have an

important role in modern cryptography, especially in the

context of the research on post-quantum cryptography. It is

known that the factoring problem which was discovered to be

solvable in polynomial time on a quantum computer by Shor

can be applied to the widely used asymmetric cryptographic

schemes (RSA, DH). At the moment of writing this paper

there was no report in the literature which claimed that it can

break lattice-based cryptographic algorithms using quantum

computer algorithms.

The newest HE algorithms are applied structured lattices

i.e. Ring-LWE mechanism [2]. The Ring-LWE reduces key

length and computation time. The ring implementation is

based on power-of-two cyclotomic rings:

Rq = ℤq / 〈xn + 1〉
The optimized Residue Number System (RNS) variants of

algorithms show significant performance gain compared to

their earlier respective implementations [13]. The RNS works

with native (machine-word size) integers because it is faster

than multi-precision integer arithmetic. It breaks rings of large

bit-width integers into a parallel set of rings (<64-bit residues)

allowing very efficient computation on 64-bit CPU

architecture.

Large modulus 𝑞 is represented as product of integers:

Modulus 𝑞 is a functional parameter that determines how

many computations are allowed without the appliance

bootstrapping procedure [14].

One of the properties of the homomorphic encryption

schemes is that they add noise to a ciphertext in the

encryption process. Homomorphic operations (especially

multiplication) increase the noise. If the noise becomes too

large, the resultant ciphertext can become undecryptable.

Noise budget is the total amount of noise that can be added

until the decryption fails [15]. The bootstrapping is the

procedure of "refreshing" a ciphertext by running the

decryption function on it homomorphically, resulting in a

reduced noise.

All considered homomorphic encryption schemes support

the following homomorphic operations:

• Addition;

• Multiplication;

• Rotation.

RTI2.5 Page 2 of 6

IV. HOMOMORPHIC SCHEMES

The BGV scheme was proposed [3]. BGV is a levelled HE

scheme, meaning that the parameters of the scheme depend on

the multiplicative depth that the scheme is capable to evaluate.

Multiplicative depth determines how many sequential

multiplications can be performed.

The BFV scheme [4] is a homomorphic cryptographic

scheme based on the Ring-LWE problem in a lattice.

The CKKS scheme [5] is known as Homomorphic

Encryption for Arithmetic of Approximate Numbers

(HEAAN). Supported operations in the scheme are shown in

Figure 2. The CKKS scheme enables computations on vectors

of complex values.

Fig. 2. Operations in CKKS

The CKKS is an approximate homomorphic encryption

scheme with the following features:

• Dec (Enc(m)) ≈ m;

• Dec (ct1 * ct2) ≈ Dec (ct1) * Dec (ct2);

• Noise bounds are determined by the parameter set.

In the CKKS scheme noise is considered as a part of

numerical error in approximate computation. It supports

homomorphic rounding-off.

In all above-mentioned schemes the following

homomorphic operations are implemented [16]:

• Public key encryption:

PubEncrypt(pk, M) → C

The public encryption algorithm takes as input the public

key (pk) of the scheme and any message M from the

message space. The algorithm outputs a ciphertext C.

• Decryption:

Decrypt(sk, C) → M

The decryption algorithm takes as input the secret key of

the scheme (sk), and a ciphertext C. It outputs a message

M from the message space.

• Homomorphic addition:

EvalAdd(Params, ek, C1, C2) → C3

EvalAdd is an algorithm that takes as input the system

parameters Params, the evaluation key (ek), two

ciphertexts C1 and C2, and outputs a ciphertext C3.

• Homomorphic multiplication:

EvalMult(Params, ek, C1, C2) → C3

EvalMult is an algorithm that takes as input the system

parameters Params, the evaluation key ek, two

ciphertexts C1 and C2, and outputs a ciphertext C3.

The evaluation key is needed to perform homomorphic

operations over the ciphertexts. The evaluation key is used in

in the following homomorphic operations: relinearization

(multiplication) and rotation. Any entity that has only the

evaluation key cannot learn anything about the messages from

the ciphertexts only [16].

An example of homomorphic encryption with asymmetric

key cryptography by using BGV [3], BVF [4], and CKKS [5]

schemes is shown in Figure 3.

Fig. 3. Homomorphic encryption with asymmetric keys

V. EXPERIMENTAL ANALYSIS

In the experimental analysis we evaluated the time needed

for execution of the following homomorphic operations:

Public key encryption (Table II), Decryption (Table III),

Homomorphic addition (Figure 4), and Homomorphic

multiplication (Figure 5). Homomorphic encryption libraries

implement the above-mentioned cryptographic operations of a

scheme and expose a higher-level API. We evaluated the use

of the following homomorphic schemes:

• BGV,

• BVF and

• CKKS;

that are implemented in the following open-source libraries

respectively:

• Microsoft SEAL [17];

• Palisade [14];

• HELib [18] [19].

HELib is a C++ open source library that implements both

the BGV [3] and CKKS [5] homomorphic encryption

schemes. HELib library, published in 2013 by Halevi and

Shoup, was the first homomorphic encryption library.

Palisade [14] is multi-threaded library written in C++ 11. It

uses the NTL library [20] to accelerate underlying

mathematical operations. Palisade supports more schemes,

including BFV, BGV, CKKS. It also supports multi-party

extensions of certain schemes and other cryptographic

primitives like Proxy Re-Encryption (PRE) and digital

signatures [6].

Microsoft Simple Encrypted Arithmetic Library (SEAL)

[17] is a homomorphic encryption library that allows

additions and multiplications to be performed on encrypted

integers or real numbers. Microsoft SEAL is written in C++11

and contains a .NET wrapper library for the public API. The

RTI2.5 Page 3 of 6

latest available version 3.6.2 is developed in C++17.

Table I gives an overview of the publicly available open-

source libraries with implemented HE algorithms. Palisade

implements Boolean circuits Fully Homomorphic Encryption

(FHE) schemes: FHEW and TFHE. In the FHE mechanisms it

uses bootstrapping procedure [14] (noise refreshing

procedure) with the application of the appropriate

bootstrapping keys. The FHEW and TFHE schemes are not

implemented in the HELib and Microsoft SEAL libraries.
TABLE I

 HE ALGORITHMS IN OPEN-SOURCE LIBRARIES

Library/

HE scheme
Palisade HELib SEAL

BGV √ √

BFV √ √

CKKS √ √ √

FHEW √

Threshold FHE √

The homomorphic encryption code was executed on a PC

with:

• 2194.84 MHz 8-core CPU;

• 16 GB RAM;

• Ubuntu 20.04 LTS.

Tables II and III and Figures 4 and 5 show the results of

encryption, decryption, HE addition and HE multiplication

tests respectively, where:

• Times in the last three columns (HE Library) are

expressed in microsecond (µs);

• Each operation was executed 1000 times and the times

presented are the times to execute 1000 iterations;

• We used 128-bit homomorphic encryption security level;

• Ciphertext dimension is n;

• Ciphertext modulus is q.

Ciphertext dimension n shall be chosen on basis of desired

security level and value of ciphertext modulus q. If ciphertext

modulus q is bigger than noise budget it enables

implementation more complex homomorphic evaluation

function f i.e. implementation the function with bigger depth.

Palisade library implements modular arithmetic schemes:

BGV and BVF with 128-bit security level beginning from

ciphertext dimension n = 2048.

The public key encryption operation in BFV scheme has

the best performance when the SEAL library is used.

Performance difference depends on the ciphertext dimension:

while the SEAL encryption is three times faster for the

ciphertext dimension of 2048, when the ciphertext dimension

is 32768, this factor is 1.3 times. The encryption operation has

the best performance in BGV scheme when the Palisade

library is used. Performance difference ratio decreases with

the increase of the ciphertext dimension. The encryption

operation in CKKS scheme for ciphertext dimension n ≥ 8192

has the best performance when the HELib library is used,

whereas in case of lower dimension n the best results are

achieved by using SEAL library.

TABLE II

 PUBLIC KEY ENCRYPTION

HE scheme
HE parameters HE library

n log2 q Palisade HELib SEAL

BFV 1,024 27 - - 272

BGV 1,024 27 - 1,783 -

CKKS 1,024 27 585 482 257

BFV 2,048 54 1,557 - 506

BGV 2,048 54 1,560 3,608 -

CKKS 2,048 54 1,173 997 479

BFV 4,096 109 3,519 - 1,687

BGV 4,096 109 3,493 7,833 -

CKKS 4,096 109 2,753 2,288 1,926

BFV 8,192 218 7,773 - 4,838

BGV 8,192 218 8,116 17,817 -

CKKS 8,192 218 7,538 4,664 5,688

BFV 16,384 438 24,050 - 16,252

BGV 16,384 438 25,926 44,796 -

CKKS 16,384 438 23,183 12,581 19,344

BFV 32,768 881 77,553 - 59,457

BGV 32,768 881 78,639 109,340 -

CKKS 32,768 881 76,406 39,890 71,373

TABLE III

 SECRET KEY DECRYPTION

HE scheme
HE parameters HE library

n log2 q Palisade HELib SEAL

BFV 1,024 27 - - 63

BGV 1,024 27 - 13,047 -

CKKS 1,024 27 415 3,159 10

BFV 2,048 54 159 - 127

BGV 2,048 54 133 49,096 -

CKKS 2,048 54 809 5,104 19

BFV 4,096 109 420 - 416

BGV 4,096 109 353 192,351 -

CKKS 4,096 109 1,432 14,279 72

BFV 8,192 218 940 - 1,484

BGV 8,192 218 1,012 763,178 -

CKKS 8,192 218 6,038 48,960 290

BFV 16,384 438 2,370 - 5,904

BGV 16,384 438 3,690 3,033,690 -

CKKS 16,384 438 13,776 183,254 1,166

BFV 32,768 881 7,330 - 24,919

BGV 32,768 881 14,941 12,003,497 -

CKKS 32,768 881 51,960 701,913 4,826

The decryption operation in CKKS scheme has the best

performance by using SEAL library. The decryption operation

in CKKS scheme when using SEAL is approximately 10

times faster than when Palisade is used and more than 100

times faster than when HELib is used.

 The secret key decryption operation in BGV scheme

performs better by several orders of magnitude in the Palisade

RTI2.5 Page 4 of 6

than in the HELib library.

The decryption operation in BFV scheme for ciphertext

dimension n ≥ 8192 has better performance when Palisade

library is used, whereas in case of lower dimension n better

results are achieved by using SEAL library.

Fig. 4. Homomorphic encryption – addition operation time

The ciphertext addition in CKKS scheme has the best

performance in the HELib library. The ciphertext addition in

CKKS scheme has better performance in the Palisade than in

the SEAL library, but the differences are generally smaller

than for the decryption operation.

The ciphertext addition in BFV scheme has significantly

better performance (more than 2 times faster) in the Palisade

than in the SEAL library.

The ciphertext addition in BGV scheme has significantly

better performance (more than 4 times faster) in the Palisade

than in the SEAL library.

Fig. 5. Homomorphic encryption – multiplication operation time

 The ciphertext multiplication is much more complex and

more time consuming than ciphertext addition. Figure 4

presents the time needed for performing homomorphic

multiplication without relinearization procedure.

 The cyphertext multiplication in CKKS scheme for

ciphertext dimension n ≥ 8192 has the best performance when

implemented in the Palisade library whereas in case of lower

dimension n the better results are achieved using SEAL

library.

The cyphertext multiplication in BGV scheme for

ciphertext dimension n ≥ 8192 has significantly better

performance (more than 3 times faster) when implemented in

the Palisade library than in the HELib whereas for lower

ciphertext dimensions better results are achieved by using

HELib library.

The cyphertext multiplication in BFV scheme for ciphertext

dimension n ≥ 4096 has better performance in the Palisade

RTI2.5 Page 5 of 6

than in the SEAL whereas for lower ciphertext dimensions

slightly better results are achieved by using SEAL library.

In addition, we compared execution time of homomorphic

operations with no security level versus operations with 128-

bit security level. We have measured execution time of

homomorphic operations in CKKS (approximate arithmetic)

and BGV (integer modulo arithmetic) schemes that are

implemented in the Palisade library.

In the experiments we have got similar ratio of results for

both schemes, so we present only results related to CKKS

scheme.

In the tests we have performed homomorphic operations by

using following scenarios:

1. No security level with ciphertext dimension n=512;

2. 128-bit security level with ciphertext dimension

n=32768.

Each operation was executed 1000 times. In both scenarios

it is used same value of ciphertext modulus q.

We have got following results of homomorphic operations

(CKKS scheme):

• Public key encryption operation is about 69 times faster

in scenario 1;

• Private key decryption operation is about 46 times

faster in scenario 1;

• Homomorphic addition operation is about 45 times

faster in scenario 1;

• Homomorphic multiplication operation is about 48

times faster in scenario 1.

VI. CONCLUSIONS

Homomorphic encryption allows performing computations

on the encrypted data, without decrypting them. The paper

compares the time needed to execute homomorphic

operations, like, public key encryption, secret key decryption,

addition and multiplication implemented in the open-source

libraries: Microsoft SEAL, Palisade, and HELib. The

operations are compared for BGV, BFV and CKKS

homomorphic encryption schemes implemented in the

libraries.

Homomorphic operations that are performed at client side:

public key encryption and secret key decryption if it is used

BGV scheme (integer arithmetic) have the best performance

when using methods that are implemented Palisade.

Homomorphic operations that are performed at the server

side: addition and multiplication are fastest when Palisade

library is used for all three tested schemes, except for BGV

addition and higher ciphertext dimensions in which cases

HELib has slightly better performance.

Execution time of homomorphic operations with no

security level versus operations with 128-bit security level

was performed and showed that all the operations are still by

two orders of magnitude slower than when no security is used

which presents an issue when complex machine learning or

AI calculations are required.

The performance of current fully homomorphic encryption

schemes, especially for large parameters, can still be

improved. Further improvement can be achieved by

implementation low-level homomorphic operations in an

assembly language which is executed on a hardware platform.

Also it can be achieved better performance if homomorphic

operations are implemented in hardware platforms like

Graphics Processing Unit (GPU), Application-Specific

Integrated Circuit (ASIC), and Field-Programmable Gate

Array (FPGA).

LITERATURE

[1] A. Acar, H. Aksu, A. Selcuk, and M. Conti, "A Survey on

Homomorphic Encryption Schemes: Theory and Implementation,"
ACM Comput. Surv. 1, 1, Article 1, http://dx.doi.org/10.1145/3214303,

2018.

[2] V. Lyubashevsky, C. Peikert, and O. Regev, "On ideal lattices and
learning with errors over rings," Journal of the ACM (JACM) 60, no. 6,

2013.

[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, "Fully Homomorphic
Encryption without Bootstrapping," Cryptology ePrint Archive, Report

2011/277. https://eprint.iacr.org/2011/277, 2011.

[4] J. Fan and F. Vercauteren, "Somewhat practical fully homomorphic
encryption," IACR Cryptology ePrint Archive, 2012:144, 2012.

[5] J.H. Cheon, A. Kim, M. Kim, and Y. Song, "Homomorphic encryption

for arithmetic of approximate numbers," Cryptology ePrint Archive,
Report 2016/421, https://eprint.iacr.org/2016/421, 2016.

[6] A. Viand, P. Jattke, A. Hithnawi, "SoK: Fully Homomorphic
Encryption Compilers", IEEE Symposium on Security and Privacy

2021.

[7] C. Aguilar Melchor, M. Kilijian, C. Lefebvre, T. Ricosset, "A
Comparison of the Homomorphic Encryption Libraries HElib, SEAL

and FV-NFLlib," in: Lanet JL., Toma C. (eds) Innovative Security

Solutions for Information Technology and Communications. SECITC
2018. Lecture Notes in Computer Science, vol 11359. Springer, Cham.

https://doi.org/10.1007/978-3-030-12942-2_32, 2019.

[8] T. Lepoint, M. Naehrig, "A Comparison of the Homomorphic
Encryption Schemes FV and YASHE," in: Pointcheval D., Vergnaud D.

(eds) Progress in Cryptology – AFRICACRYPT 2014. AFRICACRYPT

2014. Lecture Notes in Computer Science, vol 8469. Springer, Cham.
https://doi.org/10.1007/978-3-319-06734-6_20, 2014.

[9] T. Maha, S. Hajji, and A. Ghazi, "Homomorphic encryption applied to

the cloud computing security," in Proceedings of the World Congress
Engineering, vol. 1, pp. 4-6, 2012.

[10] L. Ducas and D. Micciancio, "FHEW: bootstrapping homomorphic

encryption in less than a second," in E. Oswald and M. Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015 - 34th Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, So_a, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of Lecture Notes in Computer

Science, pages 617-640. Springer, 2015.

[11] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, "Faster packed
homomorphic operations and e_cient circuit bootstrapping for tfhe," in

Advances in Cryptology-ASIACRYPT 2017: 23rd International

Conference on the Theory and Application of Cryptology and
Information Security, pages 377-408. Springer, 2017.

[12] O. Regev, "The learning with errors problem," in Blavatnik School of

Computer Science, Tel Aviv University Invited survey in CCC, 2010.
[13] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, "A full rns variant

of approximate homomorphic encryption," Cryptology ePrint

Archive,Report 2018/931, https://eprint.iacr.org/2018/931, 2018.
[14] Y. Polyakov, K. Rohloff, G.W. Ryan, and D. Cousins, "PALISADE

Lattice Cryptography Library User Manual (v1.10.6)", 2020.

[15] S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, and S.
Bhattacharya, "A Review of Homomorphic Encryption Libraries for

Secure Computation," http://arxiv.org/abs/1812.024, 2018.

[16] M. Albrecht, M. Chase, H. Chen and others, "Homomorphic encryption
standardization," homomorphicencryption.org, 2018.

[17] K. Laine, "Simple Encrypted Arithmetic Library 2.3.1," 2017.

[18] S. Halevi and V. Shoup, "Algorithms in Helib," in Advances in
Cryptology – CRYPTO 2014, J. A. Garay and R. Gennaro, Eds, Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 554–571, 2014.

[19] S.Halevi, V. Shoup, "HElib design principles," 2020.
[20] V. Shoup and others, "NTL: A library for doing number theory,"

http://www.shoup.net/ntl.

RTI2.5 Page 6 of 6

Abstract— Internet of Things (IoT) solutions connect large

numbers of devices, which generate various data and control

messages asynchronously. In the IoT system cloud, these

messages need to be queued in order to control the processing

load and prevent the overload in cases of traffic bursts. On the

other hand, one of the requirements the IoT cloud needs to fulfill

is the high availability. Therefore, multiple instances of services

accepting and processing the messages generated by the devices

are needed. There are various message queue technologies

available today, but they all have their limitations. In this paper,

we compare the performance of Apache Kafka and RabbitMQ in

the scenario of the highly available IoT cloud data processing.

Index Terms— message queue; high availability; load

balancing; internet of things.

I. INTRODUCTION

In the past decade, the world is witnessing the expansion of

Internet of Things (IoT) solutions. Within IoT systems,

different devices are connected to perform a certain function

together. IoT use-cases are various, such as smart transport,

smart fabrics, smart cities, smart homes, etc.

In order to collaborate, the devices need to be able to

exchange data such as commands and state change reports.

Although the expansion of IoT has led to the development of

technologies such as ZigBee, Z-Wave, WiFi or Bluetooth

Low Energy, which enabled the connection of many different

actuators and sensors into large local mesh networks, in order

for an IoT solution to achieve its purpose, the existence of the

cloud component is also needed. The cloud allows remote

control and monitoring of the local networks, but it can also

provide advanced features which require processing of larger

quantities of historical system data, or the interaction with

components responsible for customer management, software

update and third-party services.

As the data from the IoT system is generated

asynchronously [1], and processing it requires a certain

amount of time, mechanisms are needed to control the cloud

load. Usually, this control is achieved by deploying various

message queueing systems, that allow to communicate

between different components of the cloud, and react to

Marko Milosavljević is with OBLO Living, Novi Sad, Narodnog fronta

21a, Serbia (e-mail: marko.a.milosavljevic@ obloliving.com).

Milica Matić is with the Faculty of Technical Sciences, University of Novi

Sad, Serbia (e-mail: milica.matic@rt-rk.uns.ac.rs).

Neven Jović is with OBLO Living, Novi Sad, Narodnog fronta 21a, Serbia

(e-mail: neven.jovic@ obloliving.com).

Marija Antić is with the Faculty of Technical Sciences, University of Novi
Sad, Serbia (e-mail: marija.antic@rt-rk.uns.ac.rs).

messages generated by the end devices [2]. Message queuing

technologies which are available today differ in terms of the

performance guarantees they offer, and depending on the

actual use-case, metrics such as latency, disk space, RAM

memory or processor usage may be a limiting factor [2], [3].

The comparison of Kafka and Apache Pulsar has been

performed by the authors in [4], and it has been shown that,

although Apache Pulsar may achieve better results in terms of

resource usage, the maturity of the solution, available

documentation, and possibility to integrate with other data

processing tools, may be a reason to favor Kafka in the

commercial deployment scenarios. On the other hand, Kafka

and RabbitMQ have been compared in [5], to show that

RabbitMQ has its advantages in terms of the achieved

throughput on a single server instance, but the scaling options

are on Kafka’s side.

In this paper, we explore the possibility of replacing the

already implemented RabbitMQ message queueing within the

smart home system cloud [6],[7], with Apache Kafka. Within

the deployed smart home cloud, messages generated by end

devices are processed by multiple cloud services. As the

number of supported features is growing, so is the number of

the cloud services that process these messages. Also, some of

the messages need to be processed by multiple of these

services. Additionally, as the number of users grows, the

system needs to be scaled up, and, as already said, Kafka has

its advantages in this domain. The paper is organized as

follows: in Section II, the elements of smart home system and

its cloud architecture are introduced, then the overview of

RabbitMQ and Kafka is given in Section III and Section IV.

Finally, the performed tests and their results are presented in

Section V.

II. SMART HOME CLOUD DATA BUFFERING

In the existing smart home solution, the end devices within

the household use technologies such as ZigBee, Z-Wave and

ONVIF/IP to connect to the home gateway – Fig. 1. The

gateway is responsible to execute the core system logic: it

implements the middleware which represents all of the

devices in the same way, regardless of the communication

technology they use in the local network, and allows them to

work together, according to the automation rules set up by the

user. To communicate with the user applications and cloud

backend, the gateway uses MQTT protocol. MQTT conveys

commands issued by the user, system control messages, and

reports about device state changes. Control messages are

processed on the cloud side, for the purpose of system

Comparison of Message Queue Technologies

for Highly Available Microservices in IoT

Marko Milosavljević, Milica Matić, Neven Jović, Marija Antić

RTI2.6 Page 1 of 4

administration, upgrade, backup and restore. Also, reports

about device state changes are stored to provide user with the

information about the history of system usage [7].

Fig. 1. Smart home system components and communication between them.

The observed smart home cloud system solution has the

microservice-based architecture. It is highly available (HA),

which means that the entire system is fault tolerant, i.e. that

there are multiple instances of every microservice running [6].

In order to prevent problems with MQTT messages

processing due to the overload of cloud system, or the failure

of some instances, temporary data buffering is necessary. In

the temporary data buffering module all important messages

are first queued, allowing relevant microservices to process

them at their own pace.

In the current implementation, RabbitMQ is used for the

purpose of data buffering. The incoming MQTT messages are

parsed by the B2Q (Broker to Queue) microservice, and

directed to the appropriate RabbitMQ queues, based on the

information they contain. All of the instances of one cloud

microservice share the load of processing the messages from

the RabbitMQ queue they are associated with. The problem

here represents the fact that if one message needs to be

processed in multiple ways (i.e. it is relevant as the input for

multiple cloud microservices), it has to be replicated to

multiple queues. Therefore, in this paper we explore the

possibility of replacing RabbitMQ with Apache Kafka. We

implement the B2K (Broker to Kafka) microservice, which

publishes messages to Kafka queues, that the processing

microservices are subscribed to, and we compare the

performance of the two implementations.

A. RabbitMQ

 RabbitMQ is a message queue manager, which has

originally implemented the Advanced Message Queuing

Protocol (AMQP). Later it was extended to support Streaming

Text Oriented Messaging Protocol (STOMP), Message Queue

Telemetry Transport (MQTT), and other protocols, but

AMQP remains the default and the most widely used one.

RabbitMQ messages can convey any kind of information,

from a simple text message to a message with information

about processes important for the system. Message broker

stores the message into the queue, until the application fetches

it for processing. Message queuing allows web servers to

avoid the overload, as they can control the number of the

messages that are processed simultaneously. It is also useful

for distributing messages to multiple consumers sharing the

load and providing fault tolerance.

Fig. 2. RabbitMQ message delivery mechanism.

Producer applications create the messages, but the

messages are not published directly to a queue. First, the

producer sends the message to the RabbitMQ exchange

running on the broker – Fig. 2. The exchange is responsible

for routing the messages to different queues, based on the

configured bindings and routing keys. Four types of

exchanges exist - direct, topic, fanout and headers exchange.

In the direct exchange, the message is routed to the queue

whose binding key matches the routing key of the message.

The topic exchange does a wildcard match between the

routing key and the routing pattern specified in the binding.

The fanout exchange routes messages to all of the queues

bound to it. The headers exchange uses the message header

attributes for routing. Consumers subscribe to the queues and

process the messages from them. All consumers subscribed to

the same queue will share the load of processing the messages

from that queue. The messages are deleted from the queue

after processing.

B. Apache Kafka

Apache Kafka is an event streaming platform. It is elastic,

distributed, highly scalable and fault-tolerant. Similar to

RabbitMQ, Kafka has the client and server side. Kafka clients

and servers communicate using TCP protocol.

 Kafka implements the publish/subscribe mechanism, and

allows processing streams of events as they arrive into the

system or retrospectively, but also allow to store streams of

events as long as they are needed.

Fig. 3. Kafka message processing mechanism.

RTI2.6 Page 2 of 4

Similar to RabbitMQ, the Apache Kafka clients can act as

producers and consumers – Fig. 3. Producers represent client

applications that write (publish) events to Kafka. On the other

hand, consumers are subscribing to topics, reading and writing

events. Producers and consumers are not aware of each other.

They work completely independently, and that is a key design

to achieve high scalability. Therefore, producers will never

need to wait for consumers.

When data is written to Kafka, it is written in the form of an

event containing the key, value, timestamp and optional

metadata. Events are stored in topics. The durability of events

inside Kafka’s topic is configurable. Unlike RabbitMQ, Kafka

events can be read whenever they are needed, because events

are not deleted after consumptions. Events can be stored as

long as needed. Storing data for a long time does not affect

Kafka.

Topics in Kafka are partitioned, and one Kafka topic can

have any number of partitions defined in the Kafka

configuration file. Events are ordered inside the partition in

the exactly same order as they were written, and one

consumer can process data from one partition only. However,

the data stored in one partition can be processed by multiple

consumers belonging to different consumer groups, i.e. one

message can be processed multiple times, without the need to

duplicate it. Offset is an integer number that is used to

maintain the current position of a consumer inside partition.

Every topic can be replicated, so that there are dozens of

brokers that have a copy of data. This makes data fault-

tolerant and highly-available.

III. TESTING AND RESULTS

Tests were designed to measure CPU load of smart home

system servers when RabbitMQ and Apache Kafka are used

for data buffering. RabbitMQ and Kafka brokers were run on

the 8-core Intel i7 processor with 8 GB of RAM memory.

TABLE I

RABBITMQ TEST RESULTS

Setup
CPU usage on 8 cores [%]

average maximum deviation

16 producers

8 queues

0 consumers

324 640 108

16 producers

8 queues

8 consumers
410 794 197

16 producers

8 queues

16 consumers
486 800 167

16 producers

8 queues

32 consumers
553 800 147

To test the RabbitMQ buffering, 16 producer B2Q

processes were created, that published messages to 8 queues.

The messages from these queues were processed by a variable

number of consumers (0, 8, 16, 32). Producers were

configured to publish messages every 1 ms. Test results are

presented in Table I.

RabbitMQ reached CPU limit after 16 consumers, but was

able to continue working stably, while the setup with 32

consumers stopped working after ten minutes. The throughput

of the system was approximately 11000 messages per second.

Maximum CPU usage was 800%, i.e. all eight cores were

used 100%.

To test Kafka performance, 16 producers were created,

which published to the variable number of partitions (32, 64,

128). Since Kafka allows only one consumer per partition, the

number of consumers was also varied from 0 to 128. Test

results are presented in Table II.

In any of test cases limit of Kafka maximum CPU load was

not reached. It can be observed that the CPU usage deviation

is smaller than in RabbitMQ case. Therefore, the server stays

stable, even as the number of messages that are stored in

Kafka increases with time.

TABLE II

KAFKA TEST RESULTS

Setup
CPU usage on 8 cores [%]

average maximum deviation

 16 producers

 32 partitions

 0 consumers

210 573 65

 16 producers

 32 partitions

 32 onsumers
202 347 43

 16 producers

 64 partitions

 0 consumers
186 473 90

 16 producers

 64 partitions

 64 consumers
208 360 37

 16 producers

128 partitions

 0 consumers

150 300 93

 16 producers

128 partitions

128 consumers

480 553 53

IV. CONCLUSION

This paper gave a brief description of some of the message

queueing technologies that can be used for flow control and

load balancing in the IoT scenario. RabbitMQ and Apache

Kafka were deployed within the smart home system cloud,

and their performance was tested for a variable number of

consumers.

The presented test results indicate that data buffering in

Kafka is highly stable and has the lower average CPU usage.

At any point of testing, maximum CPU usage was never

reached. Therefore, in our further work we will focus on

integrating Kafka in the data collection and storage module of

the smart home system. Using Kafka will allow us to process

the same messages multiple times, without the need to

duplicate data. This, in turn, opens the possibility to create

advanced data processing scenarios which may bring added

value to the users of the smart home system.

RTI2.6 Page 3 of 4

V. ACKNOWLEDGMENT

This research (paper) has been supported by the Ministry of

Education, Science and Technological Development through

the project no. 451-03-68/2020-14/200156: “Innovative

scientific and artistic research from the FTS (activity)

domain”.

REFERENCES

[1] F. Metzger, T. Hoßfeld, A. Bauer, S. Kounev and P. E. Heegaard,
“Modeling of Aggregated IoT Traffic and Its Application to an IoT

Cloud,” Proceedings of the IEEE, vol. 107, no. 4, pp. 679-694, April

2019
[2] G. Fu, Y. Zhang and G. Yu, “A Fair Comparison of Message Queuing

Systems,” IEEE Access, vol. 9, pp. 421-432, Jan. 2021

[3] H. Wu, Z. Shang and K. Wolter, “Performance Prediction for the
Apache Kafka Messaging System,” Proc. of IEEE

HPCC/SmartCity/DSS, Aug. 2019

[4] S. Intorruk and T. Numnonda, “A Comparative Study on Performance

and Resource Utilization of Real-time Distributed Messaging Systems

for Big Data,” Proc. of IEEE/ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), July 2019
[5] P. Dobbelaere and K. S. Esmaili, “Kafka versus RabbitMQ: A

comparative study of two industry reference publish/subscribe

implementations: Industry Paper,” Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems

(DEBS '17), June 2017

[6] M. Matić, E. Nan, M. Antić, S. Ivanović and R. Pavlović, “Model-
Based Load Testing in the IoT System,” Proc. of International

Conference on Consumer Electronics (ICCE-Berlin), Sept. 2019

[7] S. Ivanović, M. Antić, I. Papp, N. Jović, “Data Acquisition, Collection
and Storage in Smart Home Solutions,” Proc. of 6th International

Conference on Electrical, Electronic and Computing Engineering

(IcETRAN), May 2019

RTI2.6 Page 4 of 4

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2021 IEEE

Design of a Network Topology Using

CISCO NSO Orchestrator

Mioljub Jovanovic

Wireless Communications Research

Group

University of Westminster

London, UK.

Cisco Systems, Diegem, Belgium

m.jovanovic@my.westminster.ac.uk

mjovanov@gmail.com

Milan Cabarkapa

Department of Telecommunications

School of Electrical Engineering

University of Belgrade

Belgrade, Serbia.

cabmilan@etf.rs

Djuradj Budimir

Wireless Communications Research

Group

University of Westminster

London, UK.

School of Electrical Engineeing

Univrsity of Belgrade, Serbia.

d.budimir@wmin.ac.uk

d.budimir@etf.rs

Abstract— This paper presents the design of a network topology

using CISCO NSO orchestrator. The mismatch problem

solution between a network service and its monitoring is

proposed. Applying the proposed approach, the telemetry

efficiency ratio parameter greater than 40 is achieved. All tests

are performed in the real experimental conditions using CISCO

NSO orchestrator.

Keywords—intent based network; intent-aware monitoring

agent; model-driven telemetry; service assurance

I. INTRODUCTION

NFV orchestrators (e.g., Tacker [1], Cloudify [2], ONAP
[3], CISCO NSO [4]) are a crucial part for the dynamic and
optimal management and orchestration of various virtualized
network resources (e.g., VMs, Virtualized Network
Functions). 5G technology, empowered by NFV and SDN,
presents a new dimension of complexity that must be
addressed by service assurance [5].

Using these orchestration software having higher level of
abstraction, the rapid connectivity and provisioning could be
achieved at lower prices while letting to operators possibility
to build, arrange and preserve network service [6], [7].

Communication Service Provider (CSP) networks – such
as Virtual Evolved Packet Core are subject to very dynamic
configuration change. Provisioning, modification and
termination of packet data services are being done in rapid
pace in order to keep up with dynamic environment needs and
cater to main business drivers, such as IoT, Video etc. SDN
technologies using Network Slicing approach are foundation
for such a dynamic environment, allowing automated and
programmatic configuration of network services [5].

Traditionally network services are being monitored by
deployment of probes which generate traffic and provide
feedback on the status of the service. Due to such rapid
changes in network service configuration there is open
question in regard to monitoring and assuring provisioned
services: What is the right approach to take in order to monitor
the network which constantly changes? How to ensure
network service is operational and carefully selecting probes
to monitor network service? [5], [8].

Monitoring using active probes face challenges such as
introduction of synthetized traffic within the data flow, end to
end monitoring only with no understanding of the data path,

lack of comprehension of the configuration intent etc [9]-[11].
Generated traffic using probes should resemble real traffic of
the network service, however even with almost perfect
synthetized traffic, there is substantial possibility that real
network service traffic could be impacted, but probe does not
detect such a problem since probe is not part of the actual real
data flow [12]. Therefore, there is a gap in regard to
monitoring and assurance of the actual network service data
flow, with all network elements data traverses on the path
between endpoints.

We are proposing solution based on Intent Based
Networking (IBN). The proposed approach consists by:

• Extraction of configuration intent by analysing of the
network service configuration.

• Discovery of the network elements along the
network service data path.

• Leveraging existing network monitoring capabilities
of network elements, along with probes and Model Driven
Telemetry (MDT) to get more accurate information on the
status of desired Network Service.

Research methodology used in understanding benefits of
proposed monitoring approach involves qualitative approach,
comparative analysis of existing - probe based monitoring and
proposed solution based on Intent Based Networking (IBN).
By using the proposed approach, we have achieved higher
than 40 for the telemetry efficiency ratio parameter.

II. INTENT BASED NETWORK METHODOLOGY

Role of Intent Based Network is transforming Business
Intents into configuration changes. As depicted in Fig. 1,
Intent at high level represents one or set of different
requirements which describe service or network.

RTI3.1 Page 1 of 4

mailto:m.jovanovic@my.westminster.ac.uk
mailto:m.jovanovic@my.westminster.ac.uk
mailto:d.budimir@wmin.ac.uk
mailto:d.budimir@wmin.ac.uk

Fig. 1. Intent Based Network – high level description

Those requirements are then being analysed by set of steps,
processes or algorithms in order to convert/render high-level
requirements into lower form of abstraction, which could then
be used to configure computer network elements in order to
enable needed service. As business intent is being transformed
into configuration on devices it’s important to enable
monitoring of the network services in order to have
understanding whether desired service is operational and
functioning in accordance to the business requirements – key
performance indicators (KPIs). As graphically demonstrated
in Fig. 2, traditionally in legacy network such monitoring
would mean enabling monitoring on different data points
including but not limited to: SNMP, Netflow/SFlow,
telemetry and even Command Line Interface outputs (CLI).
Acquiring data from different sources would certainly
improve visibility on the state of the network, yet it would
greatly impact efficiency and would aplify amount of
telemetry data transferred over the network, but without
providing clear answer on whether the intent has been fulfilled
and whether network service is running and operational as per
pre-defined KPIs [13].

Fig. 2. Main query is - Is the Network Service running according to the
pre-defined KPIs?

III. EXPERIMENTAL SETUP

Experimental setup consists of the following routers:
Simulated customer premises routers (CE), provider core
routers (P) and provider edge routers (PE). Fig.3, shows the
network with service models which is configured using the
orchestration network architecture.

Fig. 3. Business Intent communicated to the orchestrator

In Fig. 4 orchestrator is configuring devices in order to
fulfil desired service intent. Orchestrator uses Netconf
protocol to access and configure network elements which are
taking part in the data path to enable desired service.

Fig. 4. Orchestrator sends configuration to network devices

In the provided example, actual intent is to establish
communication – tunnel service between ce-1 and ce-3
network device in order to enable communication between
Client-1 and Client-3. In order to traverse path between
Client-1 and Client-3, data packets need to cross pe-1, p-2 and
pe-3 as shortest path between the endpoints. Of course, this
trajectory may be different in function of routing protocols and
connectivity in function of time, but topology discovery and
update events will be discussed in future work. At this time,
we are focusing on the fixed path through the experimental
network and assuming there would not be topology changes
throughout the experiment shown in Fig. 5.

Fig. 5. Service is configured. Question: Service running within
acceptable KPIs? Question: Is configuration model mapped to monitoring

model?

RTI3.1 Page 2 of 4

In Fig. 6 we can observe each of the network devices
streaming telemetry data to the collector, monitoring platform
which is receiving and processing all telemetry data.

Fig. 6. Telemetry data streamed to Monitoring/Analytics platform.
250000 different stats per router (740 kbps of data)

Thanks to the fact involved network elements are already
using Model Driven Telemetry processing data points by
collector is simpler. However, as there are so many different
data points which are being monitored on devices, there may
be information overload since on average router there could
easily be 250000 different monitored data points. Such as
large number of collected data points could essentially mean
that amount of generated telemetry data may be significantly
high and could pose challenge for network infrastructure as
well as could cause impact to collector processing capacity.

Instead of monitoring all relevant and non-relevant data
points, causing unnecessary increase of traffic and compute
resources to process large amount of data, we’re proposing
significant reduction in amount of telemetry data by ensuring
that only minimal set of relevant data points is exported from
the network devices by means of intent-aware monitoring
agent (IAMA). Data reduction task is accomplished by
deploying IAMA locally to the network devices, thus
leveraging local area network (LAN) links and avoiding use
of wide-are links (WAN) for large amount of data points.
IAMA is aware of the service details and is also capable of
receiving telemetry data. As represented on IAMA
architecture in Fig. 7, service intent is received by from the
orchestrator while MDT is received from network devices.

Fig. 7. Intent-aware monitoring agent architecture

IAMA is performing analysis on the received datasets and
series of computations in order to determine actual state of the
service. Steps performed by IAMA: collecting MDT,
processing and exporting reduced – yet more relevant MDT is
called IAMA pipeline. Final result of IAMA pipeline is
significantly reduced amount of MDT containing only high-

level status of the monitored service, as per pre-defined Key-
Performance Indicators (KPIs).

IV. RESULTS

Measuring objective was to determine how much data is
actually received via MDT under usual telemetry export, with
typical data points for router such as environmental, interface
stats etc. Result of this work outlines amount of measured data
after performing analysis of the incoming telemetry and
mapping to service aware MDT. All routers and all incoming
data points were taken into account.

TABLE I. EXPERIMENTAL RESULTS

As outlined in Table I, demonstrated experimental results
have reduced the amount of incoming MDT from routers from
5.2 GB to 130 MB, while preserving relevant information
which is – is service running and operational per pre-defined
KPIs.

V. CONCLUSION

The design of a network topology using CISCO NSO

orchestrator has been presented in this paper. The solution

about mismatch problem between a network service and its

monitoring has been proposed. The telemetry efficiency ratio

parameter of more than 40 has been achieved. The amount of

telemetry data has been reduced by injecting service aware

information in MDT and removing all overhead MDT data

points which do not need to be exposed to the network

operator who is monitoring the service. Of course, full MDT

can also be enabled if desired.

REFERENCES

[1] https://docs.openstack.org/tacker/latest/

[2] https://cloudify.co/

[3] https://www.onap.org/

[4] https://www.cisco.com/c/en/us/solutions/service-provider/solutions-
cloud-providers/network-services-orchestrator-solutions.html

[5] Anil Rao, “Reimagining service assurance for NFV, SDN and 5G”,
White paper, Analysis Mason, 2018.

[6] R. Mijumbi, J. Serrat, J. l. Gorricho, S. Latre, M. Charalambides, and
D. Lopez, “Management and Orchestration Challenges in Network
Functions Virtualization,” IEEE Communications Magazine,vol. 54,
no. 1, pp. 98–105, Jan 2016.

[7] A. J. Gonzalez, G. Nencioni, A. Kamisiski, B. E. Helvik, and P. E.
Heegaard, “Dependability of the NFV Orchestrator: State of the Art
and Research Challenges,” IEEE Communications Surveys Tutorials,
pp. 1–23, 2018.

[8] M. Pattaranantakul, R. He, Z. Zhang, A. Meddahi and P. Wang,
"Leveraging Network Functions Virtualization Orchestrators to
Achieve Software-Defined Access Control in the Clouds," in IEEE

Intent-Aware Monitoring Efficiency

Total

MB

Rate 1

min in

kbps

Rate 5

min in

kbps

Rate 15 min

in kbps

Incoming from

routers
5200 740.7 700.1 711.7

This work 130.8 17.3 17.2 17.1

Outgoing to
Analytics

platform

224.9 29.5 29.1 29.3

This work
efficiency ratio

40.9 42.8 40.6 41.7

RTI3.1 Page 3 of 4

Transactions on Dependable and Secure Computing, pp. 1-14, Nov.
2018.

[9] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia and P. Casas, "A
Survey on Big Data for Network Traffic Monitoring and Analysis," in
IEEE Transactions on Network and Service Management, vol. 16, no.
3, pp. 800-813, Sept. 2019.

[10] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F.
Estrada-Solano, and O. M. Caicedo. A Comprehensive Survey on
Machine Learning for Networking: Evolution, Applications and
Research Opportunities. J. Internet Serv. Appl., 9(16), 2018.

[11] Cisco Systems, Inc, “GitHub Network Telemetry Pipeline,” Cisco
Systems, Inc, 2017. [Online]. Available:
https://github.com/cisco/bigmuddy-network-telemetry-pipeline

[12] M. Jovanović, M. Čabarkapa, B. Clause, N. Nešković, M. Prokin, B.
Đurađ, Model driven telemetry using Yang for next generation network
applications, 5th International Conference on Electrical, Electronic and
Computing Engineering (IcETRAN) 2018, pp. 1186 - 1189, Palić,
Serbia, June, 2018.

[13] B. Claise, J. Clarke, and J. Lindblad “Network Programmability with
YANG: The Structure of Network Automation with YANG,
NETCONF, RESTCONF, and gNMI”, Addison-Wesley Book, 1st
edition, 2019.

RTI3.1 Page 4 of 4

Mina Milanović, Aleksandar Milosavljević and Marina Ranđelović

Abstract—Invasive fungal infections (IFI) and systemic

fungal infections (SFI), caused by molds are on the rise,

based on data from literature. Diagnostics of those

infections can sometimes be inefficient; they require a

longer period of time in laboratory procedures and

sometimes may lead to late diagnosis or misdiagnosis, which

can result in patient’s critical condition or even mortality.

The goal of this research is to develop a neural network

model that will perform identification of molds, and thus

accelerate the process of diagnostics. A classifier has been

developed, using an EfficientNet-B1 deep convolutional

neural network (CNN) and sample images obtained at the

Department of Microbiology and Immunology, Medical

faculty, University of Niš, Serbia, archives. We applied

Grad-CAM visualization to determine morphological

characteristics used by the model to classify samples.

Index Terms—molds identification, fungal infection,

convolutional neural networks, deep learning, Grad-CAM.

I. INTRODUCTION

Ability of fungus to start a pathological process in the

host organism is as a specific phenomenon, according to

numerous authors, because, excluding groups of

dermatophyte molds and tropical fungi, these

microorganisms does not need pathogenicity for their

dissemination and survival in nature [1]. Among 400.000

species of fungi known in the nature, around 50 kinds can

cause invasive fungal infections(IFI), that are

characterized by very high morbidity (serious clinical
case) and mortality. Numerous reasons have contributed

to the increase of number of infections among humans,

and incidences of IFI caused by molds are constantly

growing. The most important reasons are complex

procedures and medical interventions, intensive

treatments with antibacterial drugs, cytostatics,

immunosuppressants; longer lifespan of a humans,

increase in the number of patients at high risk due to

primary diseases and treatment, the appearance of

resistance in fungi and certainly the establishment of

mycological analyzes and higher diagnostic efficiency,

i.e. more successful diagnostic procedures in a
microbiology [2].

Mina Milanović – Faculty of Electronic Engineering, University of

Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

mina.milanovic@elfak.rs).

Aleksandar Milosavljević – Faculty of Electronic Engineering,

University od Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-

mail: aleksandar.milosavljevic@elfak.ni.ac.rs).

Marina Ranđelović - Department of Microbiology and Immunology,

Medical faculty, University of Niš, Blvd Zorana Djindjica 81, 18000

Niš, Serbia (e-mail: marina87nis@gmail.com).

Fungi are eukaryotic microorganisms. In nature, they

are widespread, living in soil and water, on organic
materials as saprophytes, as symbionts or parasites of

animals, plants, or human [3]. Based on the structure, all

fungi can be primarily divided into yeasts -unicellular

fungi with basal cell blastoconidia (blastospora) and

multicellular fungi (molds) with a basic hypha cell.

Molds classification is performed on the basis of

structure, i.e. macroscopic and microscopic

morphological characteristics. Differences between the

morphology of molds, hypha structure, production of

different conidiae (spores), enable a diagnostic procedure

for their identification [4].
This goal of this project is to develop a neural network

model that will perform identification of molds, and thus

accelerate the process of diagnostics. No similar projects,

involving determination of molds or their morphological

characteristics, could been found during our research, and

beside some rapid tests that can be used only for most

common types of infections, whole process of

determination is manual and sometimes takes days, so

providing an application that can accelerate the process

can be very beneficial. During recent years, number of

infections caused by more rare species of fungi has

drastically increased, which was a motivation for a
project like this, which includes classification of so far

neglected types of fungi.

Sample collection has contained high resolution

images, which needed manual preparation for training, as

described in chapter II. Prepared dataset was expanded

before training and EfficiencyNet-B1 architecture of

convolutional neural network (CNN) has been used for

developing and training the model, which makes the core

of the classifier, as presented in chapter III. Results and

discussion of the results, including visualization of

decision making process using Grad-CAM method, have
been shown in chapter IV. Conclusion and planned

further steps have been described in chapter V.

II. DATA

A. Dataset description

Fungi, based on morphology are classified in group of

yeasts -unicellular fungi with basal cell blastoconidia

(blastospora) and multicellular fungi (molds) with a basic

hypha cell. Molds can be primarily divided into

dermatophytic and non-dermatophytic fungi [5].
Dermatophytic molds, in other words, dermatophytes,

are causative agents of superficial fungal infection of

skin, hair and nail with prevalence of 22-25% worldwide.

Visualization of microscopic morphological

characteristics used for determination of

infectious molds

RTI3.2 Page 1 of 5

Other group of molds caused invasive fungal infection

(IFI) and in recent years incidence of these diseases has

been on the rise [6].

Diagnostics of infections caused by dermatophytic

and non-dermatophytic fungi can sometimes be

inefficient; they require a longer period of time in

laboratory procedures and sometimes may lead to late

diagnosis. In case of SFI (systemic fungal infection) late

diagnosis or misdiagnosis can lead to wrong treatment, as

well as not implementing measures for preventing the
spread of infection [7]. On the other hand late diagnosis

or misdiagnosis of IFI can result in patient’s condition

impairment or even mortality. In our previous paper [8],

we considered only fungi genera that cause invasive

infections, but we extended the dataset so types of fungi

that cause systematic fungal infections are included too.

In both groups molds classification was performed on

the basis of structure, i.e. macroscopic and microscopic

morphological characteristics. Expert’s knowledge and

experience are needed for differentiation and

identification of isolated fungi in laboratory practice.

B. Morphologial differences of fungi

Microscopic morphological characteristics of

Dermatophytes are:

i) Microsporum spp. are characterized by

segmented hyphae, numerous macroconidiae that are

thick walled, rough, present microconidia;

ii) Trichophyton spp. are characterized by

segmented hyphae, rare macroconidiae that are thin

walled and smooth, numerous microconidiae;

iii) Epidermophyton spp. are characterized by

segmented hyphae, numerous macroconidiae that are

thin and thick walled, smooth and microconidiae are

not formed.

Microscopic morphology of non-dermatophytic

genera is characterized by:

i) Aspergillus spp.: Septate hyphae with unbranced

conidiophores which ending with swollen vesicule

that is covered with flak-shaped phialides on which

are chains of mostly round sometimes rough conidia;

ii) Penicillium spp.: Septate hyphae with branched

or unbrenched conidiophores that have secondary

branches known as metulae or prophialides on which

are phialides with chains of conidiae (Figure 1);

iii) Fusarium spp.: Septate hyphae with formation

of canoe shaped or sickle shaped multiseptate

macroconidia that are produced from phialides on

unbranched or branched conidiophores;

iv) Alternaria spp.: Septate, dark hyphae with

septate conidiophpores and formation of large

macroconidiae which have transverse and

longitudinal septations;

v) Mucor spp.; Wide and practically non-septate

hyphae, speorangiophores are long, often branched

and bear terminal round spore-filled sporangia.

Figure 1. Penicillium morphology

C. Preparation of dataset images for training

Machine processes a picture as an array of pixels and
numbers, so classification of images can be a rather
difficult job, especially in cases where brightness is not
the best, position of camera changes or the object is not
fully present on the picture, which doesn’t present a
problem for a person. But, like a human, machine learns in
the same manner, with examples of different categories
with labels, so it eventually can recognize the patterns on
the images.

For our model, we extracted examples of eight fungal
genera, which are Aspergillus spp., Fusarium spp.,
Epidermophyton spp., Alternaria spp., Microsporumspp.,
Penicilliumspp., Trichophytonspp. and Mucorales spp.
(Figure 2). Images have been made at the Department of
Microbiology and Immunology, Medical faculty,
University of Niš, Serbia, laboratories, where molds have
been isolated from patient materials, examined on
microscopes and then photographed.

Figure 2. Examples of the dataset images

After preparing the images, which includes manually
cutting the high resolution (3024 x 4032 pixels) sample
images obtained from Department of Microbiology and
Immunology and selecting ones which contain significant

RTI3.2 Page 2 of 5

molds parts, it is necessary to determine which percentage
of them will be used for training, and which for
evaluation, since these sets have to be different so results
of evaluation can be regular. After manual preparation,
there were 6918 images, from which we used around 80%
for training and the rest of the images (20%) for
evaluation. In Table I, details of dataset used for training
are presented.

TABLE I

Details of used dataset

Number

of

classes

Number

of

samples

Number

od

samples

per

class

Number of

images

after

preparation

Images

used for

training

Images

used for

validation

8 492 50-65 6918 5603 1315

III. METHOD DESCRIPTION

For a neural network to learn to recognize certain
patterns in images, it is necessary to create examples so it
can learn from them. Sample images of patient materials
with molds are high resolution, taken on microscopes, and
they have to be cut, because of the GPU limitations when
it comes to neural network training, and also to make
more examples for network to learn. To obtain small
resolution images, it was necessary to cut original images
into the set of smaller images, suitable for training. After
cutting the images, and manually eliminating the ones that
don’t contain mold patterns, it was decided to expand the
dataset so examples can be more informative.

Operations that are used on the images to widen the
dataset and provide multiple examples from one image are
called augmentations [9]. Using different brightness,
rotation, translation, flipping of the images, etc., we made
more examples for training (Figure 3). In the end of this
process, dataset became more informative and training
could be started.

Figure 3. Augmentation of an image gives more images for training

Image classification is a very common problem, present
in many different fields of expertise, and traditional
approach to this problem is crafting a feature extractor that
can be used for training a classifier [10-13]. Earlier
solutions used artificial neural networks (ANNs) [14], but
major advantages in this area have been made in recent
years with development of convolutional neural networks
(CNNs) [15]. CNNs represent an aggregation of three
architectural ideas, local receptive fields, shared weights

and spatial subsampling, which makes them more
consistent in terms of translation and distortion [16].

During recent years, many different types of
convolutional neural network architectures have been
developed, but the one that gave the best result while
training our model is EfficientNet. EfficientNet has a
family of models (B0 to B7) and during training we tried
various variants, where B1 showed the best results, based
on accuracy measured. This models, introduced in 2019,
by Tan and Le [17], are among the most efficient models,
and their innovation lays in heuristic way to scale the
model (compound scaling), making them a good
combination of efficiency and accuracy [18].

Unlike conventional scaling methods (b-d on Figure 4)
that arbitrary scale a single dimension of the network,
compound scaling method uniformly scales up all
dimensions. In this method, appropriate scaling
coefficients are determined with grid search, which
discovers relationships between different scaling
dimensions. Applying those coefficients to baseline
network gets the desired target model size [19].

Figure 4. Comparison of different scaling methods [17]

Programming language Python [20] and library Keras
have been used for training the model. Keras library [21],
implemented in Python, has an interface which can be
used for creating and training neural network models,
including EfficientNet family. Keras is a deep learning
API, running on top of the machine learning
platform TensorFlow [22]. They were developed with a
focus on enabling fast experimentation.

Figure 5. Solution diagram

Model has been compiled with RMSprop algorithm
[23] for optimization (optimizers module),

RTI3.2 Page 3 of 5

sparse_categorical_crossentropy type of error (losses
module), and the only parameter of metric during learning
has been set as accuracy.

EfficientNet-B1 architecture model makes the core of
this solution. After training of this model, feature vectors
are obtained, which are then used to form a classifier.
Classifier can then be used to determine which of 8
classes of molds new input images belong to. Diagram of
current solution is shown in Figure 5.

Adjusting parameters of Keras functions and starting
the training with different number of epochs, results at
these phase of the project show that the trained model
after twenty one epochs gives the best results, with
95,74% validation accuracy in classification of images
(Figure 6). In our previous paper [8], with a slightly
different (including only invasive fungi infections) and
drastically smaller dataset, we got the accuracy of around
92%, which shows that we reached a very good
improvement with new model. Also, in our previous work
we haven’t tried EfficientNet neural networks, which gave
the best accuracy for our, now expanded, dataset.

Figure 6. Confusion matrix showing accuracy in %

IV. RESULTS AND DISCUSSION

Because of specific nature of the dataset and sample
making, model has not been compared and tested with
other datasets or models. In Table II, average results for
each fungi genera have been presented.

TABLE II

Results for different fungi genera

Fungi genera spp. Accuracy [%] Samples placed
correctly/samples per

class

Alternaria 96,7 177/183

Aspergillus 89,7 139/155

Epidermophyton 95,1 155/163

Fusarium 99,3 144/145

Microsporum 98,8 166/168

Mucorales 98,8 161/163

Penicillium 93,2 151/162

Trichophyton 94,3 166/176

After validation of the model, it has also been tested
manually, showing that the results for most images are
accurate. Figure 7 shows confusion matrix, which contains

accuracy results per classification class, showing
problematic areas too. The most misclassifications
happened for Apergillus spp. genera, for which we had the
least number of clear images, which points out that more
images have to be obtained or existing images should be
sharpened, so better accuracy can be achieved.

Figure 7. Confusion matrix

Taking into consideration that neural networks learn
from examples, from which they learn patterns, and that
some sample molds images contain not only significant
parts used for diagnostics, but also other parts of materials
(for example plain parts of the branches, end of slides on
the microscope, different base colors) it is important to
verify those learned patterns to be sure that classification,
and later diagnostics, performed by the model is valid.

Grad-CAM method is a technique used for
visualization of decisions from CNN models, making the
decision making process transparent and understandable
[24]. This method uses gradients of a target concept (in
our cases molds) flowing into final convolutional layer in
a network, so it can highlight regions of significance. This
way, part of the image which had lead to decision of the
classifier is highlighted.

Based on the majority of heat maps got from Grad-
CAM method, decisions made by our classier have been
done on significant parts of mold samples. Figure 8 shows
the examples.

Figure 8. Examples of good pattern recognition visualization

RTI3.2 Page 4 of 5

Grad-CAM method is very useful in terms of
concluding which of the test images have been
misclassified because of the wrong pattern recognition in
wrong part of the image (Figure 9). In our case, most of
the misclassification happened because of poor quality of
input images, because some of them are taken by mobile
phones brought close to the microscope oculus, which can
result in blurry image. In this way, visualizing the decision
making process pointed out that maybe images should be
sharpened before processing.

Figure 9. Examples of bad pattern recognition on blurry samples

V. CONCLUSSION

In this paper, we described developing a identification
model which, based on accuracy results and testing,
presents a solid base for developing an application that
can be used in practice and drastically accelerate the
process of diagnostics.

Grad-CAM method used to visualize the decision
making process has proven to be a very efficient method
of evaluation of the model, not only in terms of validating
the “thinking” process of the classifier, but to point out
flaws and cases where errors happen.

Future development of the model and application will
involve developing an algorithm that can reach the
decision based on high resolution photo, from which
number of smaller images will be cut, and then
classification will be performed on each of the small
sample images. This approach will increase precision of
the diagnostics, since the decision will be a ruling of the
mayor, rather than determination based on one small
sample.

ACKNOWLEDGMENT

We would like to thank the Department of
Microbiology and Immunology, Medical faculty,
University of Niš, Serbia, for all resources, samples and
advices given during the work on this project.

REFERENCES

[1] Tasić S, Pešić S: Gljivičneinfekcije, dijagnoza I mogućnosti

terapije, Punta Niš, Medicinski fakultet Niš, 2006 (odluka
nastavno naučnog veća 14-376-5/2-2, 2006, udžbenik) R-12-5 M-

44-2.

[2] Otašević S, Tasić-Miladinović N. Tasić A: Medicinska
parazitologija-udžbenik sa CD-om. Univerzitet u Nišu- Medicinski

fakultet Niš 2011 14-6735-6/2-4 2011.

[3] Valentina Arsić-Arsenijević, Marina Milenković, SuzanaOtašević,
Dušan Pavlica. Medicinska mikologija i parazitologija. Društvo

medicinskih mikologa Srbije, Centar za inovacije u mikologiji
Beograd, V. Arsić-Arsenijević, Beograd 2012. ISBN 978-86-

915391-1-5.

[4] Davise HL. Medically important fungi-a guide to identification,

3rd edn. Washington: American Society for Microbiology; 1995.

[5] S Tasić-Otašević , M Golubović, S Đenić, A Ignjatović, M
Stalević, S Momčilović, M Bojanović , V Arsić-Arsenijević

Species distribution patterns and epidemiological characteristics of
otomycosis in Southeastern Serbia. J Mycol Med; 2020 Jun

30;101011. doi: 10.1016/j.mycmed.2020.101011.

[6] Otašević S, Momčilović S, Stojanović NM, Skvarč M, Rajković
K, Arsić-Arsenijević V. Non-culture based assays for the detection

of fungal pathogens. J Mycol Med. 2018 Jun;28(2):236-248. doi:

10.1016/j.mycmed.2018.03.001. Epub 2018 Mar 29.

[7] Pesic Z, Otasevic S, Mihailovic D, Petrovic S, Arsic-Arsenijevic

V, Stojanov D, Petrovic M. Alternaria-Associated Fungus Ball of
Orbit Nose and Paranasal Sinuses: Case Report of a Rare Clinical

Entity. Mycopathologia. 2015 Aug;180(1-2):99-103. doi:

10.1007/s11046-015-9881-6. Epub 2015 Mar 7.

[8] Mina Milanović, Aleksandar Milosavljević, Determination of
molds isolated from patient materials, based on the microscopic

morphological characteristics, ICIST, March 2021 (proceedings in

preparation)

[9] How to Load Large Datasets From Directories for Deep Learning

in Keras by Jason Brownlee. Available online:
https://machinelearningmastery.com/how-to-configure-image-data

-augmentation-when-training-deep-learning-neural-networks/

(accessed on 20 May 2021).

[10] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural

Features for Image Classification,” IEEE Trans. Syst. Man.

Cybern., vol. SMC-3, no. 6, pp. 610–621, Nov. 1973.

[11] J. A. Jose and C. S. Kumar, “Genus and Species-Level
Classification of Wrasse Fishes Using Multidomain Features and

Extreme Learning Machine Classifier,” Int. J. Pattern Recognit.

Artif. Intell., Mar. 2020.

[12] P. J. D. Weeks, M. A. O’Neill, K. J. Gaston, and I. D. Gauld,

“Species-identification of wasps using principal component
associative memories,” Image Vis. Comput., vol. 17, no. 12, pp.

861–866, 1999.

[13] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray,
“Visual Categorization with Bags of Keypoints,” in Workshop on

statistical learning in computer vision, ECCV, 2004.

[14] I. Kanellopoulos and G. G. Wilkinson, “Strategies and best

practice for neural network image classification,” Int. J. Remote

Sens., vol. 18, no. 4, pp. 711–725, Mar. 1997.

[15] Y. LeCun et al., “Handwritten digit recognition with a back-

propagation network,” papers.nips.cc, pp. 396–404, 1990

[16] Y. LeCun and Y. Bengio, “Convolutional networks for images,
speech, and time series.MIT Press, Cambridge,” Handb. brain

theory neural networks, vol. 3361, no. 10, 1995

[17] EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks, Mingxing Tan, Quoc V. Le, International Conference

on Machine Learning, 2019

[18] Image_classification_efficientnet_fine_tuning. Available

online:https://keras.io/examples/vision/image_classification_effici

entnet_fine_tuning/ (accessed on 25 May 2021).

[19] EfficientNet: Improving Accuracy and Efficiency through

AutoML and Model Scaling. Available online:
https://ai.googleblog.com/2019/05/efficientnet-improving-

accuracy-and.html(accessed on 25 May 2021).

[20] Python. Available online: https://www.python.org/ (accessed on

26 May 2021).

[21] Keras: The Python Deep Learning Library. Available online:

https://keras.io (accessed on 26 May 2021).

[22] TensorFlow. Available online: https://www.tensorflow.org/

(accessed on 26 May 2021).

[23] Understanding RMSprop — faster neural network learning.

Available online: https://towardsdatascience.com/understanding-
rmsprop-faster-neural-network-learning-62e116fcf29a (accessed

on 26 May 2021).

[24] Grad-CAM: Visual Explanations from Deep Networks via
Gradient-based Localization, Ramprasaath R. Selvaraju, Michael

Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,

Dhruv Batra, Dec. 2019

RTI3.2 Page 5 of 5

Abstract—Nowadays, a large amount of work is done by

freelancers across various areas – from graphical design and

music composition to data input and software development.

However, many issues appear due to participation of several

third parties together with different rules and policies imposed

by different platforms. On the other side, the emerging

blockchain technology provides the execution of transactions in

a trustable, decentralized, but still transparent manner. In this

paper, we demonstrate a case-study where blockchain is

adopted to eliminate the barriers and make freelancing more

convenient and profitable at the same time. As an outcome, a

proof-of-concept implementation of blockchain-based

freelancing platform relying on Ethereum and Solidity smart

contracts is presented that provides practical pointers for

trust0driven applications development.

Index Terms— Blockchain, Ethereum, Solidity, Freelancers

I. INTRODUCTION

In today's business world, everything is based on trust.

Any monetary transaction, ownership or arrangement. This

trust, however, is provided in a very specific way - by the

role of a third party, i.e. an institution of trust. In money

transactions these are banks, in ownership relations there are

cadastres and similar state institutions, in the case of any

type of contract, there are courts. The positive side of these

institutions, i.e. third parties, is that all parties to all these

agreements trust them and expect protection in case of any

unexpected occurrences. On the other hand, the appearance

of third parties brings with it a lot of negative effects, so you

often end up in a waiting list in order to make payments or

get a certificate of ownership of a real estate and the like.

Mistakes made by these institutions themselves are also very

common, and as a rule they fall on the common man as a

burden. There is bureaucracy, inefficiency, mistakes,

enormous costs that at some point completely make the role

of these intermediaries meaningless. The question is, is it

possible to exclude third parties from future business, and

still preserve that positive factor that they brought with

them. In the last few years, there has been a development of

Milan Radosavljevic is student at Faculty of Electrical Engineering,

University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

milan.radosavljevic@elfak.rs).
Aleksandar Pesic is student at Faculty of Electrical Engineering,

University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

alpesh@elfak.rs)
Nenad Petrovic is teaching assistant at Faculty of Electrical Engineering,

University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

nenad.petrovic@elfak.ni.ac.rs)
Milorad Tosic is full professor at Faculty of Electrical Engineering,

University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:

milorad.tosic@elfak.ni.ac.rs)

a technology called blockchain, whose primary idea is just

this. Decentralized system with minimal costs, efficient,

transparent and yet safe enough to take on the role of e.g.

banks. [1]

The share of freelancers in today's business world is large.

A large amount of work is completed by freelancers, and as

a freelancer, everyone has the opportunity to work in a huge

number of domains as an independent. So, people who are

engaged in graphic design, writing stories, teaching foreign

languages and, of course, programming, earn their living by

freelancing. Current platforms for freelancers are safe and

the most popular places where freelancers can find work are

[2] [3] [4]. The problem that arises is the possession of a

third party and some rules that must be followed on certain

platforms. Blockchain provides an opportunity to eliminate

these problems and as a new solution sets some new

boundaries and presents some new problems that are

obtained by introducing this solution.

In this paper, it is explored how the blockchain

technology can be leveraged to eliminate barriers when it

comes to freelancing. As main outcome of this research, we

introduce prototype implementation of freelancing platform

based on Ethereum blockchain technology and Solidity

smart contracts.

II. BACKGROUND

A. Blockchain

Blockchain is a "cryptographically secure transactional

singleton machine with a shared state". Cryptographically

secure means that the creation of digital currency is

provided by complex mathematical algorithms that are

practically impossible to break. With the help of these

algorithms it is almost impossible to cheat the system (e.g.

creating fake transactions, deleting transactions etc.). A

transactional singleton machine means that there is one

canonical instance of the machine responsible for all

transactions created in the system. In other words, there is

one global truth that everyone believes in. Shared status

means that the status stored on this machine is shared and

available to everyone.

B. Ethereum blockchain platform

Ethereum blockchain is practically a transaction-based

state machine. As it is known, the state machine receives

inputs and, based on the current state, passes into new states.

With Ethereum's state machine, we start from the "initial

state". This is practically the state before any transaction

occurred on the network. When transactions are executed,

the initial state passes to some final state. At any time, the

final state represents the current state in the Ethereum

network. The state of Ethereum has millions of transactions.

These transactions are grouped into "blocks". Each block

Freelancing blockchain: A practical case-study

of trust-driven applications development

Milan Radosavljevic, Aleksandar Pesic, Nenad Petrovic, Milorad Tosic

RTI3.3 Page 1 of 4

mailto:milan.radosavljevic@elfak.rs
mailto:alpesh@elfak.rs
mailto:nenad.petrovic@elfak.ni.ac.rs
mailto:milorad.tosic@elfak.ni.ac.rs

contains some set of transactions and each block is

cryptographically chained together with the previous blocks,

which can be seen in Figure 1.

Fig. 1. Preview of Ethereum blockchain.

To cause a transition from one state to another, the

transaction must be valid. For a transaction to be considered

valid, it must go through a validation process known as

mining. Mining is the process when a group of Ethereum

nodes (more precisely computers) spend their computing

resources to create a block of valid transactions. Any

Ethereum network node that declares itself a miner can try

to create and validate the block. All miners try to create and

check blocks at the same time. Every miner provides

mathematical "proof" when submitting a block, and this

proof acts as a guarantee: if the proof exists, the block must

be valid. The process of validation of each block by the

miner who is supposed to provide mathematical proof is

called proof of work.

C. Concept of fees

One very important concept in Ethereum is the concept of

fees. Any calculation that occurs as a result of a transaction

on the Ethereum network is charged a fee. The fee is paid in

denominations called "gas". Gas is a unit used to measure

the fees required for a particular calculation. Two factors

determine how much it takes to pay for an action: the gas

price, and how much gas that action requires. The important

part is that Ethereum gas prices aren’t fixed. Gas prices are

determined by supply and demand. The busier the Ethereum

network, the higher the gas price. The amount of gas

required for each transaction depends on how complex the

transaction is. Gas prices are denoted in gwei, which itself is

a denomination of ETH. Gwei is 10-9 ETH. It is possible to

set a gas limit for each transaction. Gas limit refers to the

maximum amount of gas you are willing to consume on a

transaction.

D. Solidity smart contracts

A smart contract is a contract that is performed by itself

together with the terms of the contract to which the parties

have agreed. The terms of the contract are written directly in

the code of that smart contract. And the contract itself and

the 'consent' of the participants exists throughout the

Ethereum network. Practically smart contracts are programs

that are immutable and deterministic. They depend on the

context of the Ethereum Virtual Machine and the

decentralized global network. The contract controls the

execution of transactions, which are public and non-

refundable. In essence, contracts are reduced to programs,

which are modeled on traditional contracts, ‘if it happens,

then do it’. The contract is executed on many computers to

ensure reliability and trust. Smart contracts provide

autonomy, trust, speed, security and money savings.

III. RELATED WORK

The blockchain was invented in 2008 by a group or an

individual, and this information is still unknown to the

public. Therefore, we can consider that blockchain, and at

the same time Ethereum, is a newer technology that poses

some new challenges and problems in front of us. Much

research has been conducted in academia as well as in

industry to explore the benefits of smart contracts as well as

the worlds in which they are applicable. There are many

smart contract platforms on the market with different

features that suit certain applications. In [5], the authors

focus on the technique of using blockchain to store

vaccination records, which is secure and efficient and is

based on smart contracts found on the Ethereum platform. In

[6], a system based on blockchain was proposed, which

refers to workers who are temporarily employed in

companies. In that way, employees are provided with a fair

and legal salary for their work obligations, as well as

protection if the employer becomes a debtor. The author's

work in [7] gives a focus on climate change and proposes a

solution which, with the use of blockchain, would reduce

global warming while keeping records of the crown

impression of the product. In [8], the authors provided an

overview of all the challenges that smart contracts would

face in the future.

IV. SOLUTION OVERVIEW

A. System Architecture

The application architecture consists of three parts: client

side, Web3 interface and server side. The server side is

located on the Ethereum blockchain network and uses

Solidity smart contracts which are accessed via Web3

interface on the client side. The client side is located in the

browser and uses HTML, CSS and Javascript programming

language. Also, the client side contains the Web3.js

Javascript library through which it communicates with

Solidity smart contracts as can be seen in Figure 2.

Fig. 2. Representation of system architecture.

B. Tools used for system implementation

1) Ganache

Ganache is a local Ethereum blockchain that runs on a

local computer. Intended for the development and testing of

smart contracts and decentralized applications in a secure

and deterministic environment. Provides ten externally

owned accounts for testing purposes. The application

contains a graphical interface and can also be used as a

console application.

2) Metamask

Metamask is a software that allows you to own a

RTI3.3 Page 2 of 4

cryptocurrency wallet and allows you to interact with the

Ethereum blockchain. Metamask provides the ability to

store and manage account addresses on the browser. It also

allows us to connect securely to decentralized applications.

Using this software enables multi-user browser behavior.

3) Remix IDE

Remix IDE is an open source web and desktop

application. It enables the rapid development of Solidity

smart contracts and contains a large number of plugins as

well as a graphical interface. The Remix IDE is used for

contract development, but also as a platform for learning

programming on the Ethereum platform. The Remix IDE is

part of a Remix project that develops a handful of tools

related to Solidity smart contracts. It is written in the

Javascript programming language and allows you to run and

test contracts in a web browser. It also allows you to test,

debug and deploy contracts as well as many other useful

options. [9]

V. IMPLEMENTATION

As indicated in the System Architecture chapter, the

system consists of a server and a client side. The server side

consists of smart contracts written in the Solidity

programming language. The UML diagram in Figure 3

shows the organization of the contracts and the structures

used in the system. The main component is a

FreelancerContract contract that uses Service,

FreelancerStructure and Offer data structures. This

component represents one Freelancer who is registered in

the system. While PlatformContract acts as a repository and

it contains all registered freelancers in the system. In

addition to the data structure that stores basic information

about the freelancer, there are also structures for services

and offers. Service is what a freelancer offers, while an

Offer acts like a real job offer.

Fig. 3. UML contract diagram on Ethereum platform.

The client side of the application is written in the Javascript

programming language. On the client side there are two

proxy classes that correspond to the contracts on the server

side, and also uses the Web3.js library to communicate with

the server side. Practically one function on the client side

calls one function in the contract. There are also functions

that are handlers for the events which are broadcasted in

contracts. The UML class diagram of the client side can be

seen in Figure 4.

Fig. 4. UML class diagram on the client side.

VI. RESULTS

Figure 5 shows the initial view of the client application.

The application offers the ability to create a new account

and navigation that allows to navigate through the entire

application.

Fig. 5. Initial view of the application.

After creating the account, you get the view as in Figure 6

and the application allows the user to set the name and last

name, add services he is offering and have an insight into

the job offers that are offered to him, offers accepted by the

user and offers waiting for client’s approval.

Fig. 6. View of the application after creating the account.

Clients can see the services of all freelancers on the

Profiles of Others page, which can be selected from the

navigation. The view of the page can be seen in Figure 7.

The application provides the ability to search all offered

freelancer services that are in the system and the ability to

send a service offer to a specific freelancer that will be

displayed on the homepage of the freelancer for whom the

offer is intended.

RTI3.3 Page 3 of 4

Fig. 7. View of page Profiles of other users.

When submitting an offer it is necessary to add a

description and offer a price for a particular service. Based

on the submitted offer, the freelancer will decide whether to

accept the offer for the job. Form for sending the offer can

be seen in Figure 8. After the offer is sent, the offered price

is transferred from the client's account to the smart contract

account. In case the freelancer rejects the offer, Ether will

be returned to the customer account.

Fig. 8. Appearance of the offer submission form.

After the accepted offer, freelancer completes the offer

and sends it to the client for approval, after the approved

offer, the client accepts the completed work and only then

the offered price is transferred to the freelancer's account.

The layout of the offer table can be seen in Figure 9.

Fig. 9. Appearance of the table with job offers.

VII. CONCLUSIONS AND FUTURE WORK

A platform for supporting a freelancing work community

is developed using Solidity smart contracts on the Ethereum

platform. The implementations process is used as a case-

study for learning practical aspects of trust-driven

applications development. Practical experiences and results

are presented in this paper.

This paper gives our first experiences and more

systematic approach is needed particularly validation and

evaluation that are planned for future work. Regardless of

absence of a full scientific rigor, we present our experiences

that could be useful for future work in the field of trust-

based applications development.

The good side of the solution presented in this paper is

that it exploits advantages of the blockchain such as

reliability, security and speed. Due to the fact that since its

launch, the Ethereum platform has not had downtime due to

consensus and decentralized approach. Hence the fact that

this is another advantage, more precisely the advantage that

the platform is always online and working. This further

implies that the applications running on the blockchain do

not have a downtime, including this one. The solution has an

intuitive user interface that is capable of expansion. Even

though the application was developed as a proof-of-concept,

it shows high potential for commissioning in a real

environment.

One of disadvantages of the approach is that every action

that changes the state of the blockchain uses gas that

requires compensation from the user, as stated in the chapter

Background. Hence, some actions performed in the

application are not free. In the current prototype, freelancer

can not deliver product to the client who hired him. In future

work this shortcoming could be fixed by connecting

accounts with Github service, for example. It is possible to

further optimize the speed of the application, on both client

and server side, and to minimize the fee spent for

performing actions on the server side. The obtained solution

proves that it is possible to reach a satisfactory solution at an

acceptable price.

ACKNOWLEDGMENT

This work has been supported by the Ministry of

Education, Science and Technological Development of the

Republic of Serbia.

REFERENCES

[1] Uvod u blockchain [online], Blog, Đorđe Ivanović, 2018. Source:

https://blog.itkonekt.com/2018/07/30/uvod-u-blockchain/
[2] Freelancer [online], freelance recruitment platform,

https://www.freelancer.com

[3] Upwork [online], freelance recruitment platform,
https://www.upwork.com

[4] Fiverr, freelance recruitment platform [online],

https://www.fiverr.com
[5] S. K. Deka, S. Goswami, A. Anand, “A Blockchain Based Technique

for Storing Vaccination Records”, IEEE Bombay Section Signature

Conference (IBSSC), pp. 135-139, 2020.
[6] A. Pinna, S. Ibba, “A blockchain-based Decentralized System for

proper handling of temporary Employment contracts”, Proceedings of

the 2018 Computing Conference vol. 2, pp. 1-6, 2019.
[7] A. M. Rosado da Cruz, F. Santos, P. Mendes, E. Ferreira Cruz,

“Blockchain-based Traceability of Carbon Footprint” Proceedings of

the 22nd International Conference on Enterprise Information Systems
(ICEIS), pp. 1-10, 2020.

[8] Sh. Wang, Y. Yuan, X. Wang, J, Li, R. Qin, F. Wang, “An Overview

of Smart Contract: Architecture, Applications, and Future Trends”,
IEEE Intelligent Vehicles Symposium, pp. 108-113, 2018.

[9] Remix IDE documentation [online]. Source: https://remix-

ide.readthedocs.io/en/latest/

RTI3.3 Page 4 of 4

https://blog.itkonekt.com/2018/07/30/uvod-u-blockchain/
https://www.freelancer.com/
https://www.upwork.com/
https://www.fiverr.com/
https://remix-ide.readthedocs.io/en/latest/
https://remix-ide.readthedocs.io/en/latest/

Abstract — Designing custom-made hardware for special

purposes is a challenging process. During the development, it is

essential to take into consideration the required performance of

the device, component availability on the market as well as the

final price of the developed and assembled product. Almost every

modern hardware consists of various sensors, memories, AD/DA

converters and a microcontroller to control and manage the

interaction off all those devices. Based on the purpose of the

device being developed, the engineer has to make a decision on

the components that will be used in the final product. For this

decision to be justifiable, the engineer needs to have a very high

level of knowledge regarding the intricate world of interfaces

required to establish the intercommunication of the components

inside the device. Modern sensors, memories and AD/DA

converters usually require some form of a high-speed serial

interface, synchronous or asynchronous. In this paper we will

analyze the three most commonly used serial synchronous

communication interfaces: I2C, SPI and SPORT. Also, we will

explain the hardware and software properties and limits of every

mentioned synchronous serial interface. Finally, the benefits and

drawbacks of the chosen communication interfaces will be

considered and conclusions drawn.

Index Terms — computer engineering, embedded systems,

sensors, synchronous serial communication

I. INTRODUCTION

One aspect of designing new hardware is defining its

application and the other aspect is defining a set of features

the final product has to meet. The desired set of features can

be divided into a set of operational and environmental limits,

e.g. thermal resistance or voltage, and a set of desired

performance characteristics, e.g. bandwidth or noise levels.

This set of features limits the number of possible components

that can be used in the design of the hardware. Even when

limited with operational and performance characteristics, the

choice of available hardware components is enormous due to

a large number of manufacturers. Making the correct choice

of hardware in order to meet the desired characteristics

requires extensive knowledge [1-2]. One key decision to make

is the choice of the right communication interface that will be

used for intercommunication of the chosen components.

Predrag Petronijević is with Vlatacom Institute of High Technologies,

Milutina Milankovica 5, 11070 Belgrade, Serbia (e-mail:

predrag.petronijevic@vlatacom.com).

Vladimir Kuzmanović is with the Faculty of Mathematics, University of
Belgrade, Studentski trg 16, 11000 Belgrade, Serbia (e-mail:

vladimir_kuzmanovic@matf.bg.ac.rs).

Modern devices usually consist of various sensors,

memories, AD/DA converters and many other components

controlled by a microcontroller. This control is achieved by

establishing intercommunication between the microcontroller

and every component inside the device. In modern devices,

this communication is digital and standardized to conform to

one or more of the standard communication interfaces in use

today [3-4].

Interfaces used today can be divided into categories based

on the way the data is transferred between the devices. Two

criteria can be used for this division. The first criterion is

defined by the number of channels used in the transmission of

the data. If the data is transmitted bit by bit in a specific order

over a single channel, such transmission is called serial. If the

data is sent as multiple bits at the same time over multiple

channels, such transmission is called parallel. The other

criterion is defined by the way the data is sent. If the data is

sent in the form of a byte or a single character with start and

stop bits added to the data, such transmission is called

asynchronous because it does not require synchronization. If

the data is sent in the form of groups or frames, such

transmission is called synchronous because it requires

synchronization between sender and receiver. Synchronous

transmission is more reliable and full-duplex, while

asynchronous transmission is half-duplex [5].

Inter-Integrated Circuit (I2C) was discussed by Patel et al.

[6], Lynch et al. [7] and Blum [8]. Wootton in [9] described

the use of Serial Peripheral Interface (SPI) as a means of

communication between the CPU and various peripheral

devices. Gay in [10] described the properties of SPI and its

operation was described by Dogan in [11]. SPI and I2C were

compared in [12-13]. SPI, I2C and UART were analyzed in

[14-15].

In this paper we will address and compare the three most

commonly used synchronous serial communication interfaces

for intercommunication between various devices. Besides the

well-known and widely used I2C and SPI protocols, we will

also introduce Analog Devices proprietary SPORT protocol

and perform comparative analyses of the three serial

protocols. Section 2 of the paper introduces all three interfaces

with their hardware and software properties and requirements.

The next section analyses the benefits and drawbacks of these

serial interfaces. Finally, section 4 draws conclusions on serial

interfaces described in the paper.

Comparative analysis of intra-board

synchronous serial communication interfaces

Predrag Petronijević, Vlatacom Institute of High Technologies, Milutina Milankovica 5, 11070

Belgrade, Serbia

Vladimir Kuzmanović, Faculty of Mathematics, University of Belgrade

RTI3.4 Page 1 of 5

II. SYNCHRONOUS SERIAL COMMUNICATION

A serial communication protocol in which data is sent as a

continuous stream at a constant rate is described as

synchronous serial communication. For communication to be

called synchronous it is required that the clocks are

synchronized in both the transmitting and receiving devices.

The term synchronized refers to the clocks running at the

same rate, which enables the receiver to sample the signal at

the same intervals used by the transmitter. Synchronization of

clocks permits the omission of start and stop bits. As a

consequence, more information can be passed over a circuit

per unit of time than with asynchronous serial

communication.

Serial communication can be established via a

communication channel or a computer bus. It is mostly used

for long-distance communication and computer networks

where parallel communication is impractical. The

development of technology has made serial computer buses

more common at shorter distances, mostly as a basis for cheap

and simple intra-board communication between two or more

integrated circuits on the same printed circuit board connected

by signal traces and not external cables.

The three most commonly used synchronous serial

communication protocols for intra-board communication are

inter-integrated circuit (I2C), serial peripheral interface (SPI)

and Analog Devices synchronous serial peripheral port

(SPORT).

A. Inter-Integrated Circuit (I2C)

Inter-Integrated Circuit (I2C) is a synchronous, multi-

master, multi-slave, packet-switched and single-ended serial

communication bus invented in 1982 by Philips

Semiconductors. Today it is widely used for interfacing with

lower speed peripheral integrated circuits from a

microcontroller in short distance intra-board communication.

I2C emphasizes design simplicity and low manufacturing

costs over speed. It is usually used for accessing low-speed

AD/DA converters, controlling small displays, reading

diagnostic sensors, etc. I2C enables the microcontroller to

control a network of devices with just two general-purpose

input-output pins and software. Many other serial protocols

offer similar functionality but require more pins and signals to

interconnect multiple devices [16].

Hardware requirements for establishing I2C communication

are rather simple. Two bidirectional open collector or open

drain lines with typical voltages of +5V or +3.3V are required

for connecting the devices. These two lines are called Serial

Data Line (SDA) and Serial Clock Line (SCL). I2C bus speed

can range from 10 kbit/s to 5 Mbit/s depending on the revision

of the protocol. The bit rate is defined for transfer between

master and slave without taking into consideration any

protocol overhead. The overhead includes a slave address and

usually a register within the slave device and finally per byte

acknowledge (ACK/NACK) bits. This makes the actual

bitrate lower than the bitrate used would imply. High-speed

I2C is widely used in embedded systems, while lower speed

version is used in personal computers.

The reference design is a bus with clock (SCL) and data

(SDA) lines with 7-bit addressing to which the devices are

connected. Devices connected to the bus are referred to as

nodes. The number of nodes is limited by the address space

and by the total bus capacitance of 400pF. This restricts

communication distances to a few meters. In practice, I2C is

restricted to intra-board communication due to its relatively

high impedance and low noise immunity which requires a

common ground potential.

There exist two roles for the node on the bus: master and

slave. The device is referred to as the master if it generates the

clock and initiates communication with the slaves. The device

is referred to as the slave if it receives the clock and responds

when addressed by the master. The protocol supports multiple

masters and multiple slaves on the same bus. Also, the roles

of the device can be changed during its operation.

The protocol defines four modes of operation for a given

device on the bus: master transmits, master receives, slave

transmits and slave receives. Usually, each device on the bus

will use a single role with two predefined modes of operation.

Besides 0 and 1 data bits, the I2C defines special signals

which represent message delimiters. These signals are called

START and STOP signals which are distinct from data bits.

The communication between devices is as follows:

 The master is in master transmit mode and initiates the

transmission by sending the START signal followed by a 7-

bit address of the slave it wants to communicate with which

is followed by a single bit designating whether the master

wants to write to or to read from the slave.

 If the slave with the given address exists on the bus it

responds with the ACK bit for that address. Then, the

master continues to transmit either in transmit or receive

mode according to the bit set while the slave continues in

complementary mode.

The address and the data over the I2C bus are sent in MSB

mode. The START signal is a high-to-low transition of the

data line (SDA) with the clock (SCL) line high. The stop

signal is a low-to-high transition of SDA with SCL high. All

other transitions of SDA take place with SCL low. The device

which is in transmitting mode writes the data byte by byte to

the SDA line. The device in receive mode sends the ACK bit

after every byte. I2C transmission may consist of multiple

messages. The master terminates a message with a STOP

signal if it is the end of the transaction. If the master wants to

retain control of the bus for another message it sends another

START signal.

I2C physical layer is shown in Figure 1.

Figure 1. I2C physical layer

RTI3.4 Page 2 of 5

B. Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is a synchronous serial

communication interface developed by Motorola in the mid-

1980s [17]. It is used for short-distance communication in

embedded systems. It is typically used for interfacing with

memories, liquid crystal displays, sensors and AD/DA

converters.

Devices communicating over SPI are organized as a

master-slave architecture with a single master. The

communication is achieved in full-duplex mode. The master

device creates the frames for reading and writing. SPI

supports multiple slave devices through selection with

individual slave select lines. Sometimes, these lines are called

chip select (CS) lines. The SPI bus specifies four logic

signals:

 Serial clock (SCLK) – output from the master.

 Master Out Slave In (MOSI) – data output from the

master.

 Master In Slave Out (MISO) – data output from the

slave.

 Slave/Chip Select (SS/CS) – output from the master,

active low.

For the communication to be established between devices,

MOSI on a master device connects to MOSI on a slave

device. Slave/Chip Select line is used instead of software

addressing concept. Sometimes, MOSI on a slave device is

labeled as Serial Data In (SDI) and MISO is labeled as Serial

Data Out (SDO). This signal naming convention is used as an

unambiguous way of labelling the pins of master and slave

devices.

The SPI bus can operate with a single master device and

one or more slave devices. Most slave devices have tri-state

outputs so their MISO becomes high impedance when the

device is not selected. This allows multiple slave devices to

share common bus segments with each other.

For the communication to start, the master device has to

configure the clock signal using a frequency supported by the

slave. Then the master has to select the desired slave device

with the logic level 0 on the appropriate SS/CS line. If the

slave device requires a waiting period, the master device has

to wait for at least that period of time before it starts issuing

clock cycles on the SCLK line. During each cycle on the

SCLK line, a full-duplex transmission occurs. The master

sends a bit on the MOSI line and the slave reads it, while the

slave sends a bit on the MISO line and the master reads it.

This form of operation is maintained even when one-

directional data transfer is intended.

Besides configuring the clock frequency, the master also

needs to configure the clock polarity (CPOL) and clock phase

(CPHA) with respect to the data. CPOL determines the clock

polarity. CPOL value 0 defines a clock signal which idles at

logic level 0 and each cycle consists of a pulse of 1. This

translates to the leading edge being rising and the trailing edge

is falling. CPOL value 1 defines the opposite. The clock idles

at logic level 1 and each cycle consists of a pulse of 0. CPHA

determines the timing of the data bits relative to the clock

pulses. CPHA value 0 defines that the “out” side changes the

data on the trailing edge of the preceding clock cycle, while

the “in” side captures the data on the leading edge in the clock

cycle. CPHA value 1 defines the opposite. The “out” side

changes the data on the leading edge of the current clock cycle

while the “in” side captures the data on the trailing edge of the

clock cycle.

Finally, SPI supports word sizes that are not limited to 8-bit

words but can range up to 32-bit words. Also, message size is

arbitrary, as is its contents and purpose. The signal lines are

shared between multiple devices, except for the slave select

line which is unique per slave.

Its versatility, high speed and easy implementation coupled

with board real estate savings compared to parallel buses have

made it popular in many applications today. SPI interface is

widely used in embedded systems for interfacing various

sensors, control devices, memories and liquid crystal displays.

SPI physical layer is shown in Figure 2.

Figure 2. SPI physical layer

C. Synchronous Serial Peripheral Port (SPORT)

Synchronous Serial Peripheral Port (SPORT) is Analog

Devices proprietary synchronous serial communication

interface that supports a variety of serial data communication

protocols. Key features of SPORT are continuously running

clock and serial data words from 3 to 32 bits in length either

most- or least-significant bit first. The protocol also supports

two synchronous transmit and two synchronous receive data

signals which double the total supported data stream. Finally,

frames are synchronized with configurable synchronization

signals [18].

For the SPORT interface to be established between two

devices, the standard defines the following eight signals:

 Transmit Data Primary (DT0)

 Transmit Data Secondary (DT1)

 Transmit Clock (TSCLK)

 Transmit Frame Sync (TFS)

 Receive Data Primary (DR0)

 Receive Data Secondary (DR1)

 Receive Clock (RSCLK)

 Receive Frame Sync (RFS)

The values for clocks are independent and can be calculated

by dividing the SCLK of the microcontroller with the correct

value. The SPORT clocks are calculated with the following

formula:

))1(2(

VSPORTCLKDI

SCLK
CLKSPORT

The smallest value the divisor SPORTCLKDIV can have is

zero and the greatest value is 65535. TSCLK and RSCLK are

RTI3.4 Page 3 of 5

independent and thus can have different values of

SPORTCLKDIV. Depending on the value of SCLK and

SPORTCLKDIV, the clock values for SPORT can be as high

as 60 MHz or as low as 1 kHz. By default, the primary

transmit and receive channels are enabled while the secondary

transmit and receive channels are disabled.

Frame sync signal can be divided into early frame sync and

late frame sync. Early frame sync is active for one clock pulse

and then deactivates. Once the signal has been deactivated,

valid data will be available. Late frame sync signal frames

valid data and is active for the length of time that valid data is

available. The signal is deactivated once the word to transmit

or receive is fully sent.

SPORT protocol is proprietary and is supported by a

majority of Analog Device microcontrollers and various types

of integrated circuits for numerous applications. Such

applications range from AD/DA converters, sensors,

memories, health applications, smart industries, etc. Also,

with a range of clock and frame synchronization options, the

SPORT interface allows a variety of serial communication

protocols and provides a glueless hardware interface to many

industry-standard data converters and CODECs [19-20].

SPORT physical layer is shown in Figure 3.

Figure 3. SPORT physical layer

III. COMPARATIVE ANALYSIS

I2C, SPI and SPORT all are synchronous bidirectional

serial interfaces with considerable differences. The first

obvious difference is the number of signals needed to

establish communication between devices. The signals and

number of lines required for establishing communication with

each interface are displayed in table 1.

Table 1. Signals required for establishing communication

I2C SPI SPORT
SDA

Serial Data

MOSI

Master Out Slave In

DT

Serial Data Transmit

SCL

 Serial Clock

MISO

Master In Slave Out

DR

Serial Data Receive

 SCLK

Serial clock

TFS

Transmit Frame Sync

 SS

Slave select

RFS

Receive Frame Sync

 TCLK

Transmit Clock

 RCLK

Receive Clock

Considering the number of signals it is obvious that SPI and

SPORT are full-duplex, while I2C is half-duplex. Also, one

other property to note is that I2C is a multi-master multi-slave

interface, while SPI and SPORT are single-master multi-slave

interfaces.

 Data transfer should also be considered when choosing the

protocol to be used in the final product. The limits for data

transfer are displayed in table 2.

Table 2. Data transfer limits

I2C SPI SPORT
100 kbit/s – 5 Mbit/s

Predefined values
depending on version

Depending on the

implementation
Usually in range

n x MHz to 10n x MHz

n – number of devices
connected to a single

master

SCLK/2 Mbit/s

SCLK – processor
clock frequency

The advantages of I2C over SPI and SPORT are the ease of

linking multiple devices and the fact that cost and complexity

do not scale up with the number of devices. The limitation of

I2C is numerous. The first is its slave addressing scheme and

its relatively low number of possible addresses which may

lead to address collisions. One other limitation is the number

of supported speeds which need to conform to a certain

standard. Since I2C is a shared bus there exists a possibility

that a single device could hang the entire bus. This happens if

any device holds the SDA or SCL lines low, which prevents

the master from sending START and STOP signals and reset

the bus. Also, starvation is possible where a slower device

starves the bandwidth needed by faster devices and thus

increases latencies when other devices are addressed. Taking

all this into consideration it is advisable to use I2C for

communication with on-board devices that are accessed only

occasionally with no need for low latencies and high-speed

bidirectional communication.

The advantages of SPI over I2C and SPORT are complete

protocol flexibility with variable size words and arbitrary

choice of message size, contents and purpose. Also, hardware

interfacing is easy. Slaves do not need a unique address since

they are addressed with a per slave chip select line and slave

devices do not need precision oscillators since they use the

master's clock. Disadvantages compared to I2C are the

increased number of pins required for communication and the

lack of slave ACK which enables the master to transmit data

to nowhere without knowing it. Also, SPI protocol supports

only one master, does not have a formal standard so validating

conformance is impossible and does not support dynamically

adding nodes. Taking all this into consideration, SPI is

applicable in situations where the data transfer is organized in

packets of arbitrary size and full-duplex. Also, it is applicable

when there are a number of slaves communicating with the

same SPI modes, because frequent changes of SPI mode

severely impact the performance of communication.

Compared to the other two protocols, the main advantage of

SPORT protocol is the support for multichannel transmits and

receives of up to 128 channels. Also, a wide selection of data

sizes is also a benefit as is the programmable polarity of both

frame sync signals and data receive and transmit clocks.

Finally, significantly higher data rates and double-buffered

data registers that allow continuous data stream are a big

advantage compared to both SPI and I2C. The main

RTI3.4 Page 4 of 5

disadvantages of SPORT are the fact that it is proprietary and

supported only by Analog Devices products and that the

complexity of supporting software components can be higher

than that of competing schemes.

IV. CONCLUSION

In this paper we presented the three most commonly used

synchronous serial protocols. The introduction showed that

the engineer needs to have a broad knowledge regarding

communication protocols to be able to make the right choice

on the protocol to be used with respect to the desired

operational and performance limits as well as to justify the

proposed design. I2C, SPI and SPORT are presented in detail

and their properties, requirements and applications are

discussed. Finally, the benefits and drawbacks of all three

mentioned protocols are compared and analyzed which led to

the conclusion on the suitability of the protocols in various

scenarios. In the future, we intend to further research

asynchronous communication protocols and their properties as

well as inter-board communication protocols. We will focus

on Controller Area Network (CAN) and Universal

Asynchronous Receive Transmit (UART).

ACKNOWLEDGMENT

The research is founded by the Vlatacom Institute of High

Technologies under project #161 V155MM.

REFERENCES

[1] J. Staunstrup, W. Wolf, “Hardware/Software Co-Design: Principles and

Practices,” Springer Science & Business Media, 1997.

[2] P. Horowitz, W. Hill, “The Art of Electronics, 3rd edition,” Cambridge
University Press, 2015.

[3] J. Cowley, “Communications and Networking: An Introduction,”

Springer, 2007.
[4] IBM Corporation, “Data Communications Primer,” Form C20-1668-0.

[5] J. Patrick, “Serial Protocols Compared,” Embedded Staff, May 31,

2002, available at: https://www.embedded.com/serial-protocols-

compared/.

[6] S. Patel, P. Talati, S. Gandhi, “Design of I2C Protocol,” International

Journal of technical innovation in Modern Engineering & Science, Vol

5, no. 3, pp. 741-744, 2019.
[7] K. M. Lynch, N. Marchuk, M. L. Elwin, “I2C communication,”

Embedded Computing and Mechatronics with the PIC32, Newnes,

2016.
[8] J. Blum, “The I2C Bus,” Exploring Arduino; Tools and Techniques for

Engineering Wizardry, 2nd Edition, 2019.

[9] C. Wootton, “Serial Peripheral Interface (SPI),” Samsung Artik
Reference, Apress, Berkeley, 2016.

[10] W. W. Gay, “SPI Bus,” Mastering the Raspberry Pi, Apress, Berkeley,

2014.
[11] I. Dogan, “Serial Peripheral Interface Bus Operation,” SD Card Projects

Using the PIC Microcontroller, Newnes, 2010.

[12] F. Leens, “An introduction to I2C and SPI protocols,” IEEE
Instrumentation & Measurement Magazine, vol. 12, no.1, pp. 8-13,

2009.

[13] D. V. Gadre, S. Gupta, “Serial Communication: SPI and I2C,” Getting
Started with Tiva ARM Cortex M4 Microcontroller, Springer, 2017.

[14] A. Subero, “USART, SPI and I2C: Serial Communication Protocols,”

Programming PIC Microcontrollers with XC8, Apress, Berkeley, 2017.
[15] S. Shanthipriya, S. Lakshmi, “Design and verification of low speed

peripheral subsystem supporting protocols like SPI, I2C and UART,”

ARPN Journal of Engineering and Applied Sciences, vol. 12, pp. 7368-
7391, 2017.

[16] A.K. Oudjida, M.L. Berrandjia, R. Tiar, A. Liacha, K. Tahraoui, “FPGA

Implementation of I2C & SPI Protocols: a Comparative Study,” DOI:
10.1109/ICECS.2009.5410881, 2009 16th IEEE International

Conference on Electronics, Circuits and Systems - (ICECS 2009),

Yasmine Hammamet, Tunisia, 13-16. December, 2009.
[17] Motorola, Freescale, NXP, “SPI Block Guide v3.06,” 2003.

[18] B. Prabhalika, M. Kiran Kumar, “Fpga implementation of Design and

verification Synchronous serial port(S-PORT),” ISSN: 2321-9939,
International Journal of Engineering Development and Research IJEDR,

India, 2013.

[19] A. Vasudev Prabhugaonkar, J. Rayala, “Interfacing AD7676 ADCs to
ADSP-21365 SHARC® Processors,” Engineer-to-Engineer Note EE-

248, Analog Devices, Rev 1, October 7, 2004.

[20] “Implementing UART Using the ADuCM3027/ADuCM3029 Serial

Ports,” Application Note AN-1435, Analog Devices, Norwood, MA,

2017.

RTI3.4 Page 5 of 5

https://www.embedded.com/serial-protocols-compared/
https://www.embedded.com/serial-protocols-compared/

	096_RTI_1.2.pdf
	I. INTRODUCTION
	III. GDPR-COMPLIANT DATA HANDLING
	A. Update of Privacy Policy and Terms of Service
	B. Personal Data Export
	C. User Account Deletion

	IV. FUNCTIONAL VERIFICATION
	A. Privacy Policy Acceptance and Modification
	B. Data Export

	V. PERFORMANCE TESTING
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	107_RTI_3.2.pdf
	I. Introduction
	II. data
	A. Dataset description
	B. Morphologial differences of fungi
	C. Preparation of dataset images for training

	III. Method description
	IV. Results and discussion
	V. Conclussion
	Acknowledgment
	References

	Blank Page

