
A Gigabit Ethernet Media Access Controller for
TCP/UDP Radar Data Streaming and Visualization

Vukan D. Damnjanović, Student Member, IEEE, and Vladimir M. Milovanović, Senior Member, IEEE

Abstract—A design of a gigabit Ethernet media access con-
troller implemented using Verilog hardware description language
is depicted in this paper. The proposed digital hardware module
can be utilized for establishing client-server connections over a
computer network with a PC, an FPGA-based board or some
other separate piece of hardware. It allows users to perform
network data transfers using either TCP or UDP communication
protocols, in both directions. Data is transmitted to or received
from a predefined Internet Protocol address utilizing packets
of predefined size, in a format suitable for the corresponding
protocol, with a packet header providing the receiving end with
the information about the packet itself. The described design is
able to achieve network throughput rates that exceed 110 MB/s
making it suitable for systems and applications that require high-
speed data streaming, such as the system for radar data streaming
and PC visualization depicted in the latter part of the paper.
Besides that, it can be used in a wide range of applications
developed on systems containing boards and devices with the
Ethernet 8P8C port as an integral part. The implemented design
has been thoroughly tested using a combination of a commercial
FPGA development kit and the PC-run Python applications. It
was verified and confirmed that the design meets the expectations
regarding both the specified functionality and performance.

Index Terms—Gigabit Ethernet MAC, data streaming, UDP
and TCP protocols, PC data visualization, Verilog hardware
description language.

I. INTRODUCTION

During the last couple of decades, there is a growing trend
for the amount of different devices used in the systems and
applications in practically all the spheres of the IT industry.
The same also applies for the systems used for collecting data,
such as some sensor-based systems or radar systems. They
are becoming more complex, consisting of more devices with
more information needed to be carried. Whether it is because
of the insufficient available resources, some environmental
limitations, inappropriate system topology or something else,
the data-collecting devices are often unable to perform the
complete cycle of information extraction, processing and uti-
lization relying only on themselves. Therefore, at some point
of the cycle, it is necessary that the data is transferred to
another device (or devices) so the system can work properly
and fulfill its purpose. In most cases, those devices are PCs,
due to their abilities and versatility.

Vukan D. Damnjanović is with the School of Electrical Engineering, Uni-
versity of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia
and also with NOVELIC d.o.o., Veljka Dugoševića 54/B5, 11060 Belgrade,
Serbia (e-mail: vukan.damnjanovic@novelic.com).

Vladimir M. Milovanović is with the Department of Electrical Engineering,
Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000
Kragujevac, Serbia (e-mail: vlada@kg.ac.rs).

The need for these data transfers is especially emphasized
on the distinguished group of systems - real-time systems,
where the information acquirement, extraction and/or presen-
tation is performed constantly at relatively high rate [1]. That
implies that the data transfers from one platform to the other
needs to be performed in the same manner. The amount of data
that needs to be transferred and the transfer rate differ from
system to system and can vary significantly, which includes
some large numbers as well.

In order to achieve the ability of performing these transfers,
a vast number of mechanisms have been developed during the
years. They can rely on different technologies and all of them
have their advantages and disadvantages. Among the most
common and popular ones is definitely Ethernet [2].

Ethernet is, technically speaking, a family of wired com-
puter networking technologies, but it usually refers to the
most common type of Local Area Networks (LANs) - a
connected network of computers (or, to be more precise,
devices) in a small area1. Devices possessing the Ethernet port
and connected through it to the network are able to perform
data transfers with other connected devices by following the
series of standardized protocols and rules [3]. Ethernet has
been developing and improving during the years. It is currently
one of the fastest communication technologies.

Computer networks using Ethernet consists of several ab-
straction layers [4]. In order for the whole mechanism to
work correctly, rules for each one of them have to be applied.
Following those rules is often managed by some kind of the
processing unit, in devices that poses one, but in ones that do
not, such as an FPGA-based board, it might be challenging
to achieve the flawless operation of the system. The gigabit
Ethernet media access controller from this paper’s topic is
created so that the Ethernet ports can be utilized for preforming
data transfers without engaging any kind of processing unit.

This paper, in its first part, gives the quick overview of the
data streaming protocols used in the gigabit Ethernet media
access controller module, as well as the detailed description
of the module’s design, along with the description of its
implementation using Verilog Hardware Description Language
(HDL). In the second part of the paper, obtained testing results
and performances are provided with the example of one of the
systems which the module was tailored for in the first place.

1Computer networks is a large field in network sciences and a lot could be
written about it, but the information provided is sufficient for the comprehen-
sion of the content of this paper.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 1 of 6 ISBN 978-86-7466-930-3

II. A GIGABIT ETHERNET MEDIA ACCESS CONTROLLER
AND DATA TRANSFER PROTOCOLS

A gigabit Ethernet media access controller is a digital
component which allows the user to perform data transfers
between itself and some other module or device. Basically,
the implemented module allows the user to send and receive
the data to and from the specified address on the network
belonging to some other device. In order for it to work
properly, the module requires that the Ethernet port along with
the gigabit Ethernet transceiver exist on the device. It is used
to set up the transceiver for working in the appropriate mode at
the beginning of the application and then to send (or receive)
data through the Gigabit Media-independent interface (GMII)
to the transceiver [5] and through the port to the network and
the rest of the system. Data is fragmented and transferred in
packets, where every packet is of the same length and consists
of a header and data itself.

A. Ethernet Abstraction Layers

Currently, two different versions of this module exist: one
that supports transfers (receive and transmit) using Transmis-
sion Control Protocol (TCP) [6] and another that supports
transfers using User Datagram Protocol (UDP) [7]. Those
two protocols are parts of the Ethernet transport layer, one
of the abstraction layers mentioned in the previous section.
This layer provides the end-to-end communication services
for applications. This module also secures that the device is
working in accordance with two other abstraction layers: link
layer, which provides the link to a physical connection of the
host, and internet layer, which serves as a bridge between link
and transport layer [4]. The fourth and final layer - application
layer, can be implemented on the PC or on some other device.

The controller module implements the network link layer by
applying the Address Resolution Protocol (ARP) [8]. It sends
a message in the appropriate format that provides the physical
MAC address of the Ethernet port when another device on the
network asks for it.

The internet layer regulates that every message or packet in
the network end up at the appropriate destination. The primary
protocols for the internet layer are the Internet Protocol
(IP). This protocol assigns an IP address to every device on
the network, which allows a packet to find its way to the
destination. The implemented module utilizes the IP protocol
version 4 (IPv4).

The Ethernet transport layer, as mentioned before, is im-
plemented using either TCP or UDP protocol. This layer
provides services to the network, such as connection-oriented
communication, reliability, flow control etc.

B. TCP and UDP Protocols

TCP is a more complex protocol than UDP. It is connection-
oriented with built-in systems checking for errors and guaran-
teeing that data will be delivered in the order it was sent. The
connection firstly needs to be established, then maintained, and
finally terminated, making it a more reliable protocol. All of
this, however, requires larger overheads in data packets, which

Destination MAC Address Source-

MAC Address Type: IPV4 Version Header
Length

DSCP & ECN Total Length Identification

Identification Flags & Fragment
Offset Time to Live Protocol: TCP

Header Checksum Source IP Address

Source IP Address

Destination IP Address

Destination IP Address Source Port

Destination Port Sequence Number

Sequence Number Acknowledgment Number

Acknowledgment Number Data Offset & Flags

Window Size Checksum

Urgent Pointer Data

Data

1680 24 32

Ethernet Frame IPV4 Header TCP Header Data

Fig. 1. A structure of data packets of the TCP protocol used in the design.

reduces its speed and efficiency. On the other hand, UDP is
a simpler, connectionless protocol, faster and more efficient,
but it does not provide any recovery options when a data error
occurs or when a packet is lost [1].

A structure of data packets of the TCP protocol used in the
design is shown in Fig. 1. This type of format allows three net-
work layers to be implemented: the link layer implementation
is marked in yellow, the IPv4 header representing the internet
layer is marked in red and the TCP header, as a part of the
transport layer is marked in green [9]. The link layer carries the
information about MAC addresses and the used IP protocol.
The IPv4 header has the fields for various information, such
as the IP addresses, packet identification number, packet
length, header length, used transport layer protocol, the IPv4
header checksum value etc. The TCP header, besides the port
numbers, holds the information necessary for establishing,
maintaining and terminating the TCP connections, detecting
and recovering from errors, flow controlling etc.

The main fields for enabling the TCP to have the
connection-oriented communication are sequence number, ac-
knowledgment number, flags and checksum. The sequence
number is a 32-bit wide field that carries the number that
identifies the first data octet in the packet. The acknowledg-
ment number is also a 32-bit wide field, and it represents
a response from the receiving end. It has the value of the
next expected sequence number. If the first packet that has

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 2 of 6 ISBN 978-86-7466-930-3

arrived had the sequence number of 1 and the N bytes of
data have arrived, then the acknowledgment number in the
response would be 1 + N . This mechanism ensures that the
order of the received packets is preserved and that there is
no packet or data missing. The flag fields have the purpose
to indicate that some functionality is being used. There are
six flags in total indicating different things: URG - the urgent
pointer field is significant, ACK - the acknowledgment number
field is significant, PSH - push functionality, RST - reset the
connection, SYN - synchronize sequence numbers, FIN - no
more data from sender. Basically, to run a TCP connection,
only three flags are needed: SYN flag for establishing it,
FIN flag for terminating it and ACK flag for acknowledging
every received data packet during the connection’s life. The
checksum field is used for detecting if there is an error in the
received data. It has a width of 16 bits, and it is the 16 bit
one’s complement of the one’s complement sum of all 16 bit
words in the header and text (only the TCP header and some
field of the IPv4 header are included).

In Fig. 2, a diagram that depicts establishing, maintaining
and terminating a TCP connection between a client and a
server is shown. A client is called a device that initiates the
connection and a server is a device that accepts it. Even though
it is more usual for the server to send data and for the client to
accepts it, it is the other way around in the example shown in
Fig. 2. The client initiates the connection by sending a packet
with the SYN flag active. The server responds with SYN and
ACK flag, which the client acknowledges. At that point, the
connection is established. The client then sends N bytes of
data in each one of X sent packets, and the server responds
for every packet received. Note that it is not necessary for
the server to respond to every packet individually. It could
also wait for all the packets to arrive and then to acknowledge
the reception of them by sending the final acknowledgment
number along with the ACK flag. After all the packets are
sent, the client expresses the wish to end the communication,
which the server accepts and the connection is then terminated.

The UDP data packet structure used in the design is similar
to the one used for the TCP protocol. In fact, the only
thing that differs is the transport layer protocol header. As
mentioned before, the UDP does not provide the possibility
of connection-oriented communication, flow control etc. so
the UDP header has fewer fields than the TCP header. It only
carries the information on the port numbers, packet length
and the checksum value. The UDP protocol does not support
or require the acknowledgement of the received packets. It
straight-forwardly goes to the formation of the following
packet, after the previous one has been sent.

III. THE IMPLEMENTATION OF THE CONTROLLER

Previously depicted gigabit Ethernet media access controller
have been implemented using Verilog HDL. Its design has
been thoroughly tested using standard verification and imple-
mentation paths for FPGA design flow. The design is made
available [10] by the authors for public use as a free and open-
source hardware library.

Client:
IP Address, Port

Server:
IP Address, Port

<CTL=SYN><SEQ=0>

<CTL=SYN,ACK><SEQ=0>
<ACK=1>

<CTL=ACK><ACK=1>
<SEQ=1>

<SEQ=1> <N bytes of data>

<CTL=ACK><ACK=1+N>

<SEQ=1+N> <N bytes of data>

<CTL=ACK><ACK=1+2N>

<SEQ=1+(X-1)*N> <N bytes of data>

<CTL=ACK><ACK=1+X*N>

Connection
Establishing

<SEQ=1+X*N> <CTL=FIN>

<CTL=ACK><ACK=2+X*N>

Data
Transfering

Connection
Terminating

Fig. 2. A diagram that depicts establishing, maintaining and terminating a
TCP connection between a client and a server.

The implemented design of the gigabit Ethernet media
access controller is relatively complex. It can be divided into
several mutually connected submodules, with some of them
communicating with the outer world as well, through one
of the module interfaces. A block diagram of the module
with its submodules and interfaces is depicted in Fig. 3.
In this section, descriptions of every individual submodule,
implemented interfaces to the outer world and the way the
module communicates with other devices will be provided.

A. Design Interfaces

As it can be seen from Fig. 3, the implemented gigabit
Ethernet media access controller has four interfaces. The
first one is the AXI Stream interface. The purpose of this
interface is to continuously collect data needed to be sent
between the devices on the network. The direction of the
interface can be both input and output, depending on the
fact whether the module is receiving data from some other
device, or sending it to the network. The second interface
of the implemented module is the AXI4 memory-mapped
interface. This interface is used to write values to the memory-
mapped configuration registers of the controller, as well as to
read status values from it. The next interface is the Reduced

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 3 of 6 ISBN 978-86-7466-930-3

AXI4

Memory-
mapped

configuration
registers

GMII to RGMII
Converter

OpenCores
TEMAC

GMII

RGMII

MDIO

MDC

FIFO
Packet

CreationAXI Stream AXI S

Clock
Generator

AXI S

Fig. 3. A block diagram of the implemented module with its submodules and
interfaces.

Gigabit Media-independent interface (RGMII), a version of the
already mentioned GMII interface. Its role is to communicate
with the Ethernet physical layer transceiver that controls the
Ethernet port. The last interface is the Serial Management
Interface (SMI), also known as Media-Independent Interface
Management (MIIM). It is a serial interface used for con-
figuration of the Ethernet physical layer transceivers. In the
following paragraphs, the functionality and implementation of
every submodule of the controller design will be described.

B. Design Clock Domains

The whole design can be divided into four clock domains.
The frequency of the input clock equals 100 MHz, and it
drives the clock generator block that creates all other clocks
in the module. These four clock domains are the user clock
domain, the RGMII physical layer clock domain, the MIIM
management interface clock domain and the AXI4 memory-
mapped clock domain. The RGMII physical layer clock do-
main operates at the frequency of 125 MHz, and it is the only
mandatory value for all the clock frequencies in the design.
The frequency of the MIIM clock domain clock is run-time
configurable. Its value depends on the value stored in one of
the memory-mapped registers, and it equals the value of the
AXI4 memory-mapped clock frequency divided by the register
value. The MIIM clock frequency must not exceed 2.5 MHz.
The AXI4 memory-mapped clock frequency is the frequency
on which the memory-mapped configuration registers and the
AXI4 bus operate. It has to be equal to the frequencies of the
other memory-mapped devices connected to the bus, and in
this version of the design it equals 10 MHz.

C. Design Submodules

The OpenCores Tri-mode Ethernet Media Access Controller
(TEMAC) is one of the most important submodules in the
design. It is a modified version of an open-source controller
downloaded from the OpenCores website [11]. The module
has a ”Tri-mode” phrase in its name because, apart from being
a gigabit controller, it can also operate as a 100-megabit or
10-megabit. However, in the proposed design, it is utilized
solely as a gigabit version. The TEMAC module has several
functionalities and five interfaces: an output and an input AXI
Stream interfaces, a GMII interface, a MIIM interface and
an input interface that provides the module with the memory-
mapped register data. Its main function is to convert streaming
data-to-be-sent from the input streaming native interface to
the output GMII interface and data-to-be-accepted from the
input GMII interface to the output streaming native interface.
These two native interfaces are converted to the AXI Stream
interfaces using the submodule wrapper. For these GMII-
to-Stream conversion processes, the module instantiates two
dual port block RAMs to serve as asynchronous FIFOs for
getting the data from both sides. The finite-state machines
(FSMs) control the flow for both directions, from 32-bit
streaming data synchronized on the user clock, to 8-bit GMII
data synchronized on the GMII clock (or vice versa). The
submodule and the exact way it will operate can be set
up by reading the input values from the memory-mapped
configuration registers. Depending on some of those values,
it also generates the MIIM signals for the Ethernet physical
layer transceiver configuration.

The GMII to RGMII converter adapts the GMII interface
signal to the needed RGMII interface signal. Basically, the
RGMII signals are used instead of the GMII signals in order to
reduce the number of the occupied output pins. Total number
of utilized output pins is halved (12 instead of 24). It is
achieved by running half as many data lines at a double speed,
time multiplexing the signals and by eliminating non-essential
signals. Output pins operate with double data rate (DDR)
instead of single data rate (SDR), with the same clocking
frequency of 125 MHz. Receiving pins are synchronized to
the external clock provided by the Ethernet physical layer
transceiver, while transmitting pins are synchronized to the
internally generated clock. The clock generating block creates
two different 125 MHz clocks with the 90 degrees phase
difference, one for the output clock pin itself and the other
for the synchronizing of the data and control lines, so that the
setup and hold times of the output DDR pins are as large as
possible.

The memory-mapped configuration registers module is a
submodule whose function is to be accessible from the AXI4
interconnect bus and the rest of the system through the AXI4
memory-mapped interface and to provide the rest of the
submodules inside the controller with the written values. It
also has a task to inform the OpenCores TEMAC submodule
to generate the signals in the MIIM interface. It has numerous
registers and here are the most important ones:

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 4 of 6 ISBN 978-86-7466-930-3

• Physical address - Value of the address of the
Ethernet physical layer transceiver.

• No preamble - Indicator whether the transmitting
packets will have the preamble to precede them.

• Clock divider - Value used to calculate the fre-
quency of the MIIM interface clock.

• Packet size - Number of bytes in one data packet,
can be up to 1500.

• PHY data - Data value to be written to one of the
Ethernet transceiver registers.

• PHY register address - Register address inside
the Ethernet transceiver to which data will be written.

• PHY write enable - Indicator that a write operation
should be performed through the MIIM interface.

The packet creation submodule is responsible for imple-
menting all the network abstraction layers and protocols in the
design. This submodule has several tasks in its jurisdiction. It
wraps the data arrived from the streaming interfaces with the
appropriate header and calculates all the values for the header
fields. It also accepts data packages arrived from the network
and checks if they are addressed to this module and creates and
sends the response if it is needed. IP addresses, MAC addresses
and port numbers for both the client and the server side in this
design are hard-coded. For both TCP and UDP versions of
the module, this submodule always checks if there is an ARP
request sent to the network. If the asked IP address is the one
belonging to this module and the ARP format of the message is
correct, an ARP response packet is created and sent providing
the information about this module’s MAC address. Creation of
the UDP packets is not too complicated, considering that every
field of the header except the identification field is a constant
value. The packet creation submodule receives the streaming
data and forwards it to the OpenCores TEMAC submodule,
except for the occasions when the previous packet has ended
and when the header fields are needed to be sent. The end of
packet is indicated by sending the active high value for the
AXI Stream data last signal.

The situation for the TCP version of the design is a bit more
complex. The creation of the header is not as straight-forward
as in the UDP version, and the communication between the
devices on the network is more complicated. The packet
creation submodule calculates the value for several fields for
every sent packet, such as the sequence and acknowledgment
number, checksum value, flags etc. When the application
starts, it sends the synchronization request packet, as depicted
in Fig. 2. Then it waits for the response and acknowledges it
if the response has the appropriate form and values, and starts
creating data packets and streaming data. At the end of the
application, it waits for the data acknowledgment message, and
then it terminates the connection as described in the previous
section.

IV. TESTING RESULTS AND STREAMING RADAR DATA
VISUALIZATION EXAMPLE

In this section, the design testing flow will be presented.
During these tests, the functionality of the design was verified,

AWR 2243
LVDS

LVDS RX AXI S FFT

AXI S

GbE MAC

JTAG2MM

AXI4

RTL8211E-VL
Transceiver

RGMII
GbE

MIIM

FPGA

Nexys Video

FT232H JTAG

Fig. 4. A simplified block diagram of the complete radar data PC visualization
system.

performances and resource utilization were measured, and the
design validity is shown as it is used in the example system
for radar data visualization. The first step in the design testing
flow were the software simulations in the form of the testbench
files written in Verilog and VHDL languages.

The next step is the implementation and verification of the
design on an FPGA-based development board. A Digilent’s
Nexys Video board with Xilinx Artix-7 FPGA family is
used for it. Nexys Video development board has the Realtek
RTL8211E-VL Gigabit Ethernet Transceiver [5] as an integral
part of it, making it suitable for the depicted design. For
the design testing, some additional features were needed. An
open-source JTAG-to-memory-mapped bus master bridge [12]
for accessing the memory-mapped register space was used.
An alternative for it can be Xilinx’s JTAG-to-AXI4 Master
module [13]. Write data transactions through AXI4 memory-
mapped interface are initiated from the PC using the Python
PyFTDI library and the FTDI’s cable containing the FT232H
chip [14]. Also, a server was run on the PC in order to generate
responses for the arrived packets and to send data to the board.
For running the server, Socket Python library was used. The
arrived packets can be verified by utilizing software for the
network packet monitoring, such as Wireshark [15]. Moreover,
packets with previously defined data were sent from the board
and checked on the PC using Pyhton scripts, therefore proving
the correctness of the proposed design. All the examples and
testing systems presented in this paper use 1066-byte long
packets (52 bytes for the header and 1024 data bytes).

During the hardware implementation testing, data through-
put measurements were done. It was proven that the design
meets the performance expectations with the maximal data
throughput of around 110 MB/s for both TCP and UDP design
versions, making it around 90% of theoretically ideal value of
125 MB/s or 1 Gb/s. The resource utilization is moderate, but
with less than 10% utilization for all the resource types and
with the possibility to reduce it even more.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 5 of 6 ISBN 978-86-7466-930-3

Fig. 5. An example of the radar data plot using Python libraries.

A. Streaming Radar Data Visualization Example

The implemented design of the gigabit Ethernet media
access controller, due to the extensive usage of computer
networks and its functionality, could find its way into a wide
range of different systems. In this subsection, a system for
the TCP radar data streaming and PC visualization, one of the
mentioned example systems, will be presented.

A simplified block diagram of the radar data visualization
system is given in Fig. 4. The system is used to continu-
ously collect data from the radar board, have the incoming
streaming data processed (fast Fourier transformation) on the
FPGA-based development board, and send it using the gigabit
Ethernet to the PC, where the arrived data is plotted. The
PC is showing the live display of the distance between the
radar board and the detected targets. An example of such a
display can be seen in Fig. 5. It should be emphasized that all
the processing and data transferring is realized completely in
hardware, without involving any kind of processing unit.

For the radar board, Texas Instruments’ AWR2243 BOOST
[16], along with the MMWAVE-DEVPACK and FMC-ADC-
ADAPTER, is chosen. The output is in the form of the Low-
Voltage Differential Signaling (LVDS) lines [17] containing
radar data, clock and frame clock. Those LVDS lines are
connected to the FPGA pins on the Nexys Video board, and
they are received and converted to the 32-bit AXI Stream
interface. The logic behind this conversion is not relevant for
the matter and therefore not elaborated. The AXI Stream data
is then driven to the input of the open-source fast Fourier
Transformation processor module [18] available to simultane-
ously perform the processing and stream the output data to the
gigabit Ethernet media access controller from the topic of this
paper. The TCP packets are created there and sent to the PC
through the gigabit Ethernet, where there is a Python script
running the server and receiving and plotting data acquired
from the Ethernet port using the Python’s Matplotlib library.
The radar board is previously configured using the MMWAVE
Studio software [17] for the PC and the USB interface, as is
the gigabit Ethernet MAC module using the JTAG-to-memory-
mapped bus master bridge, depicted in the previous section.

V. CONCLUSION

In this paper, a design of the gigabit Ethernet media access
controller for the UDP and TCP data streaming implemented
using Verilog HDL is proposed. This module can be used in a
wide range of different systems, due to the nowadays’ constant

presence of the computer networks in many industrial spheres.
One of those systems, or the system for the processed radar
data PC visualization to be more precise, is depicted in this
paper as well.

The generated instances of the JTAG to memory-mapped
bus master bridge were tested and verified by both using
software simulations and mapping onto a commercial FPGA
development board, proving the correct functionality of the
design. The hardware implementation also proved the com-
petitiveness of the design in terms of performances, having
the data throughput of over 110 MB/s.

It should be noted that this is only the first version of
the design, and there is still a lot of space for improvement
and for broadening the functionality of the module. Making
it more parameterizable, completely run-time configurable,
having better mechanisms to recover from data loss or error
etc. are just some of the things that could be and hopefully
will be improved in some future versions.

ACKNOWLEDGEMENTS

The authors would like to thank NOVELIC d.o.o. for
financially and logistically supporting the work on this project.

REFERENCES

[1] S. Tibor, P. Dukán, B. Odadžı́c, and O. Péter, “Realization of reliable
high speed data transfer over udp with continuous storage,” in 2010 11th
International Symposium on Computational Intelligence and Informatics
(CINTI), 2010, pp. 307–310.

[2] The Ethernet. Digital Equipment Corporation, Intel Corporation, Xerox
Corporation, 1982, a Local Area Network, Data Link Layer and Physical
Layer Specifications.

[3] V. Cerf and R. Kahn, “A protocol for packet network intercommunica-
tion,” IEEE Transactions on Communications, vol. 22, no. 5, pp. 637–
648, 1974.

[4] I. E. T. Force, “Requirements for internet hosts – communication layers,”
in RFC, October 1989.

[5] Integrated 10/100/1000M Ethernet Transceiver, version 1.6 ed., Realtek,
April 2016, track ID: JATR-3375-16.

[6] “Transmission control protocol,” in RFC. Information Sciences Insti-
tute, University of Southern California, 1981, no. 793.

[7] J. Postel, “User datagram protocol,” in RFC, 1980, no. 768.
[8] D. C. Plummer, “An ethernet adress resolution protocol,” in RFC, 1982,

no. 826.
[9] W. Zhang, Z. Wei, X. He, P. Qiao, and G. Liang, “The design of high

speed image acquisition system over gigabit ethernet,” in 2010 IEEE
International Conference on Wireless Communications, Networking and
Information Security, 2010, pp. 111–115.

[10] V. D. Damnjanović and V. M. Milovanović, “Gigabit ethernet mac,”
www.github.com/milovanovic/gbemac, accessed: 2022/04/15.

[11] OpenCores, “Tri-mode ethernet mac,”
www.opencores.org/projects/ethernet tri mode/, accessed: 2022/04/15.

[12] V. D. Damnjanović and V. M. Milovanović, “A chisel generator of
jtag to memory-mapped bus master bridge for agile slave peripherals
configuration, testing and validation,” in 2021 IcETRAN Proceedings.
ETRAN Society, Belgrade, 2021, pp. 239–244.

[13] JTAG to AXI Master v1.2, Pg174 ed., Xilinx, February 2021.
[14] FT232H, version 2.0 ed., FTDI, document No.: FT000288 Clearance

No.: FTDI 199.
[15] U. L. R. Sharpe, E. Warnicke, Wireshark User’s Guide, (version 3.7) ed.
[16] AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver, Texas Instru-

ments, February 2020.
[17] DCA1000EVM Data Capture Card, Texas Instruments, May 2018.
[18] V. M. Milovanović and M. L. Petrović, “A highly parametrizable chisel

hcl generator of single-path delay feedback fft processors,” in 2019 IEEE
31st International Conference on Microelectronics (MIEL), 2019, pp.
247–250.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 6 of 6 ISBN 978-86-7466-930-3

Abstract— One-day-ahead prediction of number of COVID-19
infected patients is presented in this paper. The study is relying
on the data available in [1]. A model of artificial neural network
(ANN) was developed and used with only the most recent data
taken into account. We believe that only a few data from the near
past is important for this type of prediction. ANNs have been
proven as a very reliable method for the real time prediction
systems. In our previous work in prediction electricity
consumption [2] and traffic prediction [3], we obtained small
prediction error. That encouraged us to conduct the research
described in this work. The absence of the trend and the seasonal
component in the given time series, made the prediction task
more difficult. However, we have obtained good results, which
could encourage the application of the model in health
management to make better decision in control and prevention of
the occurrence of a pandemic.

Index Terms—Covid-19, number of infected, artificial neural

network, short-term prediction.

I. INTRODUCTION

Global pandemic, named COVID-19, created his first wave
of infection in China in the Wuhan province [4]. It has started
in December 19 and continued to the present days. By the
World Health Organization (WHO), the virus has affected
populations worldwide, and its rapid spread is a universal
concern. The high rate of spread as well as the high chance of
transmission is still not effective, even with engaging all
recommended prevention and implemented control strategies
(isolation, detection tests and prophylactic measures). They
still have limited effect in preventing or stopping the spread of
the virus worldwide [5]. Since its first reporting at the end of
December 2019. until 28.04.2022, over 508 million people
have been infected, around 500 million people recovered, and
6 227 291 people died due to pandemic [6]. Basic and most
important fact of COVID-19 is that it is spreading rapidly by a
human-to-human transmission; where about 20% infected
subjects are without symptom. The main characteristics of
COVID-19 pandemics are high infection rate, incubation
period, patients to be contagious during the incubation period,
and symptomatic infection [7]. The elderly people and those
who have weakened immune systems as well as people with
special health conditions such as cancer, hypertension, severe
asthma, cardiovascular disease, lung conditions, heart disease,

Jelena Milojković, Miljana Milić and Vančo Litovski are with the Faculty

of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14,
18000 Niš, Serbia (e-mail: jelena.milojkovic@elfak.ni.ac.rs,
miljana.milic@elfak.ni.ac.rs, vanco.litovski@elfak.ni.ac.rs).

diabetes, neurological conditions, HIV/AIDS infection,
pregnancy and high weight are more vulnerable to the serious
effects of this pandemic [8]. Based on this we can conclude
that a global pandemic like Covid-19 has a high negative
impact on the population health, social–cultural activities and
global economy [9]. For this reason, it is necessary to develop
models to predict the course of events during a pandemic
outbreak. In our paper, we used ANN adapted to predict the
number of infected on a daily basis. The developed model will
help decision-makers, doctors and medical assistants to
prepare and understand the magnitude of the risk and take
appropriate measures to prevent major leaps. Forecasting tools
can also help to assess the extent of risk in a timely manner
and make the necessary preparations.

According to the research in the field of Covid-19
prediction by statistical methods, in order to achieve a
satisfactory prediction, a basic prediction period of several
hundred samples must be used [10, 11]. In the case when we
have a set of data of several dozen samples, then time series is
presented as a set of trends, random and seasonal components;
these models also have a very limited number of parameters.
In some cases, even some time series with a striking trend and
seasonal component can be predicted with a smaller base
period [12]. Actually, the amount of data available in this case
is large enough to apply any other prediction method [13, 14,
15], but looking at a diagram curve representing the number
of infected patients in one year, we easily recognize that past
values of the infected patients are not very helpful when
prediction is considered. Accordingly, we propose the
problem of prediction of the infected case number in the next
day to be performed as a deterministic prediction based on
very short time series.

II. PREVIOUS RELATED WORK

The research in Covid -19 pandemic related with infected
case number we describe here is based on our previous results
in development and the application of ANN.

In our paper [16] we can see the evaluation of the idea
about ANN structures dedicated to short term prediction.
First, we will here briefly illustrate the development of two
complex ANN structures, which started with a simple one-
input-one-output feed-forward ANN.

We first got involved in the ANN based prediction when
solving a problem of electronic waste management in Serbia
[17]. It came out that there was no systematic way of
forecasting the amount of electronic waste to be found in the
literature. The main reason for that was the lack of data for a
longer period in the past. That inspired us to start with the

ANN model for one day ahead Covid-19
prediction

Jelena Milojković, Miljana Milić, and Vančo Litovski

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.2 - Page 1 of 4 ISBN 978-86-7466-930-3

implementation of ANNs that are known as universal
approximators. Namely, by using the ANN for approximation
of a function represented by a set of equidistantly taken
samples one automatically solves one of the biggest problems
in approximation: the choice of the approximating function.
Furthermore, ANNs are known as very successful
interpolators which is frequently defined as a generalization
property of ANNs. One had to investigate if ANNs could also
extrapolate.

Fig.1. A fully connected feed-forward neural network with one hidden layer

of neurons and multiple input and output terminals

This research was conducted in [18]. One fully connected

feed-forward neural network is depicted in Fig. 1. To predict
the amounts of electronic waste we have implemented a feed-
forward ANN, named feed-forward accommodated for
prediction - FFAP. The efficiency and good accuracy of the
FFAP network inspired us to enter the problem of prediction
for consumption of electrical power. There we were
confronted with two types of periodicity (daily and weekly)
where we have created new structure named Extended FFAP -
EFFAP [19].

Fig. 2. Time controlled recurrent ANN - TCR

To improve the performance of the ordinary feed-forward

ANN, in [20], we examined the capacities of time delayed
ANN and evolved to a time controlled recurrent – (TCR)
neural network depicted in Fig. 2. The prediction results
obtained by the TCR ANN were equally good as those
obtained by the FFAP ANN. That was confirmed in its
application of prediction in microelectronics [21]. Using
similar procedure to FFAP, we have formed a new structure
named ETCR (Fig. 3). Two such ANN models we have also

applied for prediction of electric power consumption and
traffic [2, 3, 22].

III THE METHOD

The basic neural network structure is shown in Fig. 1. It

was proven that only one hidden can be sufficient for
prediction problem [23] that is the subject of this research. In
this figure input layer is denoted with “in”, hidden layer with
“h”, and output layer with “o”. The set of weights, w(k, l),
connects the input and the hidden layer, where we have:
k=1,2,..., min, l=1,2,..., mh, while for the set that connects the

hidden and output layer we have: k=1,2,...mh, l=1,2,..., mo.

The threshold levels θ, are here designated with θx,r, (r= 1, 2,

…, mh or r= 1, 2, …, mo), with x standing for “h” for hidden
or “o” for the output layer. The input layer neurons are only
delivering the signals, and the hidden layer neurons are
activated by a sigmoidal activation (logistic) function. At the
end, the output layer neurons have a linear activation function.
A variant of the steepest-descent minimization algorithm is
applied during the ANN training [24].

To obtain the number of hidden neurons, mh, a procedure
based on proceedings given in [25] is applied. In prediction of
time series, in that case, a samples dataset is available
(acquired in every two hours) which means that only one
input signal is enough, and that is the discretized time.
According to equation (1) only one output value is predicted
at a time, which means that only one output is required, too.
Network’s output signals are consumed average power for a
period of two hours.

For the implementation of the architecture in Fig. 1, (one
input and one output terminal), the following time series
would have to be learned: (ti, f(ti)), i=1,..., m.

Fig. 3. ETCR. Extended time controlled recurrent ANN

To solve this problem, two new architectures were

suggested as the possible solutions. They appeared to be the
most convenient for the forecasting problem that is based on
the short prediction base period [20]. However, these
architectures had to be properly accommodated, due to the
availability of data related to previous weeks.

The first network, referred to as a time controlled recurrent
- TCR, Fig. 2 was derived from the basic time delayed
recurrent ANN [26]. The structure has a recurrent architecture

win (1, 1)

win (min, mh)

θo, 1

θh, mh

 θh, 1

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.2 - Page 2 of 4 ISBN 978-86-7466-930-3

where time is the input variable, and it controls the predicted
value. This structure is then extended, in order to allow that
the values for the power consumption at a given time per day,
and the values for the same days in three previous weeks,
control the output. Consequently, the word extended had to be
appended. The final architecture is depicted in Fig. 3, and is
referred to as the Extended Time Controlled Recurrent
(ETCR) architecture. It would be very useful to use the
advantages of the ANNs’ generalization property and the
efficiency of the recurrent structure. This network learns a set
in which the output value is controlled by the present time and
its own previous instances of the average power consumption
for a two hour period in a given day of the week:

pn,i=f(ti, pn,i-1, pn,i-2, pn,i-3, pn-1,i, pn-2,i, pn-3,i),
i=3, …, m. (1)

where n stand for the number of the week (in the month or in
the year). In that way the values designated with n are from
the current week, while the values indexed n-j, j=1,2,3, are
from the previous weeks. The designation “i” stands for the i-
th sample in the selected day. The actual value pn,i is
unknown and should be predicted.

The second architecture is referred to as a feed forward
accommodated for prediction (FFAP) and is shown in Fig. 4.
The idea here was to push the neural network to learning the
same data window several times simultaneously but shifted in
time. It is expected that the previous responses of the function
will have larger impact to the f(t) mapping. The architecture
has one input terminal - ti. The approximation yi+1 is obtained
at the future terminal Output3. For multiple-step ahead
predictions the future terminal can be considered as a vector.
The present value yi is represented at the terminal Output2.

Output1 has to learn the past value i.e. yi-1. Output1 may also
be considered as a vector if we need to control the mapping
using a set of previous values. The functionality of the
network could be expressed as

{yi+1, yi, yi−1, yi−2} = f (ti) , i=3, ...,m, (2)

where Output1={ yi−1, yi−2}. This indicates that one future,
one present and two previous responses are to be learned.

Fig. 4. FFAP. Feed forward ANN structure

accommodated for prediction

According to our experience, the FFAP architectures
produce more accurate forecasts than the TCR. However, it is
a common practice to implement both of them for each

forecasting problem and use the results obtained as a reference
to each other when choosing the forecast that makes most
sense. In this way, we could easily detect and avoid those
solutions that represent local minima in the optimization
process during the training of the ANN.

In the case of power consumption we have extended the
FFAP architecture exactly in the same way as for the TCR
architecture. The approximation function could then be
written as

{pn,i+1, pn,i, pn,i-1, pn,i-2, pn,i-3}=

f(ti, pn-1,i, pn-2,i, pn-3,i,pn-4,i) , i=4, ...,m. (3)

The obtained network can estimate the future (unknown)
values pn,i+1, using the data for:

 the actual time ti,
 the actual consumption pn,i,
 the past consumption values for the given day in n–th

week (pn,i-k, k=1,2,3),
 and the past consumption values for the same day and

actual time of the previous weeks (pn-j,i, j=1,2,3,4).
The new architecture is referred to as an extended feed
forward accommodated for prediction (EFFAP), and is shown

Fig. 5.

Fig. 5. EFFAP. Extended feed-forward accommodated for prediction ANN

IV. MAIN RESULTS

Having in mind the nature of the available data we have
decided to implement the ETCR structure. A network with 6
hidden neurons was used while 8 previous samples were
exploited for prediction.

The procedure could be described with the following steps.
Having in mind the random choice of the initial values of the
ANN’s parameter for training, and the fact that for every such
a choice local minima are reached after convergence, we have
decided to repeat the prediction for every new day ten times.
In that way 10 potential predictions were produced. Then, in
order to make a better choice, those with a value above 80%
and below 20% of the average were discarded. The final
accepted prediction was the average of the rest.

Fig. 6 depicts the prediction results for a 50 day period in
the summer of 2021. As can be seen errors not larger than 5%
were obtained. This is in accordance with our previous results
and, of course, with our expectations.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.2 - Page 3 of 4 ISBN 978-86-7466-930-3

-3

-2

-1

0

1

2

3

4

5

150 160 170 180 190 200

Error (%)

Data/1000
(bottom line)

Prediction/1000
(top line)

Day in the year

Fig. 6. Prediction results for a 50 day period in the summer of 2021.

V. CONCLUSION

Based on our 30 years long experience in implementation
of ANN in various aspects of technological and social life, we
have implemented ANNs for prediction of COVID-19. The
results obtained are, in our opinion satisfactory and
encouraging for further improvement. That means
implementation of other structures as described in the bulk of
the paper.

ACKNOWLEDGMENT

This work has been supported by The Ministry of
Education, Science and Technological Development of the
Republic of Serbia under the contract No. 451-03-68/2022-14/
200102 of February, 04. 2022.

REFERENCES
[1] https://www.worldometers.info
[2] J. Milojković, , V. Litovski, “One Month Ahead Prediction of Suburban

Average Electricity Load”, Proceedings of 2nd International
Conference IcETRAN, Srebrno Jezero, Jun, 2015., ELI2.2, ISBN 978-
86-80509-71-6.

[3] J. Milojković, D. Topisirović, M. Milić, M. Stanojević, “Short term
local road traffic forecast using feed-forward and recurrent ANN”, Facta
Universitates, Working and Living Environmental Protection, Vol. 13,

No 1, 2016, pp.1-12.
[4] C. Wang, P.W.Horby, F.G. Hayden, G.F. Gao, “A novel coronavirus

outbreak of global health concern”, The Lancet, Volume 395, Issue
10223,15–21 February 2020, Pages 470-473.

[5] Forecast of the outbreak of COVID-19 using artificial neural network:
Case study Qatar, Spain, and Italy, 2021 Aug; 27:104484. doi:
10.1016/j.rinp.2021.104484. Epub 2021 Jun 21.

[6] https://covid19.who.int/
[7] P. Wang, J. A. Lu, Y. Jin, M. Zhu, L. Wang, S. Chen, “Statistical and

network analysis of 1212 COVID-19 patients in Henan”, China, Int. J.
Infect. Dis. (2020). Published online 2020 Apr 24. doi:
10.1016/j.ijid.2020.04.051

[8] M. A. Turk, S. D. Landes, M. K. Formica, K. D. Goss, “Intellectual and
developmental disability and COVID-19 case-fatality trends: TriNetX

analysis”, Disability and Health Journal, Volume 13, Issue 3, July 2020,
100942

[9] Y. Kuvvetly, M. Deveci, T. Paksoy, H. Garg, “Predictive analytics
model for COVID-19 pandemic using artificial neural networks”,
Decision Analytics Journal, Volume 1,November 2021, 100007

[10] A. S. Ahmar, E. B. del Maj, “SutteARIMA: Short-term forecasting
method, a case: Covid-19 and stock market in Spain”, Science of the
total environment, Vol. 729, No.10, August 2020, 138883.

[11] M. A. A. Al-qanes at all, “Optimization Method for Forecasting
Confirmed Cases of COVID-19 in China”, Journal of clinical Medicine,
Vol. 9, no. 3, doi. 10.3390/jcm9030674.

[12] A. S., Mandel', “Method of Analogs in Prediction of Short Time Series:
An Expert-statistical Approach”, Automation and Remote Control, Vol.
65, No. 4, April 2004, pp. 634-641

[13] A.L.Bertozi, E.Franco, G.Mohler, D. Sledge, The challenges of
modeling and forecasting the spread of COVID-19, PNAS, July 2, 2020,
Vol.117 No.29, 16732-16738

[14] N. Balak at all., A simple mathematical tool to forecast COVID-19
cumulative case numbers, Clinical Epidemiology and Global Health,
Vol. 12, October–December 2021, 100853

[15] Long-term forecasting of the COVID-19 epidemic, Dynamic Causal
Modelling, UCL, UK, https://www.fil.ion.ucl.ac.uk/spm/covid-19/

[16] J. Milojković, and V. B. Litovski, “On the method development for
electricity load forecasting”, Proceedings of 1st International
Conference on Electrical, Electronic and Computing Engineering,
IcETRAN 2014, Vrnjačka Banja, Serbia, June 2 – 5, 2014, ISBN 978-
86-80509-70-9

[17] J. Milojković, and V. B. Litovski, “Procedures of prediction of
quantities of electronic computer waste”, Tehnika (Elektrotehnika),
Vol.56, No. 1, pp. E.7-E.16.(In Serbian), 2007.

[18] J. Milojković, and V. B. Litovski, “New procedures of prediction for
sustainable development“, 51th Conference of ETRAN, Herceg Novi,
04-08 Jun, 2007, Proc. on CD, EL1.8. (In Serbian).

[19] J. Milojković, and V. B. Litovski, “Short-term forecasting of electricity
load using recurrent ANNs”, 15th International Symposium On Power
Electronics – Ee2009, Novi Sad, Serbia, ISSN Paper No. T1-1.7, 2009.

[20] J. Milojković, and V. B. Litovski, “Comparison of Some ANN Based
Forecasting Methods Implemented on Short Time Series”, 9th Symp. on
Neural Network Applications in Electrical Eng., NEUREL-2008, pp.
179-179, Belgrade, 2008

[21] J. Milojković, and V. B. Litovski, “Prediction in Electronics based on
limited information”, Proc. of the 8th WSEAS Int. Conf. on Electronics,
Hardware, Wireless And Optical Communications, EHAC’09,
Cambridge, UK, pp. 33-38, February 2009

[22] M. Milić, J. Milojković, I. Marković, P. Nikolić, “Concurrent,
Performance-Based Methodology for Increasing the Accuracy and
Certainty of Short-Term Neural Prediction Systems”, Computational
Intelligence and Neuroscience, Vol. 2019, 1687-5265,
doi:10.1155/2019/9323482, April, 2019.

[23] T. Masters, "Practical Neural Network Recipes in C++", Academic
Press, San Diego, 1993

[24] Z. Zografski, “A novel machine learning algorithm and its use in
modeling and simulation of dynamicalb systems”, in Proc. of 5th
Annual European Computer Conference, COMPEURO '91, Hamburg,
Germany, 1991, pp. 860-864.

[25] E. B. Baum and D. Haussler, “What size net gives valid generalization”,
Neural Computing, 1989, Vol. 1, pp. 151-160.

[26] J. Milojković, and V. B. Litovski, “Short-term forecasting of electricity
load using recurrent ANNs” 15th International Symposium On Power
Electronics - Ee2009, Novi Sad, Paper No. T1-1.7, pp. 1-5, October
28th – 30th 2009

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.2 - Page 4 of 4 ISBN 978-86-7466-930-3

Abstract— This paper presents an original one-dimensional
model of a high-power composite ultrasonic transducer with a
new structure. The equivalent circuit method is used for a model
that can accurately depict the characteristics of the composite
ultrasonic transducer and enable its efficient performance
evaluation. The proposed model is verified by comparing the
modeled dependencies of input electrical impedance vs.
frequency with the experimental results. The equivalent circuit
developed in this work can facilitate the design and analysis of
complex composite transducer structures.

Index Terms— High-power ultrasound, Composite ultrasonic

transducer, One-dimensional modeling.

I. INTRODUCTION
The piezoelectric ultrasonic transducer is a device that

converts desired electrical signals to ultrasonic waves. The
applications of high-intensity ultrasonic waves are based on
the adequate exploitation of the non-linear effects associated
with high amplitudes, such as the radiation pressure,
streaming, cavitation, dislocation in solids, etc. [1].

An ultrasonic transducer is a widely used high-power
electromechanical transducer for ultrasonic cleaning,
ultrasonic liquid processing, and ultrasonic sonochemistry.
There are increasingly needed high-power ultrasonic radiators
with large amounts of power radiating surfaces. The
development of various power ultrasound applications
requires ultrasonic transducers with more significant
maximum vibration velocity, energy efficiency, and lower
temperature rise [2]. Ultrasonic transducer, which consists of
piezoceramic and metal rings, has a low resonant frequency
(considering the size of the transducer) and a high-quality
factor.

Recent research in the field of powerful ultrasound aims to
optimize the design of ultrasonic transducers by numerical
and analytical modeling methods and the use of precise
devices for measuring vibration, mechanical displacement,
and stress [3].

The finite element method (FEM) has been a commonly
used numerical modeling method to analyze acoustic
characteristics of ultrasonic transducers. As a representative
work on the use of the FEM, Kagawa and Yambuchi used this

Igor Jovanović is with the University of Niš, Faculty of Electronic
Engineering, 14 Aleksandra Medvedeva, 18000 Niš, Serbia (e-mail:
igor.jovanovic@elfak.ni.ac.rs), (https://orcid.org/ 0000-0001-7912-9154).

Dragan Mančić is with the University of Niš, Faculty of Electronic
Engineering, 14 Aleksandra Medvedeva, 18000 Niš, Serbia (e-mail:
dragan.mancic@elfak.ni.ac.rs).

method to assess the effect of dimension and material on the
resonance frequency of an ultrasonic transducer [4]. In [5], the
finite element technique is used for polymer characterization.
Wang et al. used FEM to evaluate the output displacement
directions of a composite transducer [6]. In addition, FEM is
used to evaluate the effect of structural parameters on the
output displacement of an ultrasonic transducer [7]. Lin et al.
used FEM to evaluate the composite transducer's radial
radiation acoustic field distribution [8].

The need for extensive computing resources and long
analysis time constitutes the main disadvantage of the FEM
[9]. The FEM typically requires a long analysis time and
considerable computational resources despite its widespread
usage. Therefore, there is a strong need for a more efficient
method for analyzing the performance characteristics of the
ultrasonic transducer with high accuracy.

The most widely used analytical modeling approach for
ultrasonic transducers found in literature is an application of
one-dimensional theory using equivalent electromechanical
circuits [10]. The equivalent circuit is a method that can
analyze the acoustic characteristics of transducers more
simply and efficiently than the FEM [9]. It has been utilized to
design and analyze various transducers [11].

In their simplest form, ultrasonic transducers are
represented by one-dimensional models that represent
networks with one electrical and two mechanical approaches.
However, when the modeling considers the influence of other
parameters (influence of bolt, electrodes, insulators, various
electrical connections, prestress, loads, power, etc.) of the
transducer, there is an increase in the number of electrical and
mechanical approaches in the electromechanical equivalent
circuit [10]. Additionally, in the [12], it has been confirmed
that using equivalent electromechanical circuits is still
possible to model more complex transducer constructions
with reasonable accuracy.

Therefore, the composite transducer with a new structure,
analyzed in this paper, is presented in the simplest form as a
network with two electrical and two mechanical approaches.

II. ANALYTICAL ONE-DIMENSIONAL MODELLING OF
COMPOSITE TRANSDUCER

A new structure of the composite transducer is shown in
Fig. 1(a). The composite transducer contains a central mass
(2) placed between the two active layers of the transducer
(PZT1,2 and PZT3,4) and two metal endings (1 and 3)
connected to the central mass by two central bolts.

Equivalent Electromechanical Model of a
Composite Ultrasonic Transducer

Igor Jovanović and Dragan Mančić

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.3 - Page 1 of 4 ISBN 978-86-7466-930-3

Fig. 1. The composite transducer with a new structure (a), represents of the simplest oscillatory structure of composite transducer (b).

Due to the mutually opposite polarization of the active
piezoelectric elements connected to the same power supply,
the masses in such a construction oscillates in the manner
shown in Fig. 1(b). The three masses constituting this system
are m1, m2, and m3 (it is assumed in Fig. 1(b) that the masses
are equal to each other), while k12 and k13 are the stiffness
constant.

In its simplest form, the proposed composite transducer is a
simple mechanical combination of two half-wave ultrasonic
transducers with a sandwich structure that oscillates in the
thickness direction (two Langevin-type transducers) [13].

Since the metal endings in the proposed structure are not of
the same material, the composite transducer is not
bidirectional. The proposed composite transducer has greater
flexibility in operation than conventional transducers, which is
reflected, among other things, in the possibility of
independent excitation of the upper and lower active layer
with different signals.

In this paper, modelling of the realized composite
transducer with new structure, which represents a special
unidirectional composite ultrasonic transducer, is performed.
Prestressing the structure is achieved using two central bolts
that are in contact with the central mass. The proposed model
was adapted based on the structures of the composite
transducer and shown as an equivalent electromechanical
circuit shown in Fig. 2.

Elements of electromechanical circuits corresponding to
isotropic and asymmetric metal parts made of different
materials are calculated as:

 1 2
i i

i ci
k lZ jZ tg= (1)

 2 sin()
ci

i
i i

jZZ
k l

−
= (2)

wherein Zci=ρiνiPi and ki=ω/νi (for i=1, 2, and 3) are
characteristic impedances and the corresponding wave
numbers. ρi are densities, li and Pi are lengths and surface
areas of the cross-sections, and vi are the velocities of
longitudinal ultrasonic waves propagation through the
corresponding elements.

Elements of the circuit shown in Fig. 2 correspond to the
piezoceramic rings in the upper active layer (PZT12), and the
piezoceramic rings in the lower active layer (PZT34). These
elements are determined as:

 1 2
p p

p cp

nk l
Z jZ tg= (3)

 2 sin()
cp

p
p p

jZ
Z

nk l
−

= (4)

wherein Zcp=ρpνpPp and kp=ω/νp are characteristic impedances
and corresponding wave numbers, respectively. ρp, lp, Pp are
densities, lengths, and surface areas of the piezoceramic cross-
sections, vp are velocities of longitudinal ultrasonic waves
propagation, respectively. The input electric voltages and
currents are marked as V, I12, and I34.

The piezoceramic models consist of capacitance
C0=nε33

SPp/lp, and ideal transformers with transmission ratios
N=h33C0/n, wherein n is the number of piezoceramic rings per
active layer (n=2). The piezoelectric properties of the
transducer active layers are represented by the piezoelectric
constant h33 and the relative dielectric constant of the pressed
ceramic ε33

S.
Piezoceramic rings are mechanically connected in series

with central mass, back and front endings. Back and front
endings are closed with acoustic impedances ZR and ZE, which
are in this case negligible because experimental measurements
were conducted with unloaded transducers oscillating in the
air.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.3 - Page 2 of 4 ISBN 978-86-7466-930-3

Fig. 2. One-dimensional model of the composite transducer.

Based on Eqs. (1-4) it is obvious that the transducer

frequency response depends on the material characteristics of
its constituting parts and their geometric dimensions.

In the proposed transducer model, it is assumed that the
circuit elements are ideal, i.e. they do not have losses. Losses
can be included if piezoelectric constants and constants of
elasticity of the transducer metal parts are in the form of
complex numbers, in which the imaginary parts represent
losses.

III. SIMULATION AND EXPERIMENTAL RESULTS
Table 1 shows the dimensions of the individual composite

transducer. Dimensions of the exciting piezoceramic rings are
Ø38/Ø13/6.35 mm, and rings are made of PZT8 piezoceramic
equivalent material [14]. Li is the length, ai and bi are the outer
and inner diameters of the corresponding i-th element. The
front ending is made of a dural, while the back ending and the
central mass are made of steel with the standard material
properties. The electrical impedance measurements are
conducted using a Microtest 6366 Precision LCR Meter.

TABLE I

DIMENSIONS OF COMPOSITE TRANSDUCER USED IN
EXPERIMENTAL ANALYSIS

Dimension [mm] Composite

transducer
L1=L2 11
L3 37
a1=a2=a3 40
b1=b3 9
b2 8

There is a similarity between the modeled and

experimental dependences, as shown in Fig. 2. Since it is a
composite transducer with a larger ratio of length and
transverse dimensions, the proposed one-dimensional model
gives satisfactory results during transducer analysis in the first
resonant mode.

Fig. 3. Input electrical impedance vs. frequency for the proposed composite transducer

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.3 - Page 3 of 4 ISBN 978-86-7466-930-3

The measured resonant frequency of the fundamental
resonant mode is 24.16 kHz. The calculated resonant
frequency using the proposed model is 24.95 kHz, where the
error made by the one-dimensional model in determining this
resonant frequency is 3.27%. When it comes to the
antiresonant frequency, the measured value is 27.12 kHz,
while the model calculated 28.7 kHz, i.e., the error made by
the model is 5.83%. The proposed model can predict the
general shape of the second resonant mode but with
significant error. The measured resonant frequency of the
second resonant mode is 43 kHz, while the resonant frequency
obtained by the model is 47.65 kHz (the error is 10.81%).

This model allows only the thickness resonant modes to be
predicted and, therefore, does not consider the inevitable
radial resonant modes. One-dimensional models are generally
not suitable for determining resonant frequencies of thickness
oscillations that are close to resonant frequencies of radial
oscillations. In the case shown, when the model does not
predict the third and fourth modes, the calculated resonant
frequencies for the first two modes are always higher than the
measured ones. If a model that considers both the third and
fourth modes were used, the first two modes would be moved
to lower frequencies.

IV. CONCLUSION
In this study, an equivalent circuit was developed for

accurate analysis of the acoustic characteristics of an
ultrasonic transducer over a wide frequency range.

Eqs. (1-4) confirm that the frequency characteristics of
transducers in one-dimensional theory depend on the material
characteristics of the components of composite transducers
and their geometric dimensions.

In practice, one-dimensional modeling is most often used
due to the great flexibility and efficient implementation of the
model. The flexibility and efficiency of one-dimensional
models come to the fore in the analysis of transducers
operation, which includes a large number of parameters.

The proposed one-dimensional model of composite
transducer does not include mechanical and electrical losses in
the material. However, losses can be analyzed if the
piezoelectric constants and the elastic constants of the metal
parts of the converter are represented in complex numbers,
where their imaginary parts represent losses.

ACKNOWLEDGMENT
This work has been supported by the Ministry of Education,

Science and Technological Development of the Republic of
Serbia, contract no. 451-03-68/2022-14/200102.

REFERENCES
[1] Y. Yao, Y. Pan, S. Liu, “Power ultrasound and its applications: A state-

of-the-art review,” Ultrasonics - Sonochemistry, vol. 62, 104722, 2020.
[2] X. Lu, J. Hu, H. Peng, Y. Wang, “A new topological structure for the

Langevin-type ultrasonic transducer,” Ultrasonics, vol. 75, pp. 1–8,
2017.

[3] D. Chen, L. Wang, X. Luo, C. Fei, D. Li, G. Shan, Y. Yang, “Recent
Development and Perspectives of Optimization Design Methods for
Piezoelectric Ultrasonic Transducers,” Micromachines, vol. 12, no. 7,
779. 2021.

[4] Y. Kagawa, T. Yambuchi, “Finite element simulation of a composite
piezoelectric ultrasonic transducer,” IEEE Trans. Sonics Ultrasonics,
vol. 26, no. 2, pp. 81–88, 1979.

[5] F. Wolf, T. Lahmer, L. Bahr, A. Hauck, A. Sutor, R. Lerch, M.
Kaltenbacher, “Finite element modeling of ultrasonic transducer by
utilizing an inverse scheme for the determination of its material
parameters,” 2008 IEEE International Ultrasonics Symposium, Beijing,
China, 2-5 November, 2008.

[6] L. Wang, J. A. Wang, J. M. Jin, L. Yang, S.W. Wu, C. Zhou,
“Theoretical modelling, verification, and application study on a novel
bending-bending coupled piezoelectric ultrasonic transducer,”
Mechanical Systems and Signal Processing, vol. 168, 108644, 2022.

[7] F. Wang, H. Zhang, C. Liang, Y. Tian, X. Zhao and D. Zhang, “Design
of High-Frequency Ultrasonic Transducers With Flexure Decoupling
Flanges for Thermosonic Bonding,“ IEEE Transactions on Industrial
Electronics, vol. 63, no. 4, pp. 2304-2312, 2016.

[8] S. Lin, L. Xu,W. Hu, “A new type of high-power composite ultrasonic
transducer,” Journal of Sound and Vibration, vol. 330, pp. 1419–1431,
2011.

[9] H. Shim, Y. Roh, “Development of an Equivalent Circuit of a Cymbal
Transducer,“ IEEE Sensors Journal, vol. 21, no. 12, pp. 13146-13155,
2021.

[10] I. Jovanović, U. Jovanović, D. Mančić, “General One-Dimensional
Model of a New Composite Ultrasonic Transducer”, Proceedings of the
7th Small Systems Simulation Symposium 2018, Niš, Serbia, pp. 50-54,
12-14 February 2018.

[11] D. Mančić, I. Jovanović, M. Radmanović, Z. Petrušić, “Comparison of
one-dimensional models of ultrasonic sandwich transducers” – in
Serbian, Proceedings of the XXII Noise and Vibration, Niš, Serbia, pp.
119-127, 20-22. October 2010.

[12] I. Jovanović, D. Mančić, U. Jovanović, M. Prokić, “A 3D model of new
composite ultrasonic transducer“, Journal of Computational
Electronics, vol.16, no. 3, pp.977-986, 2017.

[13] P. Langevin, French Patent Nos: 502913 (29.5.1920); 505703
(5.8.1920); 575435 (30.7.1924).

[14] Properties of Piezoelectricity Ceramics, Technical Publication TP-226,
Morgan Electro Ceramics.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.3 - Page 4 of 4 ISBN 978-86-7466-930-3

Hardware Realization of Nearest Neighbour Search
Algorithm over an In-Memory Pre-Stored k-d Tree

Aleksandar Z. Kondić, Student Member, IEEE, and Vladimir M. Milovanović, Senior Member, IEEE

Abstract—Nearest neighbour search is a fundamental statisti-
cal classification algorithm with widespread use in artificial intel-
ligence (AI) sub-fields such as machine learning, computer vision,
and robotics. Considering the shift in host platforms running
AI algorithms from general-purpose computers to specialized
hardware implementations, a parameterizable design generator
of special purpose hardware instances that perform nearest
neighbour search is proposed, captured inside Chisel hardware
construction language, and validated on an FPGA platform.
Based on an algorithm of nearest neighbour search that traverses
a k-dimensional tree pre-stored inside read-only memory (ROM),
the generator provides parameters for configuring the structure
and volume of the tree and the points stored within it.

Index Terms—Nearest neighbour search, hardware implemen-
tation, Chisel hardware construction language, k-dimensional
tree.

I. INTRODUCTION

Nearest neighbour search is an algorithm which, for a given
input point, finds a point closest to it among a set of points.
It is useful for solving classification problems, which are
especially prevalent in artificial intelligence (AI) subfields such
as machine learning, computer vision [1], and robotics [2].

With artificial intelligence algorithms being increasingly
shifted from general-purpose computers to dedicated hard-
ware instances as a consequence of the need for increased
computational power [3], various hardware implementations
of classic AI algorithms targeting different platforms have
appeared. The Nearest Neighbour Search (NNS), along with
its variants, the Approximate Nearest Neighbour (ANN) and
k-Nearest Neighbours (k-NN) algorithms, are no exceptions.

Considering field programmable gate arrays (FPGAs) as a
hardware implementation platform of choice, there are various
incarnations of the above mentioned algorithms. They are
usually described and implemented either in the form of
pure register-transfer level (RTL) [4], [5], high-level synthesis
(HLS) [6], [7], or Open Computing Language (OpenCL) [8],
[9] code. An alternative to these approaches is to write the
behavioral code in an RTL-like form but utilizing a higher
level hardware design language instead. One such language
is Chisel [10], which is embedded in the Scala programming
language, enabling its users to write RTL instance generators
while providing benefits of both functional and object-oriented
programming paradigms. This paper proposes an implementa-

Aleksandar Z. Kondić was with the Faculty of Engineering, University of
Kragujevac, Sestre Janjić 6, Kragujevac, Serbia (e-mail: konda@uni.kg.ac.rs).

Vladimir M. Milovanović is with the Department of Electrical Engineering,
Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000
Kragujevac, Serbia (e-mail: vlada@kg.ac.rs).

tion of the nearest neighbour search algorithm in Chisel using
an agile [11] digital design methodology.

An effective implementation of the nearest neighbour search
algorithm should presumably work for a large number of pre-
defined points as potential output points for a given input
point. For such an implementation to be efficient in terms
of resource utilization for a target hardware platform such as
FPGA, the points need to be stored inside a memory module.
This naturally implies that the digital logic may have access
only to a limited number of pre-stored points per clock cycle.
Therefore, it is desirable to minimize the number of memory
accesses for a given input point while obtaining the correct
solution.

This is the same problem that a purely software implemen-
tation of a nearest neighbour search algorithm on a processor
would have. To minimize the amount of time needed to
process an input point, an efficient algorithm with a desirable
run-time complexity needs to be chosen. While the simplest
solution would be to run an exhaustive search of the entire
memory containing pre-defined points to find a point with the
minimal distance from the input point—yielding a linear run-
time complexity—more efficient algorithms exist.

Similar problems were encountered in the field of computer
graphics. In order to ensure the rendering of a scene in a
timely manner, it was necessary to retrieve relevant spatial
data of the scene efficiently. A technique named binary space
partitioning (BSP) was developed to solve this problem,
mainly implemented through a tree data structure [12]. The
technique entails recursively subdividing space into two parts
along a hyperplane. When a given point or polygon is queried,
the search is performed only in the sub-spaces where it could
possibly be located, thus reducing the search domain.

Space partitioning is a general method of subdividing space
in a defined manner until a certain condition is satisfied. There
are multiple implementations of this method in the form of
different tree structures with specific criteria on how a space is
divided into sub-spaces and under which conditions. Examples
of some tree structures that perform space partitioning are k-d
trees, quadtrees, and octrees. Concerning the nearest neighbour
search problem, some of the appropriate data structures that
can be used are R-trees and k-dimensional trees.

The principal data structure driving this particular imple-
mentation of the nearest neighbour search algorithm is the k-
dimensional tree, or k-d tree for short. A k-d tree is essentially
a binary search tree that contains multi-dimensional points and
is traversed based on the value of one of the coordinates of
the input point at each node in the tree.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.4 - Page 1 of 6 ISBN 978-86-7466-930-3

4

3

(2, 2)
(3, 3)

(2, 12)
(4, 13)
(3, 14)

6

(8, 3)
(14, 6)

(5, 8)
(13, 8)
(13, 11)

Y

 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
X

Y

X 0

Fig. 1. An illustrative example of a k-dimensional tree (with k = 2 to simplify the drawing) and the two-dimensional space partitioning it performs.

Each node of the k-d tree contains a value by which the
hyperspace it belongs to is split into two. The dimension in
which the split is performed corresponds to the node’s depth
in the tree, which repetitively cycles from the last dimension
to the first when the depth of the node becomes greater than
the dimensionality of the points stored inside the tree. All
child points that have the value of the coordinate in the
corresponding dimension less than the node’s stored value
are part of the left sub-tree, while the child points with the
corresponding coordinate’s value greater than the value in the
node are part of the right sub-tree. In the case of a child point
having an equal corresponding coordinate value to the value
of the node—due to the nature of the nearest neighbour search
algorithm—it may belong to either of the sub-trees.

The average run-time complexity of the nearest neighbour
search algorithm over a k-dimensional tree is O(m+ log2 n),
where n is the number of nodes in the tree and m is the
average number of points contained in a leaf node.

II. A k-D TREE-BASED HARDWARE IMPLEMENTATION

The primary purpose and the use scenario of the proposed
implementation is to execute the nearest neighbour search
algorithm over a k-dimensional tree. The tree structure, along
with the points it contains is assumed to be constructed and
stored beforehand inside some form of a read-only memory
(ROM). In the case of an FPGA platform the ROM is in the
form of a single-port block RAM and mimics the static RAM.

This implementation uses a variant of the k-dimensional tree
in which the number of nodes in the tree is not necessarily
equal to the number of points. The points are, after a proper
traversal through the k-d tree, stored in the leaf nodes. A
leaf node may contain more than one point. An example k-
dimensional tree of this kind is shown in Fig. 1, along with
an illustration of how the tree partitions a two-dimensional
space (but in general it can be an arbitrary k-dimensional
hyperspace).

The nearest neighbour search algorithm finds the closest

point to the query point by first performing a traversal of the
k-d tree until reaching a leaf node. When visiting a node,
the value of the query point’s coordinate in the dimension
corresponding to the node’s depth is checked against the value
in the node. If the value is smaller, traversal proceeds to the left
sub-tree. Otherwise, traversal proceeds to the right sub-tree.
When reaching a leaf node, all of the points in the leaf node
are checked, calculating the distances between them and the
query point. The current closest point, along with its distance
to the query point, are stored inside dedicated registers which
are updated when a closer point is found.

After exhausting all of the points in a leaf node, the search
algorithm traverses backwards, that is up the tree and checks
if the hypersphere around the current closest point with the
radius equal to its distance from the query point intersects the
node’s splitting hyperplane. If so, a closer point to the query
point may exist on the other side of the splitting hyperplane,
so the search algorithm proceeds by traversing down the sub-
tree contained in the node’s unvisited child, until reaching a
leaf node again. This process is repeated until the algorithm
terminates when it is guaranteed to yield a point stored within
the k-dimensional tree with the minimal distance from the
query point.

For the purposes of this work, the structure of the k-
dimensional tree and the points it contains are stored in
two separate memories (or two non-overlapping memory seg-
ments). The memory used to store information about the
points contains coordinates of each point. The points inside
this particular memory (segment) are arranged in such a way
that the points belonging to the same leaf node of the k-
dimensional tree occupy consecutive memory locations.

Memory containing the tree structure stores the properties
of each node. The following properties are stored: an indicator
bit of whether the node is a leaf node, the discriminating value
stored inside the node for tree traversal (valid only for non-
leaf nodes), the starting address in the points ROM and the

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.4 - Page 2 of 6 ISBN 978-86-7466-930-3

0 🞨 🞨

0 🞨 🞨

0 🞨 🞨

1 🞨

1 🞨

1 🞨

1 🞨

leaf value p_addr p_cnt

0:

1:

2:

3:

4:

5:

6:

0

1 2

3 4 5 6

Tree ROM

⋯

⋯

⋯

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮

p_0 p_1 p_k-1
Points ROM

Fig. 2. Memory layout of a k-dimensional tree showing the associated Tree ROM and Points ROM structures over which the NNS realization operates.

number of points contained in the node (valid only for leaf
nodes). A node at location n in the tree ROM has its left and
right children at locations 2n + 1 and 2n + 2, respectively.
With this it is assumed that the stored k-d tree is balanced. It
is possible to construct a balanced k-d tree from an arbitrary
set of points as long as the points with the same coordinate
value as the discriminating value in the node may be stored in
either of the node’s child sub-trees. In particular use cases
of interest this discriminating value is actually the median
value of relevant coordinates of the points being considered
during k-d tree construction. The described memory layout is
illustrated in Fig. 2.

The tree traversal algorithm is recursive. Traversal is per-
formed in a depth-first manner, that is similar to the depth-
first search algorithm (DFS), which is also recursive. The DFS
algorithm, starting at the root of the tree, visits its child nodes
in a pre-defined order. When visiting one of the child nodes,
another instance of the DFS algorithm is started on the node,
running more instances of the DFS algorithm on its children
if it has any. Once an instance of the DFS algorithm for one
child node terminates, the same process is repeated for the
other. Therefore, by the time DFS starts visiting the root node’s
second child, the entirety of the sub-tree rooted in its first child
will have already been explored.

An example of the order of traversal of binary tree nodes in
the depth-first search algorithm is shown in Fig. 3. Non-leaf
tree nodes are each visited a total of three times in order to
visit the subtree rooted in their second child after visiting the
first, and to potentially traverse back up to the parent node.

Each non-leaf node’s left child is first explored, followed by
the right child. The primary characteristic of DFS is that after
visiting the leaves, it traverses back up the tree in order to
traverse down unvisited sub-trees, repeating this process until
the entire tree is explored.

A k-d tree traversal is essentially a variation on DFS tree

traversal. The difference with k-d tree traversal is that the
order of the children visited depends on the query point for
which the closest point is to be found. The left child is first
visited if the query point is on the “left” side of the splitting
hyperplane represented by the node, otherwise the right child
is first visited. Also, if the first child node’s closest point is at
a distance shorter than or equal to the distance of the query
point from the splitting hyperplane, the second child is not
explored. Unlike depth-first search, with k-d tree search the
entire tree may not necessarily be explored.

A tree traversal over an example k-d tree is illustrated in
Fig. 4. The query point for which to find the closest point is
(5, 3). In this example, during the traversal three out of the
four leaf nodes were visited. The metric used to calculate the
distance between two points (or between the query point and
a splitting hyperplane) is the squared Euclidean distance.

Software implementations of recursive algorithms may
make use of recursive function calls, which are realized on a
call stack, or allocate a stack structure specifically to store their
data and implement the algorithm as a non-recursive function.
In this case only the second option is viable, so the stack data
structure is actually implemented as an array of registers. A
separate dedicated register is used to store a pointer that keeps
track of the position of the top of the stack in the array.

III. DESIGN GENERATOR OF THE k-D TREE-BASED NNS

The previously described accelerator has been implemented
as a parameterized RTL design generator in Chisel 3 hardware
construction language. The generator has been extensively
tested by following standard Chisel verification and imple-
mentation paths for FPGA design workflows. As a hardware
library it is freely available for public use [13]. The next few
paragraphs are elaborating on different generator parameters,
as well as modes of operation of the module.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.4 - Page 3 of 6 ISBN 978-86-7466-930-3

0

1 2

3 4 5 6

0 1 3 1

4102

5 2 6 2

0

Fig. 3. An example of the order of nodes traversed in a binary tree using
depth-first search.

A. Generator Parameters

Parameterizable properties of the design pertain mainly to
the structure of the k-dimensional tree itself and its points.

The values of point coordinates are signed integers with
a specified bit width, which is one of the parameters of the
design generator. Another generator parameter is the number
of dimensions of each point. The total size of the points ROM
is inferred from the bit width of its unsigned integer addresses,
which is specified as a yet another generator parameter. These
three parameters make up the structure of the points ROM.

Concerning the structure of the tree ROM, each location
contains one bit indicating whether the node is a leaf, a signed
integer representing the discriminator value of a node (in our
use cases referred to as the median), and two unsigned integers
representing the location and count of points inside the points
ROM. The bit width of the discriminator is the same as the
bit width of the points’ individual coordinates, while the bit
width of the location and count of points is the same as the bit
width of the addresses in the points ROM. The size of the tree
ROM, along with the bit width of its addresses is inferred from
a generator parameter specifying the maximum depth of the
tree. The number of nodes in the tree may be arbitrary though,
as the nearest neighbour search algorithm assumes that nodes
marked as leaves in the tree ROM do not have children.

4

3

(2, 2)
(3, 3)

(2, 12)
(4, 13)
(3, 14)

6

(8, 3)
(14, 6)

(5, 8)
(13, 8)
(13, 11)

X

Y

Query: (5, 3)

4 6

3 < 6

(8, 3)
(14, 6)

(8, 3)

6

d[(8, 3),
(5, 3)]=9

(5, 3) d(3, 6)=9

4

d(5, 4)=1

3

Skip second
child

Explore
second child

5 ≥ 4

(5, 3) (5, 3)

3 ≥ 3

(5, 3)

(2, 12)
(4, 13)
(3, 14)

Closest
point

d[(8, 3),
(5, 3)]=9

(8, 3)

(5, 3)

Closest
point

3

d(3, 3)=0

Explore
second child

d[(8, 3),
(5, 3)]=9

(2, 2)
(3, 3)

(3, 3)

(5, 3)

Closest
point

3

4

d[(3, 3),
(5, 3)]=4

Fig. 4. An example of the order of nodes traversed in a k-d tree when finding
the closest point to the query point (5, 3).

B. Modes of Operation

To keep track of the nodes visited for the purposes of
traversing back up the tree after visiting a leaf node, a stack
structure is implemented as an array of registers. Three distinct
values are pushed onto the top of the stack to aid with the
execution of k-d tree search:

• Address of the node in tree ROM – this is the main piece
of data used to keep track which tree node to visit next.

• The child of the node to visit next – a single bit that
determines whether to visit the first or the second child of
the node during tree traversal. A value of 0 corresponds
to visiting the first child, while a value of 1 corresponds
to visiting the second child. When the value is 1, first the
distance of the current closest point to the query point is
compared to the distance of the query point to the splitting
hyperplane of the node (the median value of the node in
this case). If the distance of the closest point to the query
point is not greater, the second child is not visited.
Since after visiting the second child of a node there is
nothing left to process, the current node visited is popped
from the stack before the second child node is pushed

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.4 - Page 4 of 6 ISBN 978-86-7466-930-3

onto the stack. More precisely, the value at the top of
the stack, which currently contains data about the current
node being visited, is simply replaced with the data of its
second child. In case the second child node is not to be
visited, the current node is popped from the stack.

• The depth of the node in the tree – This information is
used for calculating the distance of the current closest
point from the splitting hyperplane. The value of the
depth directly maps to which coordinate of the current
closest point to compare to the stored node median and
is also used to determine the coordinate of the query point
to compare to the median value during tree traversal.
While the depth of the node can be calculated from its
index (memory address) in the tree ROM, it is simpler
to just push onto the stack the current depth value of the
node incremented by one when pushing child nodes. The
depth value does not exceed the dimensionality of the
points in the tree as it cycles between 0 and k − 1.

Since the first node to process when a new query point is
given is always the root of the tree (address 0 in tree ROM),
whose depth is 0, and the next node to process is always its
first child, the stack is always initialized to contain these values
as the sole element of the stack before processing a new point.

At each clock cycle, the values at the top of the stack are
retrieved, which mostly determine the mode of operation of
the module. The relevant modes of operation are as follows:

• Leaf processing – this mode is active when the indicator
for whether the current node is a leaf has the value 1.
The values at the top of the stack are not used in this
case. At each clock cycle, a counter indicating how many
points were visited in the points ROM is incremented
until reaching the value in tree ROM that indicates how
many points a leaf node has. After that, the counter is
reset to 0 and the current node is popped off the stack.
The value of the counter is added to the starting address of
the node’s points in the points ROM, yielding an address
of each point to be retrieved from the points ROM. The
distance of each point is compared to the current minimal
distance from the query point. In case it is smaller, both
registers containing the closest point and its distance from
the query point are updated accordingly.
Since there is a delay of a few clock cycles due to mem-
ory access in the points ROM and distance calculations
using registers to decrease the length of logic paths, once
the points counter is set to 0, a “delay” counter is also
initialized to 2. Each clock cycle the value of this counter
is decremented until it reaches 0, regardless of the mode
of operation. The module may not produce a valid result
on its output while the value of this counter is greater
than 0, even if there are no remaining nodes left in the
tree to process for a given query point.

• Tree traversal, first child node being next – This mode
is active when the current node is not a leaf (explained
above) and the value of the child indicator at the top of
the stack is 0. The appropriate query point coordinate is

compared to the median value of the node to determine
which of the left and right children is the first child to
be visited. After that, the corresponding first child node
is pushed onto the stack.

• Tree traversal, second child node potentially being next
– This mode is active when the current node is not
a leaf and the value of the child indicator is 1. The
stored current minimal distance from the query point is
compared to the distance of the query point’s appropriate
coordinate from the median value of the node. If the
current minimal distance is not greater, the second child
of the node will not be visited, and the current node is
popped off the stack. Otherwise, values at the top of the
stack are replaced with the values corresponding to the
second child node.
Since the median distance calculation also uses a register
in order to decrease the length of logic paths, the result
of this calculation is available in the next clock cycle.
Therefore, a special one-bit register is set to signify that
this mode of operation is still in progress. In the next
clock cycle this register is reset, and the rest of the
operations are performed as described.

• Final phase of the algorithm – active when the node stack
is empty. While the value of the previously described
“delay” counter is greater than 0, no additional operations
are performed. Once the value of the counter reaches 0,
the output valid signal of the module is set to 1, while
the output point is simply a set of wires connected to
the register storing the current closest point to the input
point. The initial values of the stack are pushed onto the
empty stack to prepare the processing of the next input
point.

The block diagram in Fig. 5 depicts the generator’s design.
The inputs and outputs of this design adhere to the Ready/Valid
handshaking protocol. Apart from the ready and valid signals,
both the input and the output consist of a single k-dimensional
point represented as a series of k signed integers depicting
their respective coordinate values. The dimensionality of these
points, along with the structure of the point and tree ROMs,
depend on the generator’s parameters.

Algorithm logic

Points ROM Tree ROM

in_ready

in_valid

Parameterized components are marked in red

in_point 1st d.

in_point 2nd d.

in_point k-th d.
⋮

out_ready

out_valid

out_point 1st d.

out_point 2nd d.

out_point k-th d.
⋮

Stack

reg 0reg 1reg t

top

reg k-1

Fig. 5. Interface of the implemented Chisel design showing its input, output,
and internals.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.4 - Page 5 of 6 ISBN 978-86-7466-930-3

IV. IMPLEMENTATION AND TESTING RESULTS

Testing of the generator is also performed using testing
facilities provided by Chisel, i.e. ChiselTest. All generator pa-
rameters are randomized during testing, and the ROMs are also
populated by appropriate randomly generated k-dimensional
trees. The output of generated instances for random inputs is
compared against the output of a k-d tree golden model written
in Scala. The distances of the outputs of Chisel instances are
compared with the distances of the outputs produced by the
respective Scala golden model class instances.

The Scala golden model of the k-dimensional tree has
also undergone rigorous testing. A list of random points is
generated after selecting a random number of dimensions for
the points. From the list of points and the desired number of
tree nodes an instance of the golden model class is created.

This “golden model” instance is then supplied with random
points as input. The output point’s distance from the input
point is compared to the distance of the closest point to the
input point from the list of points in the tree, which is obtained
by applying a simple brute-force exhaustive search algorithm.
Due to the order of nodes and points traversed not being the
same for the k-d tree model and the brute-force algorithm, only
distances of the respective closest points to the input point are
compared.

For additional testing and real in-hardware validation, var-
ious instances obtained from the design generator have been
synthesized and implemented onto a commercially available
FPGA development board. The board in question is Digilent’s
Arty A7 with Xilinx’s Artix-7 FPGA family. All instances
have been synthesized for a 100 MHz target clock frequency.

Resource utilization for the different generated instances is
shown in Table I. Slice LUT utilization is most influenced by
the bit width of the coordinates and k, the dimensionality of
the points. A more minor effect on slice LUT utilization is
exerted by the sizes of the point and tree ROMs. The number
of slice registers seems to be mostly influenced by the bit
width of the coordinates, followed by the dimensinoality of
the points. Number of dimensions k has an influence on both
Block RAM Tile and DSP multiplier counts, although the

TABLE I
FPGA RESOURCE UTILIZATION FOR GENERATED DESIGN INSTANCES

Generator Instance Parameters FPGA Resources
Data

Width Nodes Points k
Slice
LUTs

Slice
Regs

BRAM
Tiles

DSP
muls

8 bits 31 100 3 728 272 1 3
16 bits 31 100 3 383 288 1.5 7
24 bits 31 100 3 528 444 1.5 11
32 bits 31 100 3 706 412 1 19
16 bits 7 100 3 334 287 1.5 7
16 bits 15 100 3 328 288 1.5 7
16 bits 63 100 3 339 288 1.5 7
16 bits 31 50 3 326 271 1.5 7
16 bits 31 200 3 372 311 1.5 6
16 bits 31 100 2 339 232 1 6
16 bits 31 100 4 381 337 1.5 8
16 bits 31 100 5 453 393 2 9

greatest influence on the number of DSP multipliers is exerted
by point coordinate data bit width.

V. CONCLUSION

An approach to implementing a nearest neighbour search
algorithm on an FPGA hardware platform has been explored.
One of the key characteristics in this approach is in using
a pre-stored k-dimensional tree to perform nearest neighbour
search operations. Another is in using the Chisel hardware
design language to create a generator of instances that can
accommodate k-d trees with different structure parameters.

A variety of instances have undergone testing and additional
verification by implementing them on a commercial FPGA
development board. Apart from testing and verification, some
consideration has also been given to their utilization of re-
sources. This paper proves on an example case of the nearest
neighbour search algorithm that parameterizable design gen-
erators can be used to produce instances of AI and machine
learning hardware modules as an alternative to using CPU-
based implementations.

REFERENCES

[1] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor
based image classification,” in 2008 IEEE conference on computer vision
and pattern recognition. IEEE, 2008, pp. 1–8.

[2] A. Bewley and B. Upcroft, “Advantages of exploiting projection struc-
ture for segmenting dense 3d point clouds,” in Australian Conference
on Robotics and Automation, vol. 2, 2013.

[3] M. A. Talib, S. Majzoub, Q. Nasir, and D. Jamal, “A systematic literature
review on hardware implementation of artificial intelligence algorithms,”
The Journal of Supercomputing, vol. 77, no. 2, pp. 1897–1938, 2021.

[4] M. A. Mohsin and D. G. Perera, “An fpga-based hardware accelerator
for k-nearest neighbor classification for machine learning on mobile
devices,” in Proceedings of the 9th International Symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies, 2018, pp. 1–7.

[5] T. Ito, Y. Itotani, S. Wakabayashi, S. Nagayama, and M. Inagi, “A
nearest neighbor search engine using distance-based hashing,” in 2018
International Conference on Field-Programmable Technology (FPT).
IEEE, 2018, pp. 150–157.

[6] Z.-H. Li, J.-F. Jin, X.-G. Zhou, and Z.-H. Feng, “K-nearest neighbor
algorithm implementation on fpga using high level synthesis,” in 2016
13th IEEE International Conference on Solid-State and Integrated
Circuit Technology (ICSICT). IEEE, 2016, pp. 600–602.

[7] A. Lu, Z. Fang, N. Farahpour, and L. Shannon, “Chip-knn: A config-
urable and high-performance k-nearest neighbors accelerator on cloud
fpgas,” in 2020 International Conference on Field-Programmable Tech-
nology (ICFPT). IEEE, 2020, pp. 139–147.

[8] J. Zhang, S. Khoram, and J. Li, “Efficient large-scale approximate
nearest neighbor search on opencl fpga,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
4924–4932.

[9] F. B. Muslim, A. Demian, L. Ma, L. Lavagno, and A. Qamar, “Energy-
efficient fpga implementation of the k-nearest neighbors algorithm using
opencl.” in FedCSIS (Position Papers), 2016, pp. 141–145.

[10] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC Design automation conference 2012.
IEEE, 2012, pp. 1212–1221.

[11] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli,
J. Kwak, R. Jevtic, S. Bailey, M. Blagojevic et al., “An agile approach
to building risc-v microprocessors,” ieee Micro, vol. 36, no. 2, pp. 8–20,
2016.

[12] H. Fuchs, Z. M. Kedem, and B. F. Naylor, “On visible surface generation
by a priori tree structures,” in Proceedings of the 7th annual conference
on Computer graphics and interactive techniques, 1980, pp. 124–133.

[13] A. Kondić and V. Milovanović, “Hardware realization of nearest
neighbour search algorithm over an in-memory pre-stored k-d tree,”
www.github.com/milovanovic/nns, accessed: April 15, 2022.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.4 - Page 6 of 6 ISBN 978-86-7466-930-3

	040-ELI1.3.pdf
	I. Introduction
	II. Analytical One-Dimensional Modelling of Composite Transducer
	III. Simulation and experimental results
	IV. Conclusion
	Acknowledgment
	References

