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Apstrakt— Minimizacija troškova goriva i emisije štetnih gasova 
u termoelektranama podešavanjem izlaznih snaga generatora je 
jedan od važnih problema u upravljanju elektroenergetskim 
sistemima. Ovaj problem je poznat kao Combined economic 
emision dispach (CEED) problem. U ovom radu je za rešavanje 
CEED problema predložen meta-heuristički algoritam pod 
nazivom Fazorska optimizacija roja čestica, koji predstavlja 
unapređenu varijantu Optimizacije roja čestica. Parametri 
Fazorske optimizacije roja čestica se tokom iteracija automatski 
podešavaju pa je ovaj algoritam, adaptivni i neparametarski, što 
je njegova prednost. Performanse predloženog algoritma za 
rešavanje CEED problema se u radu ocenjuju na standardnom 
IEEE test sistemu sa 30 čvorova i 6 generatora. Na osnovu 
dobijenih rezultata utvrđeno je da ovaj algoritam ima bolje 
karakteristike od algoritama koji su primenjeni u drugim 
publikovanim radovima za rešavanje CEED problema.  
 

Ključne reči - Combined economic emision dispach; 
Fazorska optimizacija roja čestica; Upravljanje 
elektroenergetskim sistemima. 
 

I. UVOD 
Ekonomična raspodela snaga generatora sa istovremenom 

minimzacijom emisije štetnih gasova (eng. Combined 
Economic and Emission Dispatch (CEED)) predstavlja 
podešavanje izlaznih snaga određenog broja generator u 
termoelektranama, pri zadatom opterećenju i pri zadatim 
ograničenjima u sistemu, minimizirajući troškove goriva i 
emisiju štetnih gasova. Funkcije koje opisuju emisiju štetnih 
gasova i troškove goriva, uzimajući u obzir efekat ventila u 
elektrani, su nelinearne i nekonveksne tako da je CEED 
problem u literaturi rešavan metaheurističkim optimizacionim 
algoritmima koji daju približno rešenje. U publikovanim 
radovima je predložen veći broj metaheurističkih algoritama u 
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cilju dobijanja što tačnijeg i što bržeg rešenja ovog problema 
[1], [2], [3]. Brzina i tačnost ovih algoritama utiču na kvalitet 
softvera, u koje se inkorporiraju, a koji služe za upravljanje 
emisijom gasova i troškovima goriva u termoelektrani.  

U ovom radu se za rešavanje CEED problema  predlaže 
primena jednog od najnovijih algoritama, Fazorske 
optimizacije roja  čestica (eng. Phasor particle swarm 
optimizacition (PPSO)) [4].  

Cilj ovog rada je da se pokaže da PPSO može efikasno da 
se primeni za rešavanje CEED problema i da daje bolje 
rezultate u odnosu na druge algoritme koji su u literature 
primenjivani za rešavanje istog problema.   

 

II. CEED MODEL 
Funkcija troškova goriva generatora u termoelektrani 

obično ima kvadratni oblik: 
 

( ) 2 ,g g g g g g gF P a b P c P= + +
      

g = 1, 2, …,G          (1) 

 
gde su: Fg ($/h) troškovi goriva g- tog generator, Pg (MW) 
izlazna snaga  g-tog generatora,  ag, bg i cg koefficienti.  

Funkcija Fg (Pg) postaje ne-konveksna kada se uzme u obzir 
promena snage zbog sekventnog otvaranja ventila u 
termoelektrani (efekat ventila) [5]: 

 

( ) ( )( )2 minsing g g g g g g g g g gF P a b P c P d e P P= + + + −
    

(2) 

 
gde su: dg i eg koeficijenti koji se odnose na efekat ventila i P

min
gP

 
donja granična snaga g-tog generatora.  

Funkcija koja modeluje emisiju gasova u termoelektrani se 
predstavlja kao zbir kvadratne i eksponencijalne funkcije 
izlazne snage generatora [6], [7]: 

 
  ( ) ( )2 expg g g g g g g g g gE P P P Pα β η ξ λ= + + +              (3) 

 
gde su: Eg (t/h) količina gasova koji se emituju tokom rada g-
tog generatora, Pg (MW) izlazna snaga g-tog generatora, i αg, 
βg , ηg , ξg i λg emisioni koeficijenti.  

Ako se (1) i (2) kombinuju sa (3), dobija se sledeća funkcija 
[8]:  
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 ( ) ( ) ( )1g g g gg G g G
FE w F P w E Pγ

∈ ∈
= + −∑ ∑       (4) 

 
gde su: γ factor skaliranja, w težinski faktor čija vrednost se 
uzima u granicama 0 < w < 1, i G je ukupni broj generatora 
koji se razmatraju, priključenih na system. CEED problem se 
rešava tako što se izabere faktor w a zatim minimizuje 
funkcija (4). Izborom gornje granice težinskog faktora, w = 1, 
minimizuje se samo funkcija Fg (Pg), izborom donje granice, 
w = 0, minimizuje se samo funkcija Eg (Pg), dok izbor drugih 
vrednosti težinskog faktora odgovara istovremenoj 
minimizaciji troškova goriva i emisije gasova. Faktor 
skaliranja γ je uveden da bi se funkcija (4), rešavala kao 
jednociljni optimizacioni problem umesto kao dvociljni.  

Minimizacija se vrši za zadate granice snage svakog 
generator, tj. 

  

               
      min max

g g gP P P≤ ≤                     (5) 

 
gde su: min

gP , max
gP  i Pg  su minimalna, maksimalna i stvarna 

snaga g-tog generatora, i za zadatu ravnotežu između 
proizvedene snage i utrošene snage, tj. 
 

   
0,g D lossg G

P P P
∈

− − =∑           (6) 

 
gde su:  PD ukupna snaga svih potrošača i Ploss gubici snage u 
prenosnom sistemu. 

Gubici snage u prenosnom sistemu, Ploss , se izražavaju kao 
kvadratna funkcija trenutne snage generatora, tj. iz Kronove 
formule gubitaka [8], kao: 

 

   0 00loss g gj j g gg G j G g G
P P B P B P B

∈ ∈ ∈
= + +∑ ∑ ∑           (7) 

 
gde su Bgj i B0g koeficijenti B-loss matrice a B00 je konstanta.  

Da bi se zadovoljilo ograničenje (6), tokom iterativnog 
procesa optimizacije, jedan od generatora (npr. generator G) 
je odabran kao zavisni (labav) generator. Za taj generator 
vrednost izlazne snage, PG, se računa iz sledeće jednačine: 

 
                1

1

G
G D loss gg

P P P P−

=
= + − ∑                                 (8)

 
 

Gubici snage, Ploss, se onda dobijaju na sledeći način: (i) 

zadavanje početne vrednosti ( )0 0loss lossP P= =  u (8), (ii) 

određivanje vrednosti ( )0
GP  iz (8) za ( )0 0loss lossP P= = , (iii) 

izračunavanje nove vrednosti ( )1
lossP

 primenom (7), (iv) 
proveravanje da li je razlika između dve uzastopne vrednosti 
gubitaka snage manja ili jednaka zadatoj dozvoljenoj 
oleranciji δ, tj. 
 

                                
( ) ( )1 0

loss lossP P δ− ≤                                      (9)  

        

i (v) izračunavanje vrednosti ( )1
GP  primenom (8) za 

( )1
loss lossP P .=  Ako je razlika )0()1(

lossloss PP −  manja ili jednaka 

zadatoj toleranciji δ, ograničenje (6) koje predstavlja 
ravnotežu snaga, je zadovoljeno. U suprotnom, procedura se 
ponavlja. Kada je vrednost PG izračunata, potrebno je 
proveriti da li se vrednost PG nalazi u odgovarajućim 
granicama (5). Zatim se definiše promenljiva, lim

GP , na 
sledeći način: 

 

 

                  

max max

lim min min

min max

G G G

G G G G

G G G G

P ako je P P
P P ako je P P

P ako je P P P

 >


= <
 ≤ ≤

         (10) 

 
Da bi se osiguralo da zavisna promenljiva PG ostaje u zadatim 
granicama, funkciji cilja (4) se dodaje kvadratni penalni član 
sa penalnim faktorom, λp. Na taj način se dobija proširena 
funkcija cilja: 
 

( )2lim
p p G GFE FE P Pλ= + −      (11) 

 

III. PSO I PPSO  
Optimizacija roja čestica (eng. Particle swarm optimization 

(PSO)) je inspirisana ponašanjem rojeva u prirodi u potrazi za 
hranom [9]. Jedinka u jatu menja svoju poziciju i brzinu 
kretanja postepeno se krećući ka izvoru hrane. U PSO, svaka 
jedinka (čestica) u jatu je predstavljena vektorima pozicije i 
brzine, na sledeći način: 

 
( ) ( ) ( )1( ) ,..., ,...,k n

i i i iX t x t x t x t =               (12) 

 

                              ( ) ( ) ( )1( ) ,..., ,...,k n
i i i iV t v t v t v t =               (13) 

   
gde su Xi (t) i Vi (t) vektor pozicije i vektor brzine i-te čestice u 
vremenu (iteraciji) t; ( )k

ix t  i ( )k
iv t su pozicija i brzina i-te 

čestice  k-te dimenzije.  Početne vrednosti vektora su slučajno 
odabrane. Brzine i pozicije čestica u narednoj iteraciji su 
određene pomoću sledećih jednačina: 
 

       
( ) ( ) ( ) ( ) ( )( )

( ) ( )( )
1 1

2 2

1k k k k
i i i i

k k
i

v t w t v t C r pbest t x t

C r gbest t x t

+ = + − +

+ −
 (14) 

 
( ) ( ) ( )1 1k k k

i i ix t x t v t+ = + +                   (15)  
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U (14), w (t) je inercijalna težina, C1 i C2 su parametri 
regulacije ubrzanja čestica, r1 i r2 su are the uniformno 
raspoređeni slučajni brojevi unutar granica [0,1], ( )k

ipbest t
je najbolja pozicija i-te čestice k-te dimenzije (indiviualna 
najbolja pozicija), i kgbest  je globalno najbolja pozicija u 
celoj populaciji. Drugi član u (14) predstavlja exploracioni 
deo PSO. Inercijalna težina vrši uravnoteženje između 
lokalnog i globalnog pretraživanja rešenja. U početnom 
stadijumu procesa pretraživanja vrednost w je velika kako bi 
se pojačala globalna eksploracija. U poslednjem stadijumu 
vrednost w se smanjuje kako bi se dobila bolja lokalna 
exploracija. 

Algoritam PPSO je predložio Gholamghasemi M. sa 
koautorima 2019. godine [4].  Parametri C1 i C2, koji se u 
algoritmu PSO zadaju ručno, u PPSO algoritmu su 
modelovani faznim uglom (θ) definisanim u teoriji fazora. Na 
taj način, PPSO, za razliku od PSO, postaje adaptivni i 
neparametarski algoritam. Vrednost w (t) je u PPSO jednaka 
nuli. Brzina u svakoj iteraciji se ažurira na sledeći način. 

 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2 sin

2 cos

cos

sin

i

i

t
i i i i

t
i i

V t t Pbest t X t

t Gbest t X t

θ

θ

θ

θ

⋅

⋅

= × − +

+ × −
       (16) 

 
gde su: ( )iPbest t  i ( )Gbest t

 
vektori individualne i globalne 

najbolje pozicije; Xi (t) je vektor trenutne pozicije i-te čestice 
u t-toj iteraciji; θi  jedno-dimenzioni fazni ugao vektora i iX θ∠



 
za i-tu česticu. Za početnu populaciju koja se sastoji od N 
čestica (za t = 1), vektor iX



 je: i i iX X θ= ∠


 (i = 1:N). Na 
početku pretraživanja rešenja, generisano je N slučajnih 
čestica (rešenja) u n-dimenzionom prostoru problema sa 
faznim uglom θi dobijenim iz ravnomerne raspodele θi = U (0, 
2π), i sa početnom granicom brzine Vi,max. Donja i gornja 
granica Vi (t) su definisane sledećim intervalom [-Vi,max (t), 
Vi,max (t)].  

Pozicije čestica se ažuriraju pomoću sledeće jednačine: 
 

( ) ( ) ( )1i i iX t X t V t+ = +
  

                          (17) 
 

Posle ažuriranja brzine čestice i pozicije primenom (16) i (17), 
fazni ugao θi i maksimalna brzina Vi,max za sledeću iteraciju 
izračunavaju se iz sledećih jednačina: 
 
           ( ) ( ) ( ) ( ) ( )1 cos sin 2i i i it t t tθ θ θ θ π+ = + + ×        (18) 

  

( ) ( ) ( )2
,max max min1 cosi iV t t X Xθ+ = × −             (19) 

 
Na Sl. 1 nacrtan je dijagram toka PPSO. 

Start

Stop

t >T?

Optimalno rešenje

1
max, max, min,

1 1
min, max, min,

Generisanje početne populacije:
1: , 1: , 0.5 ( ), 1,

(0.2 ) ( )

= = = × − =

= = + −
ik k k

i ik k ik k k

k n i N x x t

U and x x rand x x

ν

θ π

( ) ( )

1

1 1 1 1

Početna fitnes evaluacija za svaku jedinku jata (X ) sa 
 i pozicijama:

and arg mi

  

n ( )

  

= =

i

i i i
ipbest

f

p

local best pbest global

best X gbest f pbe

best gbe

st

st

( )( )
( )( )

2sin 2cos

max, max,

1 1 1
min, max,

Ažuriranje brzina i pozicija jedinki k=1:n i i=1:N:

cos ( ) sin (g ),

min max , , ,

, min max , , .+ + +

= × − + × −

= −

= + =

t t
i it t t t t t t

ik i ik ik i k ik

t t t t
ik ik ik ik

t t t t t
ik ik ik ik ik k k

pbest x best x

x x x x x x

θ θ
ν

ν ν ν ν

ν

( ) ( )
( ) ( )

( ) ( )

1
1

1

1 1
1

Ažuriranje i  pozicija:

,

, otherwise
i

,

, otherwise

    
t t t
i i it

i t
i

t t t
i it

t

pbest if f pbest f X

local best pbest gl

pbest
X

Pbest if f Pbest f Gbest

obal best gbest

Gbest
Gbest

+
+

+

+ +
+

 ≤= 


 ≤= 


( )
( )

max,i

1

21 1
max, max min

Ažuriranje  i V  :

cos sin 2 ,

cos .

+

+ +

= + + ×

= × −

i

t t t t
i i i i

t t
i iV X X

θ

θ θ θ θ π

θ

t=
t+

1

i=
i+

1

Ne

Da

 
 

Sl. 1.  Dijagram toka PPSO 
 

IV. REZULTATI SIMULACIJE 
Testiranje PPSO algoritma u ovom radu se vrši na 

standardnom IEEE test sistemu sa 30 čvorova, 6 generatora i 
ukupnom potrošnjom od 283.4 MW. Uzimaju se u obzir 
efekat ventila u termoelektranama i gubici snage u sistemu. B-
loss matrica i koeficijenti troškova i emisije usvojeni su iz [8]. 
Implementacija PPSO se sprovodi na platformi  od 1.6 GHz 
sa 3 GB RAM primenom MATLAB R2017a. Kao rezultati 
uzimaju se najbolje vrednosti dobijene posle 30 puštanja 
algoritma. Veličina dozvoljene greške u (9) je δ = 10-6 MW, 
dok je faktor skaliranja γNOx jednak 1,000 ($/t). Minimizacija 
se vrši sa tri vrednosti težinskog faktora: w = 1 (minimizacija 
samo troškova goriva), w = 0 (minimizacija samo NOx 
emisije) i w = 0.5 (istovremena minimizacija troškova goriva i 
emisije NOx gasova). Rezultati dobijeni primenom PPSO 
upoređuju se sa rezultatima dobijenim pomoću tri sledeća 
algoritma: (i) hibridnog algoritma koji se sastoji od  PSO i 
gravitacionog pretraživačkog algoritma (eng. PSO - 
Gravitational Search Algorithm (PSOGSA)) [10], koji je 
pokazao najbolje rezultate pri rešavanju CEED problema bez 
uzimanja u obzir efekta ventila [1], [11]; (ii) algoritma 
optimizacije leptira (eng. Butterfly Optimization Algorithm 
(BOA)) [12], kao jednog od najnovijih meta-heurističkih 
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algoritama; i (iii) algoritma svica (eng. Firefly Algorithm 
(FA)) [13], kao jednog od najpoznatijih algoritama. 

Konstante testiranih algoritama, koji se primenjuju u 
simulaciji, date su u Tabeli 1. U Tabeli 2 date su minimalne i 
maksimalne vrednosti rezultata i njihove standardne devijacije 
za primenjene algoritme. Iz Tabele 2 sledi da je minimalna 
vrednost troškova goriva, dobijena primenom PPSO najmanja 
u odnosu na minimalne vrednosti dobijene pomoću drugih 
testiranih algoritama. Minimalne vrednosti emisije NOx 
gasova su iste u slučaju primene PPSO, PSOGSA i FA. Te 
vrednosti su bolje (manje) nego u slučaju primene BOA. 
Standardne devijacije rezultata dobijenih pomoću PPSO su 
manje nego standardne devijacije rezultata dobijenih pomoću 
PSOGSA, FA i BOA. U Tabeli 3 date su najbolje vrednosti 
izlaznih snaga generatora, troškova goriva i emisije gasova, 
dobijene primenom PPSO za w = 1, w = 0 i w = 0.5.  

Na Sl. 3 date su krive konvergencije algoritama PPSO, 
PSOGSA, FA i BOA algorithms u slučaju minimizacije 
troškova goriva. Sa Sl. 3 se vidi da PPSO konvergira ka 
minimalnoj vrednosti za broj iteracija koji je isti kao u slučaju 
PSOGSA. U poređenju sa FA, PPSO konvergira ka 
minimalnoj vrednosti za manji broj iteracija. Broj iteracija 
BOA je manji u odnosu na ostale algoritme ali BOA daje 
lošije vrednosti minimalnih troškova goriva, emisije gasova i 

standardne devijacije rezultata. Sl. 3 pokazuje da su početne 
brzine konvergencije velike za sve primenjene algoritme.  

 

 
 

Sl. 3.  Krive konvergencije PPSO, PSOGSA, FA i BOA u za slučaj 
minimizacije troškova goriva. 

 
 

TABELA 1 
KOEFICIJENTI ALGORITAMA KOJI SU TESTIRANI NA STANDARDNOM IEEE TEST SISTEMU SA 30 ČVOROVA I 6 GENERATORA  

 
PPSO PSOGSA FA BOA 

N T N T G0 α C1 C2 N T Α βmin γ N T c a p 
50 200 50 200 1 20 0.5 1.5 50 200 0.25 0.2 1 50 200 0.01 0.1 0.8 

 
TABELA 2  

MINIMALNE I MAKSIMALNE VREDNOSTI I STANDARDNE DEVIJACIJE, DOBIJENE PRIMENOM PPSO, PSOGSA, FA I BOA  
NA STANDARDNOM IEEE TEST SISTEMU SA 30 ČVOROVA I 6 GENERATORA 

 
Algoritam PPSO PSOGSA FA BOA 

Minimizacija 
troškova goriva 
(w = 1) 

Min 635.82129 635.82284 635.83288 640.37240 
Max 647.29186 698.99430 642.65875 663.92341 
SD* 2.376452 18.37740 2.904691 5.989508 

 Minimizacija emisije     
 NOx gasova 
 (w = 0) 

Min 0.1941785 0.1941785 0.1941785 0.1942077 
Max 0.1941785 0.2195708 0.1941785 0.1966057 
SD* 5.8637e-11 6.23630 1.0606e-10 5.7676e-04 

w = 0.5 SD* 2.9438e-2 9.68220 1.96486e-1 2.5305474 
                * SD označava standardnu devijaciju 
 

V. ZAKLJUČAK 
U ovom radu je predložen algoritam PPSO za rešavanje 

CEED problema. Performanse ovog algoritma pri rešavanju 
CEED problema su procenjivane na standardnom IEEE test 
sistemu sa 30 čvorova i 6 generatora. Pri tome, uzimani su 
u obzir uticaj efekta ventila u termoelektranama i gubici 
snage u elektroenergetskom sistemu. Zatim su dobijeni 
rezultati upoređeni sa rezultatima drugih algoritama: 
PSOGSA koji je u radu [1] pokazao najbolje rezultate pri 

rešavanju CEED problema na IEEE test sistemu sa 30 
čvorova i 6 generatora ali bez uzimanja u obzir efekta 
ventila; BOA, koji predstavlja jedan od najnovijih meta-
heurističkih algoritama; FA, koji je jedan od često 
primenjivanih algoritama. Poređenjem testiranih 
algoritama, utvrđeno je da PPSO daje najbolje rezultate: 
Simulacioni rezultati su pokazali da PPSO ima dobre 
konvergentne osobine i daje najbolje vrednosti minimalnih 
troškova goriva u odnosu na algoritme PSOGSA, FA i 
BOA. Osim toga, utvrđeno je da su standardne devijacije 
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rezultata najmanje u slučaju primene PPSO, da su 
minimalne vrednosti emisije štetnih gasova iste u 
slučajevima primene PPSO, PSOGSA i FA i da su one 
bolje nego u slučaju primene BOA.    

 
TABELA 3  

NAJBOLJE VREDNOSTI IZLAZNIH SNAGA, TROŠKOVA GORIVA I EMISIJE  
GASOVA, DOBIJENE PRIMENOM PPSO  

 

Snaga, MW   w = 1   w = 0  w = 0.5 
Ps,1 5.00000   41.09207 5.00000 
Ps,2 13.44427 46.36641  18.32689 
Ps,3 83.53982   54.44192  79.88927 
Ps,4 74.84721   39.03759  74.81317 
Ps,5 79.79982 54.44609  78.55621 
Ps,6 28.65457 51.54889  28.76874 
Ploss 1.88568 3.53297  1.95428 

Troškovi 
goriva ($/h)  635.82129 728.66678  638.65784 

NOx  (ton/h) 0.226433 0.1941785  0.223048 

 

DODATAK 
TABELA 4  

B-LOSS MATRICE TEST SISTEMA [8]  
 

Mat- 
 rice Elementi matrica 

B 
 

B0  

B00  

 
TABELA 5  

KOEFICIJENTI TROŠKOVA GORIVA I EMISIJE NOX GASOVA I OGRANIČENJA GENERATORA ZA PRIMENJENI TEST SISTEM [8]   
 

g ag bg cg dg eg αg βg ηg ξg λg Pg
min Pg

max 
1 10 200 100 18 3.7 4.091e-2 -5.554e-2 6.490e-2 2.0e-4 2.857 5 150 
2 10 150 120 16 3.8 2.543e-2 -6.047e-2 5.638e-2 5.0e-4 3.333 5 150 
3 20 180 40 14 4.0 4.258e-2 -5.094e-2 4.586e-2 1.0e-6 8.0 5 150 
4 10 100 60 12 4.5 5.326e-2 -3.550e-2 3.380e-2 2.0e-3 2.0 5 150 
5 20 180 40 13 4.2 4.258e-2 -5.094e-2 4.586e-2 1.0e-6 8.0 5 150 
6 10 150 100 13.5 4.1 6.131e-2 -5.555e-2 5.151e-2 1.0e-5 6.667 5 150 
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ABSTRACT 
Minimization of fuel costs and pollutant emissions in thermal 

power plants by adjusting electric power outputs from generators 
represents important problem in power system management. This 
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problem is known as Combined economic emission dispatch (CEED) 
problem. In this paper, a meta-heuristic algorithm called Phasor 
particle swarm optimization, which is an improved variant of Particle 
swarm optimization, is proposed to solve the CEED problem. 
Parameters of Phasor particle swarm optimization are automatically 
adjusted during iterations, so this algorithm is adaptive and non-
parametric, which is its advantage. The performance of the proposed 
algorithm for solving CEED problem is evaluated in a standard IEEE 
test system with 30 nodes and 6 generators. Based on the obtained 
results, it was determined that this algorithm has better 

characteristics than the algorithms used in other published papers to 
solve the CEED problem. 

 
Solving combined economic and emission dispatch 
problem using Phasor particle swarm optimization  

 
Milena Jevtić, Miroljub Jevtić, Jordan Radosavljević, Sanela 

Arsić i Dardan Klimenta  

 

VI1.1 Page 6 of 6



Potential of Using Simulated Data in 
Processing Photoacoustic Measurement Data 

M. I. Jordovic Pavlovic, A. D. Kupusinac, S. P. Galovic, D. D. Markushev, M.N. 
Nesic, K.Lj.Djordjevic, M. N. Popovic 

 
Abstract: This paper explores the potential of using simulated 
data in calibration of photoacoustic measurement system. The 
database of simulated experimental values is created using 
software developed on the bases of the theory-mathematical 
model. Reliability of the data was gained thanks to the expert 
knowledge. An artificial neural network as a precise prediction 
tool is trained on the developed database of simulated data to 
recognize type of the microphone used as a detector in 
photoacoustic experiment. The result is classification model 
satisfies the basic requirements of a photoacoustic experiment: 
accuracy, reliability and real time operations. The paper discusses 
the optimization of classification model in terms of used 
computational power, required precision and process rate in 
relation with defined problem. The obtained results justify the 
idea of using simulated data in photoacoustic. Presented theory-
mathematical model and classification model are part of 
developed machine learning framework for processing 
photoacoustic measurement data. 
Keywords: Machine learning, artificial neural networks, 
simulated data, classification, photoacoustics, microphone 
 

I. INTRODUCTION 
 Machine learning techniques are considered suitable 
tool for intelligent decision making, and therefore they have 
found application in various domains. When input and output 
parameters are linked with some kind of pattern, and sufficient 
data is available, this pattern can be discovered or 
approximated by machine learning algorithm being trained on 
that same data. Subsequently, output for particular inputs 
outside the learning dataset can be calculated (with more or less 
accuracy) using this newly discovered pattern. This means that 
if the quality and the quantity of the data used for learning are 
sufficient, and the discovered pattern also exists for events that 
were not part of the learning dataset, the produced result can be  
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used to approximate the outputs based on any future 
input[1]. Machine learning algorithms, and, in particular, 
artificial neural networks (ANN), are frequently used as 
reliable and fast prediction tools. They are often used in 
photoacoustics (PA), a popular method in photothermal 
(PT) science in the last few years, for: noise removal in 
photoacoustic recognition of images [2], simultaneous 
determination of the laser beam spatial profile and 
relaxation time of the polyatomic molecules in gases in 
real time within the trace atmosphere gases monitoring 
[3][4], reconstruction of optical profile of optically 
gradient materials based on frequency, magnitude and 
phase of measured PT response [5], etc. 
 In this paper, a few of the several results achieved 
in PA measurement system characterization research are 
presented. The ultimate goal is material characterization. 
The aim of the PA measurements is the determination of 
physical properties (thermal, optical, mechanical, elastic, 
electronic and other related ones) of the examined 
structure from its PA response. All PT methods are 
indirect measurement techniques, and so is the 
photoacoustics, meaning that these methods are model 
dependent. In terms of mathematics, obtaining physical 
properties by these methods is considered an inverse 
problem that can be assessed in two steps: 

1. Development of the direct (forward) 
model – direct solution of the inverse problem, i.e. 
developing the mathematical model that sufficiently well 
describes physical processes leading from the optical 
excitation to the thermal response. First step is 
theoretical-mathematical modeling of temperature 
distribution within the sample, on front and back sample 
surfaces and in its surroundings, and then theoretical- 
mathematical modeling of the specific PT response (in 
this case the PA response) 

2. Development of the inverse procedure – 
inverse solution of the inverse problem, i.e. the 
determination of physical properties of the sample based 
on measured photothermal response, developed 
mathematical model and well known preset of input 
parameters (the intensity and modulation frequency of 
the incident optical radiation). Some of the inverse 
procedures are fitting, numerical procedures and neural 
networks. Fitting and numerical procedures are time 
consuming procedures, demanding the engagement of the 
researcher. These are drawbacks regarding scientific and 
further industrial application of the method, where a real 
time procedure is appreciated. The reasonable choice  is
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artificial neural networks as a very efficient machine learning 
algorithm. Because of the complexity of the inverse problem 
more than one ANN is needed. 
 Firstly, the characterization of the sample and the 
prediction of its thermal, mechanical and optical properties 
based on its PA response, require the use of one ANN. This is 
already done in [6]. But the necessary precondition is that the 
PA response in use is influenced only by the sample, which, 
unfortunately, is not the case. The PA response is non- linearly 
affected not only by the sample but also by the measurement 
instrument chain and the appearing noise. So, the PA response 
has to be corrected first, in order to obtain the so called “true” 
signal. In the first preprocessing procedure that was developed, 
noises are removed during data acquisition. In the second 
preprocessing procedure, calibration of the measurement 
system has to be done. Because of the dominant impact of the 
microphone on the distortions in the measurement instrument 
chain, as the consequence of using minimum volume cell 
configuration of the PA experimental set-up, calibration of the 
measurement system boils down to the calibration of the 
microphone. The key of this brand new idea is the determination 
of microphone transfer function. Furthermore, the division of 
PA response amplitude data by corresponding microphone 
characteristics and its subtraction from the PA response phase 
data will result in gaining the so called “true” signal, 
originating only from the sample. Unfortunately, microphone 
specifications provided by the manufacturer are not precise 
enough, particularly in the case of phase transfer function. 
Besides, microphone cavity is not considered as the source of 
resonances, which is inevitable in PA measurements. Since, 
these specifications could not be used, the other solution is 
needed. Non-linear influence of the microphone on a PA 
response suggests ANN application. Having in mind that ANN 
seeks large datasets (is data hungry) [7], the first requirement 
for the application of neural networks is set. But this 
requirement is opposed to two facts related to PA 
measurements: firstly, such a numerous experimental 
collection is very difficult to obtain, and secondly, based on the 
experience, real experimental data can hide a very serious 
problem of the influence of the measurement system on the 
estimated parameter values [8]. Therefore, another solution for 
database creation is presented: the idea of theoretical-
mathematical model as a base for designing a software for the 
simulation of PA experimental values. Thanks to the 
developed software, amplitude and phase data of the simulated 
PA response are obtained. Here, satisfactory credibility to the 
experiment is of essential importance in order to make the 
newly created method precise enough. Therefore, expert 
knowledge (i.e., the preset input parameters) is crucial for the 
solution of this problem.  
 Simulated data have often been used for training in 
machine learning problems in the past few years [9][10][11], 
but as far as we know, the idea of using simulated experimental 
values, obtained by developed software based on a theoretical 
- mathematical model, for training a machine learning model 
is new. This article presents a few steps of a complex 

correction procedure performed in photoacoustic 
measurements. Firstly, a complete method of making a large 
amount of reliable simulated data as a precondition for 
applying neural networks as the inverse solution of the inverse 
problem is explained. Secondly, a process of designing 
classification model for microphone type recognition as the 
first step in recognizing measurement system characteristics is 
discussed on the base of optimal computational complexity, 
required precision and process rate in relation to the given 
problem and available data set. Classification of microphone 
type will determine the shape of the transfer function and the 
levels of signal exaggeration and attenuation. Once the class of 
the microphone is defined, characterization of microphone will 
be simplified by limiting the database made for various types 
of microphones to a database of a particular microphone type. 
This idea is presented in our previous work [12]. That way, 
time, and computational power are saved, which are real 
benefits of the classification model. Learning on the defined 
database of classified microphone type, ANN based model for 
microphone characterization [13] predicts characteristic 
microphone parameters with satisfying accuracy, which 
together with the corresponding shape, precisely determine 
microphone transfer function [12].  
 This paper shows that if a massive dataset is obtained 
and the quality of data is high, less computation power is 
needed, and higher process rate is gained for the solution of 
machine learning problem. 
 

II. THEORETICAL -MATHEMATICAL MODEL OF 
PHOTOACOUSTIC RESPONSE 

Photoacoustics, as one of photothermal methods, is 
based on the photothermal effect. The photothermal effect is 
the effect of generation of heat as a consequence of the 
absorption of the incident electromagnetic radiation, from a 
wide spectrum of wavelengths, in different relaxation and de-
excitation processes. This way generated heat causes the 
disruption of the thermodynamic state of the sample (pressure, 
temperature, density) which propagates through the sample and 
the nearby environment, producing a number of detectable 
phenomena. In photoacoustics, the first and the most used 
photothermal method, a sample is placed inside the 
photoacoustic cell that contains air and microphone. It is 
exposed to a modulated light beam which causes periodic 
sample heating. As a consequence, the air pressure in the PA 
cell oscillates, which can be detected by a microphone [14].The 
photoacoustic cell can be designed in a so called “reflection 
configuration”, with the source and the microphone set up on 
the same side of a sample,  or the “transmission configuration”, 
where a sample is placed between the source and the 
microphone. In our experimental set up, the minimum volume 
cell configuration is employed. It is kind of transmission cell 
configuration where sample is mounted directly on the top of 
the microphone, instead of the dust cover, as presented in figure 
1, [15]. This way, the microphone chamber acts as the PA cell, 
closed by the sample on one side and the microphone 
diaphragm on the other one, which causes disruptions of the 
recorded signal on its endings [16]. 
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Power levels of experimentally recorded signals are, 
generally, low. In order to make the level of the recorded signal 
higher than the level of the noise (real – flicker noise, coherent 
signal deviation and random noise), the absorption of the 
sample has to be large. In the case of materials with significant 
reflection, the additional coating is needed, while in the case of 
transparent (or semitransparent) samples, the coefficient of 
transmission has to be augmented.  However, due to high level 
of transmission, the absorption of the incident radiation in the 
surrounded air can`t be neglected and the recorded signal 
begins to contain unnecessary information. The problem is 
even bigger in the case of the minimum volume cell 
configuration, where the microphone has to be protected 
because of the small dimensions of the cell. Another solution 
is, also, an additional layer of high absorption. 

 
 
 

 
 
 
 
 
 
 
 Fig. 1. Experimental setup 
 
 Photoacoustic response within the transmission 
configuration is the sum of two dominant signal components: 
thermoconducting and thermoelastic component. 
Thermoconducting component arises due to the periodic heat 
flow from the sample to the surrounding gas (thermal-piston 
effect) and thermoelastic component arises due to the 
thermoelastic banding of the sample (drum effect) 
[17][18][19][20][21][22][23][24][25]. 
 In our experiments two-layer structure is employed. 
The first layer is black coating, and the second layer is the 
investigated sample. Theoretical-mathematical model of PA 
response of a two-layer system, used for obtaining the dataset, 
is given by following expressions [26][27]: 
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Where ptot is total pressure that we want to record by 
photoacoustic, pth  is the thermoconducting component and pac 

is the thermoelastic component. Furthermore P0 is the presser 
in the cell, V0 is the volume of the cell (in the case of the 
minimum volume cell V0 represents the volume of the chamber 
cavity), γ represents the heat capacity ratio, αT is the thermal 
expansion coefficient, Rc is the radius of the chamber in front 
of the microphone diaphragm, l1and l2 are the thicknesses of the 
first and second layer, while ls is the sum of the thicknesses 
these two layers (l1and l2). ϑ(x) represents temperature 
variations inside the samples and ϑ(ls) is the surface 
temperature variation on the rare surface. Expressions for these 

temperature variations are given in the article [28][29]. The 
presented model described the total presser as photoacoustic 
response, and its components in the two-layer system 
surrounded by the air and it is based on the Generalized model 
of heat conduction that implies finite heat propagation speed. 
The system depicts volume absorption of incident optical beam 
in both layers [26][27][28][29]. 

Appearance of amplitude and phase characteristics of 
the theory-mathematical simulated total pressure are shown on 
figure 2a) and 2b) respectively. 

 

 
Fig. 2 Simulated amplitude and phase (solid line) of the total 

photoacoustic signal, ptot(f), as a function of the modulation frequency f, 
together with the appropriate components pth(f) and pac(f)   (dotted lines). 

 
In a minimum volume cell PA experiment [30], 

microphone is the fundamental part of the detector system. 
Microphone is an acoustic-electric converter, but its transfer 
function in frequency and time domain differ due its 
construction, applied geometry and membrane type. In the 
literature [8] and in our experimental experience, microphone 
behavior is described as filtering. At low frequencies (< 1 kHz), 
electret microphones (commonly used in PA) usually act as 
electronic high-pass filters, while at high frequencies (> 1 kHz) 
these microphones usually act as acoustic low-pass filters.  

The influence of the measurement chain, including the 
microphone as the component that has the greatest impact in 
signal distortion, is given by the following mathematical 
expressions describing total transfer function: 
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In previous equations, 𝐻!"(𝑓) represents electronic 
characteristic of the influence of the other components in the 
measurement chain, first of all the sound card, and 𝑓! is the 
characteristic frequency that describes this system. Based on 
experimental experience, it is assumed that this frequency is 
constant. 𝐻#"(𝑓)and Ha(f ) represent electronic and acoustic 
characteristics of the microphone.	𝑓# correspondes to the 
characteristic frequency of the electronic high-pass filter and 𝑓$ 
and 𝑓% to the characteristic frequencies of the acoustic low-pass 
filters of the microphone,  𝜉$ and 𝜉% are reciprocial values of 
the quality factor, or, in other words, the double value of the 
damping factor. The product of these two components 
represents the microphone response. As a consequence, the 
microphone response in frequency domain is deviated in 
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amplitude and phase, especially at the begging and at the end 
of frequency range. Different microphone types have different 
transfer functions, but transfer functions of two microphones of 
the same type are usually different, because, in practice, two 
identical microphones do not exist. Theoretical-mathematical 
model for the total photoacoustic signal recorded by the 
minimum volume cell photoacoustic experimental set up 
represents product of the total pressure and the total transfer 
function: 

 
𝑆(𝑓) = 𝜎𝑝!"!$-(𝑓)𝐻!"!$-(𝑓) (9) 

 
Based on this equation and numerical simulations of 

the experiments, the database is obtained. Amplitude and phase 
data of the simulated PA response are given in figure 3a) and 
3b). All the curves (amplitude and phase) of distorted 
photoacoustic signal have expected shape, according to 
experimental experience. There are no outliers. 

 

 
 
Fig. 3 Curves a) amplitude and b) phase of distorted photoacoustic 

signals with different microphone characteristics from the dataset used for 
network training[12] 

 
III. DATABASE DESCRIPTION 

Based on theoretical-mathematical model, software 
for creating simulated experimental values or numerical 
experiments is designed using programming IDE of Matlab. 
Microphone theoretical characteristics, corresponding to 
commercially available microphones ECM30В, ECM60 and 
WM66, are given in Table 1. Beside these microphone types, 
frequently used in PA experiments, simulations for another 
type of microphone are created, the so called ideal microphone 
(IM). Considering ideal microphone is of great importance for 
the correction procedure. If a microphone exerted ideal 
behavior, meaning it had flat PA response, that would mean 
that measurement chain would be equally sensitive in the whole 
frequency domain, so the correction procedure would be 
unnecessary. So, taking IM into account, we are saving the 
time. 

TABLE I 
THEORETICAL VALUES FOR ALUMINUM SAMPLE 

 Dye Aluminum 
Thermal conductivity [Wm-1K-1] 70 210 

Thermal diffusivity [m2s-1] 2.5*10-5 8.6*10-5 
Thermal relaxation time [s] 10-4 10-12 

Absorption coefficient [m-1] 108 145*106 
 
During the process of the examination, the black dye-

aluminum structure was investigated. Aluminum plate, 197 μm 
in thicknesses and with radius of 10 μm was covered in black 
ink dye, 2 μm in thicknesses. Thermal, thermal memory and 
optical parameters used for obtaining database are given in 
Table 1. 

Expert knowledge was crucial in obtaining similarity 
good enough with the experiment. Based on experimental 
experience, characteristic microphone parameters are 
considered to have different stability, regarding the 
reproducibility in each measurement. Accordingly, different 
value ranges were set for different parameters. Frequency  is 
the most stable parameter due to its origin from RC microphone 
characteristic, so three values ware taken for network training: 
central value  Hz for the microphone ECM30В and 
two values which are ± 5 % apart from the central value (23.75 
Hz and 26.25 Hz). By analogy, the values for the ECM60 are: 
14.25Hz, 15Hz and 15.75 Hz, for the WM66 they are: 61.75 
Hz, 65 Hz and 68.25 Hz, while for IM the values are: 0.475Hz, 
0.5	Hz and 0.525 Hz. Frequencies  and  are more 
dependent on experimental conditions then , so they are less 
stable than . Ten values, equally distanced in the 
corresponding ranges, were considered to be good enough for 
the description of experimental behavior related to those two 
frequencies. is taken in the range 8930-9866 Hz and is 
taken in the range 13965-15432 Hz for ECM30В. Microphones 
ECM60 and WM66 have the same ranges for frequencies 
and , 7980-8817 Hz and 13015-14383 Hz respectively. For 
IM 𝑓$		is in the range of 190000-209998 Hz while	𝑓% is in the 
range of 285000-314997 Hz respectively. Damping factors of 
the second order low-pass filter 𝜉$		 and 𝜉%		are strongly 
dependent on experimental conditions and they are the most 
unstable parameters. Each value range, for 𝜉$		 and 𝜉%, was 
chosen based on the peak appearing in the amplitude 
characteristic of the second order filter. Critical value of quality 
factor in the case of limitary situation where signal is extremely 
damped and respectively unforced is Q=0.5. Significant change 
happens from Q=1 to Q=100 hence 𝜉		 ∈ [0.99,0.015]. 15 
values, irregularly distributed in this range, were taken for the 
each type of microphone. This kind of microphone parameter 
distribution was assumed to be good enough to simulate all 
possible experimental situations. The discussion and 
comparison of inverse problem-solving concepts in 
photoacoustics is presented in our previous work [31]. There 
are 65,000 paired curves for each microphone type, as 65,000 
simulated experimental results, and those are 65,000 records of 
the database. Paired curves (two curves) mean that there are 
both amplitude and phase data for the given set of microphone 
parameters. Each curve contains data sampled at 200 frequency 
values in the range from 10Hz to 100kHz. By taking such a 
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wide frequency domain, the possibility of using microphones 
with different membrane material (mylar, nickel, graphene) is 
considered. In total, every record is represented with 400 
samples, 200 samples of amplitude and 200 samples of phase 
characteristics. Those are features for our machine learning 
problem. In other words each frequency is presented with two 
features, sample of amplitude and sample of phase, so we have 
resolution of two for every point on frequency axes. At the end 
of each database record, the information about which 
microphone type a particular record belongs to is written. The 
classification problem has 4 classes of microphones, 
symbolically presented with 0, 1, 2 and 3.  

 
 
 
 
 
 
 
 

 
 
Fig.4. Visualization of the data, different colors correspond to different 

microphone types 

 Visualization of the data used in classification 
modeling, the form of scatter diagram, is given in Fig. 2. 
Each point on a scatter diagram is one point of 200 points 
that corresponds to one curve of 270,000 curves in the 
database. Different classes of microphone are presented 
with different colors. Analyzing the diagram, one can 
conclude that points are completely classified to four 
classes or four microphone types in upper-right part of the 
diagram, meaning for certain distribution of amplitude and 
phase values it is clear to which class point belongs. That 
distribution of amplitude and phase values are happening 
in a low frequency domain. In lower-left part of the 
diagram points are mixed, meaning that for that 
distribution of amplitude and phase values it is not clear to 
which class point belongs, i.e. curves (or classes) overlap. 
Thus, classification model has more difficult task because 
of the overlap. Training, validation and test sets are 
obtained randomly because dataset is first shuffled and 
then divided into training, validation and test set. 
Generalization of the results is obtained on that way, thus 
243 000 records or 90% of the total number of records 
belongs to the training set, 13500 records or 5% belong to 
the validation set and the rest belongs to the test set.  

 
IV. RESEARCH RESULTS AND DISCUSSION 

Once, the topology of the model is chosen, the next 
step is fine-tuning of topology itself, parameters and 
hyperparameters of the model. It is done in iterative process 
idea-code-experiment, with a numerous attempt using literature 
suggestions [32][33] and experience. 

In pre-processing step, data scaling was done by 
performing the normalization of the input and output. Max 
normalization was chosen. It means that each element xi of the 
input vector is divided by its maximum absolute value, which 
is the maximum of absolute values of all the samples, a total of 

270000 values, at the i-th frequency. In other words, it is 
absolute maximum value of the i-th row of the input matrix. 
This way normalization of the input vector is done, all the 
values of the input vector are equal or less than unity. Similarly, 
normalization of the output vector is done. For weights 
parameters initialization, among others Xaviar algorithm [34] 
is chosen. The activation function tanh() is used for forward 
propagation and the Adam algorithm [35] is used for the 
optimization of weights in backpropagation. The optimization 
is intensified by the Mini-batch technique, size of 128. Because 
of the classification function softmax in the last layer, a cross 
entropy with logits is used as the error function and system 
performance measure during training. Neural network tuning 
on number of hidden layers and the number of neurons is 
presented in Table 2. 

TABLE II 
NUMBER OF HIDDEN LAYERS AND NUMBER OF NEURONS IN HIDDEN 

LAYER(S) ANALYSES 
No.of hidden layers 1 2 2 2 1 2 
No. of neurons of the 1. h. l. 10 8 7 9 5 3 
No. of neurons of the 2. h. l. / 2 3 1 / 2 
Train accuracy(%) 99.99 99.99 99.99 75.02 99.99 99.99 
Dev accuracy(%) 99.99 99.99 99.99 74.15 99.99 99.99 
Test accuracy(%) 99.99 99.99 99.99 75.45 99.99 99.99 
Number of epochs 100 100 100 100 100 100 
Prediction time (ms) 14.34 17.89 17.44 / 14.06 16.75 

 
 

2 1 2 2 1 2 1 
4 4 2 3 3 2 2 
1 / 2 1 0 1 0 
50.03 99.99 99.99 81.15 99.99 75.01 99.99 
49.19 99.99 99.99 82.09 99.99 75.03 99.99 
50.15 99.99 99.99 81.11 99.99 74.7 99.99 
100 100 100 100 100 100 100 

/ 13.89 16.89 / 13.73 / 13.93 

 
According to Table 2, for the defined classification 

problem and the dataset of 270000 records following 
conclusions can be drawn. One neuron in second hidden layer 
in configuration of two hidden layers is not appropriate and 
those topologies were dismissed, but 2 neurons in second 
hidden layer are satisfying. The reason are 4 classes at the 
output. There is no difference in accuracy in the case of the 
configuration with one hidden layer and in the case of 
configuration with two hidden layers with same total number 
of neurons. Based on experimental experience one can say that 
for other machine learning problems that was not a case. This 
is specificity of this particular problem. So, the topology and 
the choice of model parameters and hyperparameters are 
singularity of machine learning problem and the quantity and 
quality of available data. Minimum configuration that satisfies 
required accuracy is one hidden layer with 2 neurons. It is 
surprisingly small number of neurons, which can be justified 
with the large data set. It means that learning with large datasets 
decreases the number of computational units of ANN 
configuration, it becomes computationally simpler. Large 
dataset brings into the model huge knowledge about the 
problem, in the case of our classification problem knowledge 
about photoacoustic experiment environment. Using this 
knowledge ANN needs less computational power and less 
epochs for learning. Analyzing the obtained prediction time of 
different topologies of classification model, the most important 
influence on the processing rate has the number of hidden 
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layers, the number of neurons in layer has minor influence, 
even if there is significant difference in the number of neurons.  

Concerning the prediction, the network gives very 
high accuracy, train, dev and test accuracy are equal, 99.99%. 
Concerning the training, the network obtained good results 
even for very quick training, that lasts 100 epochs. According 
to the equal values of training, dev and test accuracy and low 
error function on the new data sets we can conclude that the 
network generalizes very well. There is no overfitting.  

The reliability of the model was tested on simulated 
data. Sixteen different independent datasets, meaning four 
different amplitude and phase characteristics for each type of 
microphone were created, where the microphone parameter 
values differed from those on which the network was trained, 
but in the given parameter range. Results are presented in Table 
3. According to Table 3 our model is reliable, it recognizes the 
microphone type precisely and gives an answer regarding the 
microphone type in real time.  

Results of the model on real experimental data are 
presented in [12]. 

 
TABLE III 

RESULTS OF INDEPENDENT TESTS 
Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Class. 1 3 0 2 1 2 3 0 2 3 1 2 1 0 3 0 

Accuracy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 
V. CONCLUSION 

   In this paper a complete explanation of the necessity for 
simulation data in the processing real photoacoustic 
measurement data is given. Software for simulations is 
designed based on the presented theoretical-mathematical 
model, while the credibility to the experiment is obtained using 
expert knowledge. Classification model for microphone type 
recognition is trained on the obtained database. Because of the 
huge, reliable dataset, knowledge about the photoacoustic 
experiment is embedded in the classification model so it could 
be optimized to a pretty simple topology, while the learning 
process was extremely efficient. In terms of precision and real 
time processing, classification model satisfies requirement of 
the photoacoustic experiment. In terms of reliability, 
classification model did not make any mistake in tests 
maintained with simulated data. The benefits of the presented 
model for PA measurements are multiple. By recognizing the 
microphone type the shape of transfer function and levels of 
signal exaggeration or attenuation are determined and that will 
simplify the further procedure of recognition of microphone 
characteristics in order to deprive PA signal of instrumental 
deviations. If the recognized microphone has flat 
characteristics the correction procedure is skipped. In the case 
of shaped response the correction procedure is done using only 
database of recognized microphone instead of whole database 
for all types of microphone. The processing time is saved this 
way. The generality of the model could be accomplished by 
extending the number of microphone types if such requirement 
of the experiment exists. In the future, we intend to explore 
modeling of noise distribution to generate data similar to real 
data and skip the first step of correction procedure, the noise 
removal. 
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Abstract— The importance of unique bent functions (most 
significantly in cryptography) creates a demand for their 
generation. Bent function generation is an interesting problem 
and, in this paper, we explore the idea of using invariant spectral 
operations in a Genetic algorithm for generating bent functions. 
Invariant spectral operations, when executed on bent function, 
resulting function is also bent. If multiple operations are 
performed consecutively, then there is a possibility that the newly 
generated bent function is not unique. A genetic algorithm is used 
to search the solution space in order to produce the most unique 
bent functions, for the least number of invariant spectral 
operations. 

 
Index Terms— Bent functions, invariant spectral operations, 

genetic algorithm. 

I. INTRODUCTION 

Bent functions are Boolean functions most distant from 
affine functions. They were introduced by O.S. Rothaus in 
1976. [1], and they have characteristics that are interesting for 
cryptographic applications. There are many algorithms for the 
generation of the bent function, see for example [2-9] and 
references therein. 

A very important characteristic of the bent functions is flat 
Walsh spectra. All Walsh spectral coefficients of n-variable 
bent functions have the same absolute value equal to 2n/2. 
Invariant spectral operations are operations that do not change 
the absolute values of spectral coefficients, i.e., they only 
permute or change the sign of spectral coefficients. It follows 
that new bent functions can be generated from any known bent 
function by applying invariant spectral operations.  References 
[7-9] elaborate methods for bent functions generation by using 
invariant spectral operations. The main disadvantage of those 
methods is that the same bent function can be generated by 
applying different sequences of operations.  

Genetic algorithm is inspired by natural selection, that 
belongs to the evolutionary algorithm group. This algorithm is 
used to optimize a solution for a corresponding problem. It can 
be used most effectively when the search space is vast, but the 
solution does not need to be perfect, only optimal to some 
degree. 
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This paper proposes the usage of a Genetic algorithm for the 
generation of bent functions. Bent functions belong to the vast 
space of Boolean functions. Therefore, the search for unique 
bent functions can be presented as executing a sequence of 
invariant spectral operations, and optimization is used in the 
sequence of operations, so that we will produce as many 
different bent functions as possible.  

The paper is organized in the following way: Section II 
presents the ANF representation of bent function. Section III 
covers Invariant spectral operations. Oscar-Bent functions are 
presented in Section IV and the Genetic algorithm is defined in 
Section V. Section VI explains the problem definition and 
usage of the Genetic algorithm for the generation of bent 
functions. Section VII goes over the results, and Section VIII 
gives a conclusion.  

II. ANF REPRESENTATION OF BENT FUNCTIONS 

A. Definition 

An n-variable Boolean function 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥) can be 
presented by the algebraic normal form (ANF), or the positive 
polarity Reed-Muller expansion as: 

𝑓(𝑥ଵ, … , 𝑥) =   𝑆(𝑖)
ଶିଵ

ୀ
ෑ 𝑥

ೖ
ିଵ

ୀ
 

where 𝑆(𝑖) is the Reed-Muller spectral coefficient and  
𝑖𝑖ଵ … 𝑖ିଵ is the binary representation of the index i. 

Reed-Muller spectral coefficients of bent functions are equal 
to 0 for each input vector with the number of ones greater than 
𝑛/2. The maximal number of variables in a product term is 
called the degree of 𝑓 [8]. 

B. Disjoint quadratic function 

The disjoint quadratic function contains n/2 disjoint 
quadratic terms, defined as: 

𝑓(𝑥ଵ, … , 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ … ⊕ 𝑥ିଵ𝑥 

III. INVARIANT SPECTRAL OPERATIONS 

A. Definition 

Invariant spectral operations do not change the absolute 
values of Walsh spectral coefficients, they only permute or 
change the sign of spectral coefficients. These changes preserve 
the flat spectrum.  

 Due to the simplicity of invariant spectral operations in the 
Reed-Muller domain, all operations are introduced in this 
domain. For consistency, all examples will be provided starting 
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from the Disjoint quadratic function for 𝑛 = 6. 

B. Function complement 

Function complement is defined as:  
  

𝑓ଶ = 𝑓ଵ
ഥ = 𝑓ଵ ⊕ 1 

For example, if 
𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 

The resulting function will be: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 ⊕ 1 

C. Variable complement 

Variable complement replaces the input variable 𝑖 by its 
complement 𝑥

ᇱ = 𝑥 ⊕ 1.  
If variable complement on variable 𝑥ସ is performed, the 

function 𝑓ଵ is transformed to: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସതതത, 𝑥ହ, 𝑥) 

=  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ(𝑥ସ ⊕ 1) ⊕ 𝑥ହ𝑥 
     = 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ଷ ⊕ 𝑥ହ𝑥 

D. Disjoint spectral translation 

Disjoint spectral translation replaces the input variable 𝑖 by 
𝑥

ᇱ = 𝑥 ⊕ 𝑥, where 𝑖 ≠ 𝑗.  
In the given example, if 𝑥ଷ is replaced by 𝑥ଷ ⊕ 𝑥, following 

function is generated: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ ⊕ 𝑥, 𝑥ସ, 𝑥ହ, 𝑥) 

= 𝑥ଵ𝑥ଶ ⊕ (𝑥ଷ ⊕ 𝑥)𝑥ସ ⊕ 𝑥ହ𝑥 
= 𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ସ𝑥 ⊕ 𝑥ହ𝑥 

E. Spectral translation 

In the general case, we can define spectral translation as 
adding linear member 𝑥  to the function: 

𝑓ଶ = 𝑓ଵ  ⊕ 𝑥 
If in our example 𝑥ଶ is added, resulting function is: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥  ⊕ 𝑥ଶ 

F. Permutation of variables 

Permutation of variables is defined as the interchange of two 
input variables 𝑥 ↔ 𝑥  , where 𝑖 ≠ 𝑗.  

𝑓ଶ൫𝑥ଵ, … , 𝑥 , … , 𝑥 , … , 𝑥൯ = 𝑓ଵ൫𝑥ଵ, … , 𝑥 , … , 𝑥 , … , 𝑥൯ 
In the given example if we interchange input variables 𝑥ଷ 

and 𝑥 the resulting function is: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) = 𝑓ଵ(𝑥ଵ, 𝑥ଶ, 𝑥, 𝑥ସ, 𝑥ହ, 𝑥ଷ) 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥𝑥ସ ⊕ 𝑥ହ𝑥ଷ 

G. Generalized spectral translation 

The generalized spectral translation is defined for the 
function 𝑓 which has 𝑛 variables (𝑛 = 2 ∗ 𝑘, 𝑘 ≥ 3) and 
contains 𝑛/2 disjoint quadratic terms: 

𝑓(𝑥ଵ, . . , 𝑥) = ⋯ 𝑥భ
𝑥భ

⊕ 𝑥మ
𝑥మ

⊕ … ⊕ 𝑥/మ
𝑥/మ

 

Performing generalized spectral translation on function 𝑓 
adds a new term 𝑥భ

𝑥మ
… 𝑥/మ

 where 

 𝑘ଵ ∈ {𝑖ଵ, 𝑗ଵ}, 𝑘ଶ ∈ {𝑖ଶ, 𝑗ଶ}, … , 𝑘/ଶ ∈ {𝑖/ଶ, 𝑗/ଶ}. 
If the starting function is 𝑓ଵ is and if 𝑘ଵ = 1,   𝑘ଶ =

3, and 𝑘ଷ = 6, resulting function 𝑓ଶ is: 
𝑓ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 ⊕ 𝑥ଵ𝑥ଷ𝑥 

IV. OSCAR-BENT FUNCTIONS 

The bent function which does not have linear and constant 
members can be called Oscar-Bent function (the name derives 
from Oscar Rothaus, who first defined bent functions). For the 
bent function defined in (1), we can derive the Oscar-Bent 
function shown in (2) by using invariant spectral operations.  

𝑓ଵ(𝑥ଵ, … , 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥 ⊕ 𝑥ଵ ⊕ 1       (1) 
𝑓ଶ(𝑥ଵ, … , 𝑥) =  𝑥ଵ𝑥ଶ ⊕ 𝑥ଷ𝑥ସ ⊕ 𝑥ହ𝑥                 (2) 

To transform a bent function to its Oscar-Bent function we 
need to remove linear and constant members, which is done by 
using two invariant spectral operations: function complement 
and spectral translation. By counting only Oscar-Bent 
functions, we can deduce that the number of unique bent 
functions found with this algorithm is calculated by multiplying 
the number of Oscar-Bent functions with 2ାଵ. The multiplier 
is found by calculating all possible combinations using two 
invariant operations mentioned above. 

V. GENETIC ALGORITHM 

Genetic algorithm is a subclass of Evolutionary algorithm 
(EA), which is a subclass of Evolutionary computation and 
belongs to set of general stochastic search algorithm [10]. 

Population in both Genetic algorithms and in nature 
represents the set of individuals who are trying to survive and 
pass on their genes to the next generations. An individual can 
be interpreted as a set of genes and abilities, and how fit they 
are to survive in the current population and habitat. If we 
observe an individual as a solution to a problem, as well as in 
nature, optimization (survival of the fittest) will transpire, in the 
end, the fittest individual will represent an optimized solution 
to the problem. Given a population of individuals within some 
environment that has limited resources, competition for those 
resources causes natural selection (survival of the fittest). This 
in turn causes a rise in the fitness of the population. Given a 
quality function to be maximized, we can randomly create a set 
of candidate solutions, i.e., elements of the function’s domain. 
We then apply the quality function to these as an abstract fitness 
measure – the higher the better. Based on these fitness values 
some of the better candidates are chosen to seed the next 
generation. This is done by applying recombination and/or 
mutation to them. Recombination is an operator that is applied 
to two or more selected candidates (the so-called parents), 
producing one or more new candidates (the children). The 
mutation is applied to one candidate and results in one new 
candidate. Therefore, executing the operations of 
recombination and mutation on the parents leads to the creation 
of a set of new candidates (the offspring). These have their 
fitness evaluated and then compete – based on their fitness (and 
possibly age) – with the old ones for a place in the next 
generation. This process can be iterated until a candidate with 
sufficient quality (a solution) is found or a previously set 
computational limit is reached [11]. 

The genetic algorithm can be described by the pseudo-code 
in Fig. 1. 
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InitializePopulation(); 
EvaluatePopulation(); 
while i < MaxIteration and  
BestFitness < MaxFitness do 
 Fitness = FitnessCalculation(); 
 Selection(); 
 ParentSelection(); 
 Reproduction(); 
 i++; 
 BestFitness = Max(Fitness); 
end while  
return BestFitness 

 
Fig. 1.  Pseudo code detailing the genetic algorithm 

A. Parent selection 

Parent selection represents a strategy of selecting good 
parents to get a better next generation. The strategy should 
consist of some random chance in selection, so diverse parents 
will be used, and we can diverge from the local maximum 
(which can be reached by using the same group of parents).  

- There are different strategies, for this paper, we have 
used: 

- Roulette selection – odds of selection are determined 
by individual fitness and a corresponding piece of the 
roulette wheel is given; a random number is generated 
to represent a ball spin. 

- Rang selection – is like Roulette selection, but fitness 
is scaled to give more chances to weaker individuals. 

- Tournament selection – from a randomly selected 
group of individuals the best individual is chosen 
based on fitness. 

B. Recombination and mutation 

Recombination and mutation are used to produce a new 
solution to find the best one which solves the problem. Both 
methods may and may not be performed (based on chance 
which is determined on startup).  

There are several recombination methods, but the most 
common is a crossover with one crossover point which is 
randomly selected. Genes from the first parent are copied to the 
crossover point, after which genes from the second parent are 
copied.  

Mutation, if performed, results in randomly changing 
individual genes. For each gene, independently, it is 
determined whether the mutation will be performed or not.  

C. Adult selection 

Adult selection defines how will the new generation join the 
existing group of adults. Since the “habitat” can only sustain an 
already defined number of individuals, adult selection is 
needed to determine who will survive. Several methods are 
implemented: 

- Full generational replacement – as the name applies, 
the parental generation is replaced with the new 
generation. 

- Generational mixing – both generations are mixed, 
and the best of mixed generations survives.  

- Overproduction – this method is a mixture between 

full generational replacement and generational 
mixing, in which the new generation has twice as 
many individuals as the parental generation, and only 
a half of the best child individuals survive to form the 
new parental generation. 

Elitism can also be used, elitism enables keeping the best 
solution for the next solution, regardless of chosen adult 
selection. 

VI. GENETIC ALGORITHM FOR BENT FUNCTIONS 

GENERATING 

The problem can be defined by finding the most bent 
function by using the least number of invariant spectral 
operations. Since invariant spectral operations are performed 
on a bent function, a starting bent function needs to be defined. 
In our case, we start from the disjoint quadratic function.  

For each implementation of a genetic algorithm, it is crucial 
to define an individual (which represents a solution to a 
problem) and a fitness function (which represents how good the 
solution is).   

A. Individual representation 

An individual is represented as a sequence of invariant 
operations which are performed on the most recent bent 
function.  

B. Fitness function 

It is recommended that the fitness function should be defined 
so it would have a minimum (the worst solution) and the 
maximum (the best solution), even though the boundaries can 
be arbitrary, the custom is to choose boundaries as 0 and 1. 

To determine how good is the solution, we need to go back 
to the problem definition which states that we should find the 
most unique bent functions for the least number of invariant 
spectral operations. From this, we can derive that the fitness 
function can be calculated as the number of unique Oscar-Bent 
functions divided by the number of used invariant spectral 
operations.  

By searching for the unique Oscar-Bent functions, we can 
generate the most bent functions, given that from the one 
Oscar-Bent function we can derive 2ାଵ bent functions. 

VII. EXPERIMENTAL RESULTS 

The application was developed in C#, and tests were 
performed on the laptop with the following configuration: 

- CPU: Intel® Core™ i5-8250U CPU @ 1.6GHz 
- RAM: 16 GB 
- OS: 64bit Windows 10 

Multiple parameters can be changed, and which can 
influence results (both performance and result wise). Testing 
all permutations of the possible combination of parameters is 
not a trivial task, and it is time-consuming. Therefore, some 
parameters were hardcoded with values that we perceived as 
best with our experience and using educated guesses. 

Parameters that were hardcoded for all tests: 
- Adult selection – Generational mixing 

VII1.2 Page 3 of 4



- Parent selection – Tournament selection 
o Tournament size – 20% of the population 

- Possibility of gene mutation – 10% 
- Possibility of recombination – 90% 

A. Test 1 – Different number of genes 

In this test we have chosen the number of variables to equal 
6, population size is set to 10, and the number of generations is 
limited to 100. In this test, we will change the number of genes 
and compare the number of unique Oscar-Bent functions in an 
average of 5 runs. Results are shown in Table I.  

 
TABLE I.   

RESULTS OF TEST 1 

 
Number 
of genes 

Number of generated OBF Time (s) 

100 97.8 0.066 

1 000 948.4 0.454 

10 000 9 364.4 8.31 

100 000 92 058 82.724 

 
Through a different number of genes, we have seen that with 

linear growth of the number of genes, the number of unique 
Oscar-Bent functions grows in a linear fashion, with the growth 
factor between 9.5 and 10. When we analyze the time needed, 
it grows exponentially which is expected since the solution 
space grows exponentially as well. 

B. Test 2 – Different number of variables 

As in the previous test, the population size is set to 100, the 
number of generations is limited to 100 and the number of 
genes to 10 000. Here we will fluctuate number of variables. 
Results are shown in Table II. 

 
TABLE II.   

RESULTS OF TEST 2 

 
n Number of generated OBF Time (s) 
8 9 652.6 16 
10 9 786.8 35.316 
12 9 834.4 111.346 

14 9 881.2 413.6 

 
While an increasing number of variables we can observe that 

the number of unique Oscar-Bent functions increase with low 
percentages. Factor of growth for the time needed increases 
with each step, but it does not increase exponentially. 

C. Test 3 – Application limits 

In this test, we emphasized the performance limits of the 
application, not to the numbers we have, therefore we have run 
this test only once. Here, we have kept the number of genes to 
10 000 and the number of generations to 100, as in the last test. 
But we have changed population size to 100. The results are 
shown in Table III. 

TABLE III.   
RESULTS OF TEST 3 

 

n Number of generated OBF Time (s) 

8 9 673 169.18 

10 9 768 405.08s 

12 9 845 1318.69s 

14 9 877 1801.56s 

16 N/A N/A 

VIII. CONCLUSION 

We have seen that the usage of Genetic algorithm can be 
used in the generation of new bent functions. The performance 
of this approach indicates that future work can give promising 
results. 

Memory is the biggest obstacle when working with bent 
functions. This problem can be approached by tracking only 
Oscar-Bent functions, which is performed in this paper. 
Further, all functions are kept in memory, which is a problem 
when expecting many unique Oscar-Bent functions, which we 
have seen in test 3. Future work will address this problem.  
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Abstract—Air pollution is an ever-growing issue, especially 
severe in urban and industrial areas. Air Quality Index (AQI) 
is a unit of measuring the level of air pollution, which takes 
into account the concentrations of all relevant air pollutants. 
There are two main problems that must be addressed in AQI 
calculations, i.e. regression and classification. The regression 
problem consists of calculating (approximating) the AQI index 
based on the concentrations of different air pollutants. In 
classification problem, the measurements of air pollutants’ 
concentrations are classified into different Air Quality Classes. 
In this paper a number of Machine Learning (ML) and Deep 
Learning (DL) algorithms were designed and used in order to 
solve both the regression and classification problems for AQI. 
The main goal was to present performance comparison for 
wide set of ML and DL algorithms based on the values of Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), 
Coefficient of Determination (R squared) in regression tasks, 
and Accuracy in classification tasks. Also, the percentage of 
algorithms’ convergence and the time needed to perform these 
regression and classification tasks are also measured.  

 
Index Terms—Air Quality Index (AQI); Machine Learning; 

Deep Learning; Regression; Classification 

I. INTRODUCTION 

Air pollution presents growing issue, which is especially 
severe in urban and industrial areas, and occurs whenever 
excessive quantities of pollutants such as gases, particulates, 
and bio-molecules are introduced into the atmosphere. It has 
harmful consequences on human population and other living 
organisms (i.e. it can cause diseases and/or even death, and 
impairing crops). Air pollutants can be solid particles, liquid 
droplets, or gases, and are classified as primary (i.e. directly 
emitted from the source) or secondary (i.e. formed in the 
atmosphere) pollutants. National environmental agencies set 
the standards and air quality guidelines regarding acceptable 
levels for air pollutants, while the air quality index (AQI) is 
used as an indicator in order to report the measuring of the 
air pollution and how unhealthy the air is (i.e. reports on 
possible associated health effects, above all for risk groups). 
AQI is calculated based on the maximum individual AQI 
measured for the observed criteria (air) pollutants, and this 
calculation is rather complex and thus its implementation is 
not suitable for applications with low-cost sensor platforms 
employed in the form of dense IoT-based sensor network. In 
fact the process of calculating AQI by formulas consists of 
two steps: (1) calculation of air quality index for every 
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pollutant in each of the measurements separately, and (2) 
observing values of the all indexes for every measurement in 
order to find the maximum. On the other hand, in a case of 
application of machine learning (ML), a whole process of 
training and testing the algorithms takes longer than the use 
of formulas, but these algorithms only need to be trained 
once, before its application in real-time systems. Thus, when 
compared to formulas which needs to be used every time we 
have a different measurement, the time needed to perform 
this task by ML algorithms is shorter. It should be noticed, 
that formulas used for these calculations are not complex, 
but since the implementation of these formulas requires 
using multiple loops and case functions, the process takes 
longer when compared to the testing part of the ML and DL 
algorithms. 

On the other hand, the more useful, flexible and scalable 
usage of AQI in terms of influence on the human population 
health, would be to deploy air quality forecasting system 
based on the measured levels of concentration of individual 
air pollutants, which would be able to predict AQI (i.e. air 
quality) locally and in short-term manner (hourly). This 
demands the use of dense network of low-cost sensors and 
thus requires simple solution for the determination of AQI 
based on the local low-quality air pollutant measurements.  

So far, research community and environmental agencies 
have developed different methods for calculation of AQI, 
[1][2], but still no universally accepted method exist that is 
appropriate in all scenarios, [3]. The machine learning (ML) 
based methods are proposed as an obvious and natural 
solution for AQI determination and prediction, such as fuzzy 
lattices decision support system, [1], the support vector 
regression (SVR), [2], or different ML algorithms (linear 
regression, random forest, decision tree, SVR, and K-
Nearest neighbor). 

In this paper, the broad set of ML algorithms, including 
deep learning (DL), are observed as possible solutions for 
determination of AQI based on the measured levels of six 
criteria pollutants. Also, we here addressed two main issues 
in AQI calculation: regression problem that represents AQI 
calculation based on criteria pollutants concentrations, and 
classification problem in which the measurements of air 
pollutants’ concentrations are classified into the Air Quality 
Classes. The output of the ML models is the approximation 
of the current values of AQI, while the prediction of the 
future values of AQI is something we are considering for the 
future works. In total, 8 different ML algorithms and 5 DL 
models were analyzed for the regression task, while 9 
different ML algorithms and 3 DL models were observed for 
the classification task. We here observed much broader set 
of ML algorithms than in previous work, i.e. in [3]. ML 
algorithms and DL models were designed, optimized and 
tested based on dataset consisting of real-time measurements 
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gathered from 5 countries. The performance metrics are 
defined, and performance analysis and comparison of the 
observed ML algorithms and DL models is performed for 
regression and classification tasks. 

The paper is organized as follows. In the section II the 
basic concepts related to air quality pollutants, monitoring, 
and scale are given. Section III gives short description of the 
observed machine learning algorithms and the deep learning 
models observed in this paper, as well as a short description 
of AQI regression and classification tasks, while a dataset 
used in ML and DL algorithm training and performance 
analysis is described in section IV. The main results and 
conclusion are presented in section IV, followed by the final 
concluding remarks. 

II. AIR POLLUTANTS AND AIR QUALITY SCALE 

Air pollution is most frequently man-made. It usually 
comes from factories, powerplants and heating plants which 
use unrenewable energy sources, cars and public transport.  

According to International Energy Agency (IEA) [4], 
from the year 2018 to 2040 the projected energy demand 
should rise annually by 1.3%. This projected growth can be 
seen on Fig. 1, where in the year 2020 around 60% of all the 
energy should be generated using non-renewable energy 
sources. While the use of renewable energy sources is 
projected to increase by the year 2040, because of the 
growth in energy demand, the amount of energy generated 
by coal, gas, oil and nuclear energy will not decrease. 

This is a growing problem, in both the developed and in 
countries in development, because a usage of fossil fuels 
results in high concentrations of air pollutants released into 
the atmosphere. Many of developed countries are fighting 
this problem by imposing laws which are restricting the 
amounts of fossil fuels burned each year. Also, powerplants 
and factories are required to use filters in order to reduce the 
emission of air pollution into the atmosphere. 

 

 
 
Fig. 1.  Projected growth of energy demand from 2018 to 2040, [4] 

 
The most common types of air pollution according to 

New South Wales Ministry of Health (NSW Health) [5], are 
listed below: 

- Carbon Monoxide ( CO), mostly generated by motor 

vehicles and industry plants; 
- Ozone (O3), the main component of smog, a product of 

interaction between sunlight and emissions from motor 
vehicles and industry plants; 

- Particulate Matter (PM 2.5, PM 10), the small solid 
particles and liquid droplets suspended in air, made up 
of variety of components including nitrates, sulfates, 
organic chemicals, metals, soil or dust particles and 
allergens, which mostly comes from motor vehicles 
and industry plants; 

- Nitrogen Dioxide (NO2), generated by motor vehicles, 
industry plants, and unflued gas-heaters; and 

- Sulphur Dioxide (SO2), generated by the fossil fuel 
combustion at power plants and industrial facilities. 

A. Air Quality Scale 

Air Quality Index (AQI) can be calculated in a number of 
different ways, and depending on which formulas are used 
for calculations, there are different AQI scales. In this paper, 
the formulas and scales used are created by the Central 
Pollution Control Board, Ministry of Environment, Forests 
and Climate Change in India. This corresponding air quality 
scale is presented in Table I. 

 
TABLE I 

AIR QUALITY SCALE (INDIA) 
 

Category 
AQI 

Index 
Possible Health Impacts 

Good 0-50 Minimal health impacts 

Satisfactory 51-100 
Minor breathing discomfort to sensitive 

people 

Moderate 101-200 
Breathing discomfort to the people with 

lung, asthma and heart diseases 

Poor 201-300 
Breathing discomfort to most people on 

prolonged exposure 
Very Poor 301-400 Respiratory illness on prolonged exposure 

Severe 401- 
Affects healthy people and seriously 
impacts those with existing diseases 

III. ALGORITHMS AND PROBLEMS  

As defined in the introduction, there are two types of 
challenges in calculating AQI index which are addressed in 
this paper, the regression and the classification tasks. Both 
of these issues hold valuable information when calculating 
levels of air pollution. Some of the reasons for using ML 
algorithms in this area are: 

- Provision of real-time decision support for air quality 
sensors, especially in a case of wide usage of low-cost 
sensors (i.e. for IoT-based environmental monitoring 
networks). Specifically, a verification that sensors for 
monitoring concentrations of various pollutants are 
working well, to predict the missing values in a case of 
sensor malfunction, and to evaluate inputs and decide 
whether and alarm should be triggered or not [1]; 

- Improvement of sensor performance for lower-cost air 
quality monitoring [6]; and 

- Forecasting (prediction) of future values of pollution 
concentrations and AQI index [2] [3]. 

 
In this paper, we have performed comparison of the wide 

set of various machine learning algorithms for regression 
and classification tasks, such as: Multiple Linear Regression 
(MLR), Stochastic Gradient Descent (SGD) Classifier based 
on Linear Regression, Support Vector Machine (SVM), K-
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Nearest Neighbors (KNN), Random Forest (RF), Decision 
Tree, Extra Trees Regression, Adaptive Boosting based on 
Decision Trees (AdaBoost), and Gradient Tree Boosting 
(GradBoost). Also, we designed and estimated performance 
for several Deep Learning algorithms in both tasks 

Regression and classification tasks are rather similar, and 
thus the classification task can be realized by classifying the 
results achieved by regression algorithms into the respective 
categories in Table I. In this case, we would achieve 100% 
accuracy for classification task for the all algorithms, except 
for Multiple Linear Regression, but a time needed to execute 
would be even higher than for the regression algorithms. 
This is why in this paper we proposed a different method. In 
our method, the input data used for classification algorithms 
is the same as for the regression algorithms, and that is just 
the concentrations of the pollutants of measurements, while 
the labels used for training of the ML algorithms and DL 
models are final categories in Table I. By using this method 
we expected slightly lower classification accuracy (which 
will be discussed in section VI), when compared to the first 
method (based on regression), but the time needed to 
execute such algorithms would be, depending on an 
algorithm, from two to ten times smaller than for their 
respective regression algorithms. 

The performance metrics for AQI regression algorithms 
were the values of Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and Coefficient of Determination 
(R2), while for the classification tasks we used the algorithm 
accuracy as the main performance metric. As the additional 
performance metrics for both tasks, we measured percentage 
of convergence and the elapsed time needed to perform 
these tasks for all observed algorithms. 

IV. AIR POLLUTANT MEASUREMENT DATASET 

The dataset used in the analysis was created from data 
gathered from websites data.world [7], and openaq.org [8], 
and it consists of 35440 independent measurements from 5 
countries (Serbia, India, USA, Australia and Taiwan). The 
measurements data were gathered from 2016 to April 2021. 
Each measurement consists of measured concentrations of 
Carbon-monoxide (CO), Ozone (O3), particulate matter PM 
2.5 and PM 10, Nitrogen-dioxide (NO2) and Sulphur-
dioxide (SO2). The concentrations of all of the pollutants are 
measured in µg/m3, except for CO, which is measured in 
mg/m3. The mean values (mean) and standard deviations 
(std) of the measurements in dataset, are given in Table II. 

 
TABLE II 

DATASET DESCRIPTION 
 

 
Count Mean Std 

CO 35440 1.39088 1.34341 
O3 35440 51.9751 61.5998 

PM 2.5 35440 76.7299 112.159 
PM 10 35440 152.993 185.914 
NO2 35440 51.9291 56.3290 
SO2 35440 8.51487 8.71780 
AQI 35440 202.835 195.820 

 
Based on these concentrations, the reference AQI index 

and the air quality class were calculated for each of the 
measurements, by using formulas implemented in Python 
scripts. The dataset was divided into training and test sets in 

the ratio 90%:10%, and the training set was further divided 
into training and validation sets in the same ratio.  

V. RESULTS OF PERFORMANCE ANALYSIS 

The performance analysis of observed machine learning 
algorithms is performed by using Scikit-learn library for the 
Python programming language, while the deep learning 
algorithms were implemented using Tensorflow and Keras 
libraries for Python. The implementations were executed on 
Google Colaboratory cloud computing platform, by using 
Intel(R) Xeon(R) CPU @ 2.30 GHz processing unit with 16 
GB of available RAM memory. 

Both the machine learning and deep learning algorithms 
were trained and tested independently 42 times, with the 
values for random_state parameter ranging from 0 to 41, in 
order to guarantee different train/test splits of the dataset for 
the each iteration of the observed algorithm. 

A. Regression algorithms 

The analysis showed that all of the regression algorithms 
have the convergence rate of 90.47% (38/42). In 4 
executions where the algorithms diverge, the corresponding 
MAE and RMSE values were not taken into account in the 
calculation of the mean values and standard deviations of 
these errors.  

The five Deep Learning models, marked DL#1 to DL#5, 
were designed, optimized and used. These neural networks 
models are defined as: DL#1 model with 3 hidden layers 
comprising of with 128 neurons in each layer,  DL#2 model 
with 3 hidden layers with 256 neurons in each layer, DL#3 
model with 3 hidden layers with 512 neurons in each layer, 
DL#4 model with 3 hidden layers with 128 neurons in the 
first hidden layer, 1024 neurons in the second hidden layer, 
and 128 neurons in the third hidden layer (DL#4), and DL#5 
model with 3 hidden layers with 256 neurons in the first 
hidden layer, 1024 neurons in the second hidden layer, and 
256 neurons in the third hidden layer. Data is normalized in 
input layer of each DL model. The activation function for all 
layers was a ReLU function, while the loss function used 
was Mean Squared Error (MSE). The Adam optimization 
function was used with the learning rate of 0.001, and every 
neural network model is trained over 100 epochs. Different 
numbers of epochs for training DL models were considered 
during the design of these models, for both regression and 
classification tasks. In this process, it is observed that even 
if for some of the lower numbers of epochs the algorithms 
performed similarly as for 100 epochs, the results were not 
consistent enough, e.g. the convergence rate was lower (i.e. 
for 80 epochs the algorithms converged in 28/42 cases). 
Thus, we choose the number of 100 epochs, since the further 
rise in the number of epochs did not give better results. 

The mean values and standard deviations of MAE and 
RMSE for all of the algorithms used in AQI regression task 
are shown in Table III, while in Table IV the times needed 
to train (single execution) of all these algorithms are given. 
The time needed for execution of all trained algorithms for 
one test measurement was similar and very short (in ms). 

From the MAE and RMSE values, shown in Table III, it 
can be inferred that the best overall performance in a case of 
regression was achieved by using Adaptive Boosting based 
on Decision Trees. Also, by analyzing tables III and IV it 
can be inferred that the simpler algorithms, such as Multiple 
Linear Regression and Decision Tree take shortest time to 
train (and execute). On the other hand, the algorithms that 
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consist of a large number of decision trees (i.e. Random 
Forest, AdaBoost or Extra Trees), SVM and deep learning 
algorithms, take the longest time to train (and execute) due 
to the complexity.  

 
TABLE III 

REGRESSION ALGORITHMS - MAE AND RMSE VALUES 
 

Algorithm 
MAE RMSE 

Mean Std Mean Std 
Random 
Forest 

0.515066 0.065481 4.202714 1.167030 

Decision Tree 0.652400 0.094673 5.911044 1.294427 
AdaBoost 0.102419 0.02371 1.056525 0.477244 
GradBoost 0.492849 0.049863 3.154737 0.952986 
Extra Trees 0.469917 0.043560 2.800131 0.763884 

KNN 7.586408 0.243762 17.655297 1.181481 
SVM 6.811546 0.204737 12.891746 1.510237 
MLR 35.95306 0.51608 52.938264 1.547197 
DL#1  1.857936 0.407002 3.732621 0.413279 
DL#2 1.552141 0.340354 3.413873 0.465218 
DL#3 1.819313 0.501331 3.687509 0.576523 
DL#4 1.616337 0.356425 3.417748 0.458047 
DL#5 1.719751 0.539735 3.565049 0.655192 

 
TABLE IV 

REGRESSION ALGORITHMS - DURATION OF TRAINING (SINGLE EXECUTION) 
 

Algorithm 
Time [s] 

Alg. 
Time [s] 

mean  std  mean  std 
Random Forest 142.762 8.4116 MLR 0.007 0.0112 
Decision Tree 0.215 0.0043 DL#1  170.780 27.4982 

AdaBoost 69.558 2.3812 DL#2 250.169 16.4083 
GradBoost 42.799 1.1223 DL#3 494.753 20.3062 
Extra Trees 103.272 2.2578 DL#4 354.726 24.7223 

KNN 0.499 0.0156 DL#5 627.936 30.0591 

 
Furthermore, a more detailed statistical and error analysis 

(i.e. the minimum and maximum error values, the threshold 
values corresponding to 25%, 50% and 75% of instances), 
as well as time needed for training of AdaBoost algorithm 
are shown in Table V.  

 
TABLE V 

DETAILED ANALYSIS OF ADABOOST ALGORITHM FOR REGRESSION TASK 
 

  MAE MSE RMSE R^2 Time [s] 
Mean 0.10242 1.338014 1.056525 0.999965 69.558 
Std 0.02371 1.122726 0.477244 0.000029 2.3812 
Min 0.06659 0.178894 0.422959 0.999895 64.468 
25% 0.08444 0.40364 0.635299 0.999943 67.793 
50% 0.09975 0.807562 0.897779 0.999978 69.868 
75% 0.11428 2.176002 1.474417 0.999989 71.291 
Max 0.15632 3.988713 1.997176 0.999995 75.529 

 
As obvious in Table V, 50% of the MAE values for 

AdaBoost algorithm are under 0.1, with its mean value 
being just over 0.1. These are by far the best values of MAE 
for all of the observed regression algorithms that were 
compared in this paper. 

B. Classification algorithms 

The analysis showed that all the observed classification 
algorithms have the convergence rate of 100%, which means 
that the algorithms manage to converge around the mean 
values of accuracy in all of the 42 independent executions. 
Besides machine learning algorithms, three Deep Learning 

models, marked DL#6 to DL#8, were designed, optimized 
and used. These neural networks models are defined as: 
DL#6 model with 2 hidden layers with 128 neurons in each 
layer, DL#7 model with 2 hidden layers with 256 neurons in 
each layer, and DL#8 model with 2 hidden layers with 512 
neurons in each layer. Data is normalized in the input layer 
of every neural network model. The activation function of 
each hidden layer is the ReLU function and the activation 
function of the output layer is the Softmax function. The 
loss function is Binary Cross-entropy, and the metrics of the 
loss function is the binary accuracy function with the 0.5 
threshold value. The Adam optimization function was used 
with the learning rate of 0.001, and every neural network 
model is trained over 100 epochs. 

The mean values and corresponding standard deviations 
(std) of classification accuracy for all observed classification 
algorithms, as well as the times needed for the training are 
given in Table VI. 

Based on accuracy values for different algorithms, shown 
in Table VI, it can be inferred that the best algorithm for the 
classification task is the Gradient Tree Boosting. Also, the 
difference in time needed to train (and execute) more and 
less complex classification ML algorithms is not as big as it 
is in case of regression algorithms. This can be explained by 
the fact that the classification problem is easier to solve, and 
it does not require as much time as the regression one. Deep 
learning algorithms for classification take longer to train, 
since these were trained over 100 epochs.  

 
TABLE VI 

CLASSIFICATION ALGORITHMS - ACCURACY AND DURATION OF TRAINING 
 

Algorithm 
Accuracy  Time [s] 

mean std mean std 
Random Forest 0.998683 0.00052 26.04913 0.303142 
Random Forest 

Hybrid 
0.998388 0.000612 18.30846 0.115094 

Decision Tree 0.99822 0.000775 0.096139 0.003632 
AdaBoost 0.998233 0.000753 0.104626 0.003506 
GradBoost 0.999422 0.000432 24.62098 3.891909 
Extra Trees 0.990682 0.001651 12.96546 0.247514 

KNN 0.92313 0.004718 0.232663 0.008677 
SVM 0.976849 0.00237 67.03444 6.434671 
SGD 0.695058 0.009976 0.444438 0.019513 
DL#6 0.994421 0.001118 118.5808 22.9412 
DL#7 0.994591 0.001186 139.3796 2.512952 
DL#8 0.994536 0.001218 440.6514 24.03057 

 
The more detailed analysis of the Gradient Tree Boosting 

algorithm is shown in Table VII (the minimum and the 
maximum accuracy values are given, as well as threshold 
values corresponding to 25%, 50% and 75% of instances, 
and time needed for training), while estimated confusion 
matrix for this algorithm is shown on Fig. 2.  It can be seen 
that in a case of Gradient Tree Boosting algorithm, only 3 of 
7088 independent measurements of the test set used were 
misclassified (see confusion matrix in Fig. 2). 

When compared to the classification results achieved in 
[3], we here achieved slightly better results for classification 
accuracy for the same algorithms that were used in both 
papers. However, in this paper the number of epochs for 
training the DL algorithms was higher than in [3], which can 
be one of the reasons for better accuracy results. Yet, the 
novelty of our paper, when compared to the work in [3], is 
that we included a number of algorithms that were not 
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implemented in [3], for which we here achieved even better 
results in classification accuracy. 

TABLE VII 
DETAILED ANALYSIS OF GRADBOOST ALGORITHM 

 

 Accuracy Time [s] 
mean 0.999422 24.62098 

std 0.000432 3.891909 
min 0.998025 22.1305 
25% 0.999154 22.70442 
50% 0.999436 22.99523 
75% 0.999718 23.20253 
max 1 35.08803 

 

 
 
Fig. 2.  Confusion matrix for the GradBoost algorithm 
 

VI. CONCLUSION 

Alongside global warming, the air pollution is one of the 
most alarming global ecological problems.  Thus, developed 
countries, international health organizations, as well as some 
international companies are investing money in to reduce 
the impact air pollution have on global health. Also, some of 
air pollution aware companies try to motivate people to 
contribute to the cause, by giving them a chance to connect 
their air quality sensors with the global network of sensors, 
created by these companies. I.e., one of the most famous 
companies and websites that does this is called IQ Air [8].  

The main topics covered in this paper are calculating the 
AQI (regression task), and the classification of air pollutant 
measurements into different air quality classes. We observed 
a wide set of machine learning and deep learning regression 
and classification algorithms for these tasks, and presented 
the performance comparison of these algorithms, based on 
the values of MAE, RMSE and accuracy, as well as the time 
needed to execute these algorithms. In total, 8 and 9 ML 
algorithms, as well as 5 and 3 DL models, were observed for 
regression and classification tasks, respectfully. It is shown 
that the AdaBoost algorithm presents best choice in the case 
of regression task, while the GradBoost algorithm presents 
the best choice in the case of classification tasks. 

The presented results, as well as the designed and trained 
algorithms, present a foundation of a forecasting model, for 
predicting the missing and future pollution measurements 
and values of air quality index. This forecasting model could 
be used as a part of mobile application, which would inform 
users about the daily and weekly predictions of the pollution 

levels. This is one of the ideas for the future works. Another 
possible way of using the designed and trained algorithms, 
would be implementing in industrial plants.  
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