
  

Abstract—The problem of data clustering is still in development 

and various approaches to solving it are being proposed, all of 

which have different success rates. One of the nonparametric 

clustering methods is subtractive clustering. The success of this 

algorithm largely depends on tuning its parameters. In this paper 

we give a theoretical analysis of different suggestions for choosing 

their values. Based on probability theory, we examined the impact 

of dimensionality and number of samples on the clustering radius. 

By conducting a controlled experiment with known sample 

distributions, the performance of this algorithm with suggested 

parameters is tested, as well as its robustness. 

 
Index Terms—subtractive clustering, parameters tuning, 

classification, data processing 

 

I. INTRODUCTION 

For a large number of classification problems we do not have 

adequate a priori knowledge and therefore we are not able to 

generate an appropriate training set. Starting with Charles 

Darwin and his systematization of animals and plants into 

genera, species, families etc. up until the development of 

systems based on various forms of artificial intelligence, the 

man has attempted to improve clustering techniques. 

Nonparametric clustering methods do not consider 

optimization criteria or data distributions. They are based on 

implementing different ways to locate ‘valleys’ or ‘hills’ in the 

probability density function of the data as a natural border 

between different classes.  

In 1992. Yager and Filev suggested mountain clustering as 

one of the techniques [1]. The method is based on dividing the 

entire data space into a dense grid of small hypercubes whose 

vertices are potentially cluster centers. The potential i.e., the 

mountain function is then calculated for each vertex as a 

measure of sample density in its surrounding. Clearly the 

potential for the vertex to be a cluster center increases with the 

number of samples surrounding it. The core idea of this method 

is the following: after finding the first cluster center, potentials 

of all vertices are reduced inversely proportional to the distance 

from the vertex to the cluster center. For vertices closer to the 

center, the potential reduces more. The next cluster center is 

chosen as the vertex with the highest potential (after reduction). 

This method of finding cluster centers repeats until the potential 
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in all vertices falls beneath a certain threshold. 

Even though it was imagined as a very simple method, its 

numerical complexity grows exponentially with sample 

dimensionality due to a large number of hypercubes in the grid. 

In 1994. Chiu suggested a modification of this algorithm called 

subtractive clustering [2]. 

II. THEORETICAL ANALYSIS 

A. Algorithm 

The idea of subtractive clustering is that every sample in the 

dataset can be a cluster center. Due to this starting assumption 

of considering only given samples as cluster centers, the 

complexity of this algorithm is practically linear. 

Samples are assigned a certain density based on which the 

cluster centers are found during the iterative procedure. Aside 

from considering a smaller dataset than mountain clustering, 

calculating the density function implies the squared distance 

between samples, so there is no need for determining the square 

root. 

Based on the description given in [2], the algorithm is 

comprised of a few steps: 

Step 0: For each of 𝑁 samples we calculate the value of the 

initial density 𝐷𝑖
1 according to equation (1), 

 𝐷𝑖
1 = ∑ 𝑒

− 
‖𝑋𝑖−𝑋𝑗‖

2

(𝑟𝑎 2⁄ )2 

𝑁

𝑗=1

, 𝑖 = 1, 𝑁̅̅ ̅̅ ̅ (1) 

where 𝑟𝑎 is a positive constant called the clustering radius. 

Step 1: Based on initial density values we determine the first 

cluster center 𝑋𝑐
1: 

 𝑋𝑐
1 = arg{max

𝑖=1,𝑁̅̅ ̅̅ ̅
𝐷𝑖

1} (2) 

Step 3: Having found the first cluster center, we start the 

iterative procedure of finding other cluster centers. Since the 

first center is already found, let the iteration counter start at  

𝑘 = 1. 

Step 4: We increment the counter to 𝑘 = 𝑘 + 1 and eliminate 

the influence of samples near the previously found center by 

modifying their density function: 

 
𝐷𝑖

𝑘 = 𝐷𝑖
𝑘−1 − 𝐷𝑐

𝑘−1𝑒
− 

‖𝑋𝑖−𝑋𝑐
𝑘−1‖

2

(𝑟𝑏 2⁄ )2 , 𝑖 = 1, 𝑁̅̅ ̅̅ ̅ (3) 
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𝐷𝑖
𝑘  is the new density function value, and 𝐷𝑖

𝑘−1 is the previous 

one. 𝐷𝑐
𝑘−1 is the maximum density from the previous iteration, 

and 𝑋𝑐
𝑘−1 is the cluster center found also in the previous 

iteration. Parameter 𝑟𝑏 represents a new clustering radius. 

Step 5: Based on the newly modified values of density 

functions we choose a kth cluster center 𝑋𝑐
𝑘: 

 𝑋𝑐
𝑘 = arg{max

𝑖=1,𝑁̅̅ ̅̅ ̅
𝐷𝑖

𝑘} (4) 

Step 6: We check whether 𝐷𝑐
𝑘  i.e., the density of samples in 

radius 𝑟𝑏 of kth cluster center satisfies: 

 𝐷𝑐
𝑘 ≤ 𝛿𝐷𝑐

1 (5) 

If the given condition is not satisfied, we go back to step 4, and 

if it is, the algorithm ends. Parameter 𝛿 is a positive value 

smaller than 1 and it is called the clustering threshold. 

B. Parameter tuning 

The success of clustering largely depends on choosing the 

values for 𝑟𝑎 , 𝑟𝑏 and 𝛿. Clustering radiuses 𝑟𝑎 and 𝑟𝑏 should in 

some way incorporate the information on how samples are 

scattered around cluster centers. 

A great number of scientists and engineers have put their 

knowledge and experience into determining clear and straight-

forward recommendations for choosing the values of 

parameters involved in clustering. Unfortunately, most of them 

so far have turned out to be inefficient and inapplicable in most 

cases. In [3] it is suggested and in [4] analyzed that the 

parameter 𝑟𝑎 should be chosen according to: 

 𝑟𝑎 = {
1

4
[max{‖𝑋𝑖 − 𝑋𝑗‖} + min{‖𝑋𝑘 − 𝑋𝑙‖}]}

𝛽

 (6) 

where 𝑖, 𝑗, 𝑘, 𝑙 = 1, 𝑁̅̅ ̅̅ ̅, and 𝑁 the total number of samples 

available. Parameter 𝛽 should serve as amortization for 

extreme values of maxima which come from potential outliers 

[3]. 

 We will perform an analysis on how the theoretical 

probability density function (pdf) of 𝑟𝑎 changes according to 𝑁 

and dimensionality 𝑛. First, we consider a one-dimensional 

case (𝑛 = 1). Let samples from all clusters have a Gaussian 

joined probability density function 𝒩(𝑚, 𝜎2). For the sake of 

simplicity, we will consider the minimum value to be 

neglectable in respect to the maximum value, as well as the 

parameter 𝛽 = 1. Samples 𝑋𝑖 and 𝑋𝑗 then become independent 

identically distributed random variables, and parameter 𝑟𝑎 

becomes a random variable 𝑅𝑎 for which the following holds: 

  𝑅𝑎 = max{|𝑋 − 𝑌|} (7) 

Random variable 𝑍 = 𝑋 − 𝑌 will then also have a Gaussian 

pdf with parameters 𝒩(0,2𝜎2), as it is a subtraction of two 

Gaussian variables.  The absolute value of this variable 𝑈 = |𝑍| 
will have a cumulative distribution function (cdf): 

𝐹𝑈(𝑢) = 𝑃(𝑈 ≤ 𝑢) = 𝑃(|𝑍| ≤ 𝑢) = 𝑃(−𝑢 ≤ 𝑍 ≤ 𝑢)𝑢𝐻(𝑢) (8) 

i.e. the following will hold: 

 𝐹𝑈(𝑢) = (2𝐹𝑍(𝑢) − 1)𝑢𝐻(𝑢) (9) 

where 𝑢𝐻(𝑢) represents a Heaviside unit step function. 

Now we can easily obtain the probability density function of 

the random variable 𝑈: 

 𝑓𝑈(𝑢) = 2𝑓𝑍(𝑢)𝑢𝐻(𝑢) (10) 

If the total number of samples in our dataset is 𝑁, then there are 

𝑁𝑈 = (
𝑁
2

) =
𝑁(𝑁−1)

2
 values which can be calculated as  

𝑈 = |𝑋 − 𝑌| and let these values be 𝑈1, … , 𝑈𝑁𝑈
. Let us form an 

array 𝑈(1), … , 𝑈(𝑁𝑈), whose elements are variables 𝑈1, … , 𝑈𝑁𝑈
 

in a non-declining order. 𝑈(1) is the minimum, and 𝑈(𝑁𝑈) the 

maximum calculated value. If we want to determine the cdf 

𝐹𝑈(𝑘)
(𝑢) for 𝑈(𝑘), we will notice that the event of {𝑈(𝑘) ≤ 𝑢} 

occurs if and only if the kth value is not bigger than 𝑢, meaning 

that at least 𝑘 of 𝑁𝑈 random variables 𝑈1, … , 𝑈𝑁𝑈
 have a value 

less than or equal to 𝑢. Imagine we have 𝑁𝑈 Bernoullie's 

experiments, with every experiment testing whether the event 

{𝑈(𝑘) ≤ 𝑢} (success) occured or not [5]. The probability of 

success is equal to 𝑃(𝑈(𝑘) ≤ 𝑢) = 𝐹𝑈(𝑢), and the probability 

of at least 𝑘 successes occuring in 𝑁𝑈 experiments is: 

𝐹𝑈(𝑘)
(𝑢) = 𝑃(𝑈(𝑘) ≤ 𝑢) = ∑ (

𝑁𝑈

𝑖
)

𝑁𝑈

𝑖=𝑘

𝐹𝑈
𝑖 (𝑢)(1 − 𝐹𝑈(𝑢))𝑁𝑈−𝑖 (11) 

Since the object of our analysis is the maximum value of  
|𝑋 − 𝑌| i.e. 𝑅𝑎 = 𝑈(𝑁𝑈), by replacing 𝑘 with 𝑁𝑈 we get: 

𝐹𝑅𝑎
(𝑟𝑎) = (𝐹𝑈(𝑟𝑎))

𝑁(𝑁−1)
2  (12) 

The pdf for the parameter 𝑅𝑎 is: 

𝑓𝑅𝑎
(𝑟𝑎) =

𝑁(𝑁 − 1)

2
(𝐹𝑈(𝑟𝑎))

𝑁(𝑁−1)
2

 − 1
𝑓𝑈(𝑟𝑎) (13) 

Let us assume now that our samples are n-dimensional. Let 

samples 𝑿𝒊 and 𝑿𝒋 be independent identically distributed 

vectors whose pdf is 𝒩(𝑴, 𝚺). We will additionally assume 

that their variances along all dimensions are equal and not 

correlated, i.e. that the covariance matrix has the form 𝚺 = 𝜎2𝑰, 

where 𝑰 is the identity matrix.  

The Euclidian norm 𝑉 = ‖𝑿 − 𝒀‖ is calculated as 

 𝑉 = √∑(𝑋𝑖 − 𝑌𝑖)2

𝑛

𝑖=1

= √∑ 𝑍𝑖
2

𝑛

𝑖=1

 (14) 

where 𝑍𝑖 is the random variable 𝑍𝑖 = 𝑋𝑖 − 𝑌𝑖 . We previously 

showed that the distribution of 𝑍𝑖 will be 𝒩(0,2𝜎2), which 

means that 
𝑍𝑖

√2𝜎
 will have a Gaussian pdf 𝒩(0,1). We can 

determine the distribution of random variable 
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 𝑉 = √2𝜎√∑ (
𝑍𝑖

√2𝜎
)

2𝑛

𝑖=1

 (15) 

using the results known from probability theory, which state 

that the square root of the sum of squares of 𝑛 independent 

identically distributed variables with distribution 𝒩(0,1) will 

have a 𝜒 distribution with 𝑛 degrees of freedom [6]. Therefore, 

the cdf of random variable 𝑉 will be:  

 𝐹𝑉(𝑣) =
𝛾 (

𝑛
2

,
𝑣2

4𝜎2)

Γ (
𝑛
2

)
𝑢𝐻(𝑣) (16) 

where Γ is the gamma function, and 𝛾 is the lower incomplete 

gamma function. 

The pdf of random variable 𝑉 is: 

 𝑓𝑉(𝑣)  =
𝑣𝑛−1

2𝑛−1σ𝑛Γ (
𝑛
2

)
𝑒

− 
𝑣2

4𝜎2 ∙ 𝑢𝐻(𝑣) (17) 

Results given in equations (12) and (13) also hold for the 

distribution of the maximum value of random variable 𝑉 with 

arbitrary dimensionality 𝑛. 

Fig. 1 shows the probability density function of random 

variable 𝑅𝑎 for different dimensionalities 𝑛 and different 

number of samples 𝑁. We can see that the clustering radius can 

be affected by changes in both parameters. Larger 

dimensionality 𝑛 results in more additions when calculating the 

norm, which expectedly also results in larger values of 

clustering radius. On the other hand, having more samples 

(larger 𝑁) increases the chance of extrema appearing, i.e. the 

chance of having samples which are far away from each other, 

which has a bigger clustering radius as a result. 

 
Fig. 1.  Probability density function of random variable 𝑅𝑎 which represents 

maximum of Euclidian norm between two samples. 

 

It is also meaningful to analyze how the mathematical 

expectation 𝑚𝑅𝑎
 and variance 𝜎𝑅𝑎

2 of the pdf of variable 𝑅𝑎 

change depending on sample number 𝑁 and dimensionality 𝑛. 

Both statistics have been calculated using numerical integration 

of pdf in equation (13) and the results are shown in Fig. 2 and 

Fig. 3. Mathematical expectation and variance increase with the 

increase of 𝑛. On the other hand, larger number of samples 

increases the mathematical expectation, but decreases variance.  

 
Fig. 2.  Mathematical expectation 𝑚𝑅𝑎

 of random variable 𝑅𝑎 depending on 

dimensionality 𝑛 and number of samples 𝑁. 

 
Fig. 3.  Variance 𝜎𝑅𝑎

2  of random variable 𝑅𝑎 depending on dimensionality 𝑛 

and number of samples 𝑁. 

 

 In the beginning of this analysis, we assumed that parameter 

𝛽 = 1, which does not have to be the case in general. Let us 

introduce a random variable 𝑊 = 𝑅𝑎
𝛽

 to show how parameter 

𝛽 affects the clustering radius. We can easily obtain the cdf for 

random variable 𝑊: 

𝐹𝑊(𝑤) = 𝑃 (𝑅𝑎
𝛽

≤ 𝑤) = 𝑃 (𝑅𝑎 ≤ 𝑤
1
𝛽) = 𝐹𝑅𝑎

(𝑤
1
𝛽) 𝑢𝐻(𝑤) (18) 

as well as its pdf: 

 𝑓𝑊(𝑤) =
1

𝛽
𝑤

1
𝛽

 − 1
𝑓𝑅𝑎

(𝑤
1
𝛽) 𝑢𝐻(𝑤) (19) 

 For a constant number of samples 𝑁 = 100 and various 

values of 𝛽, the pdf of 𝑊 is calculated and shown in Fig.4. We 

can see that by changing the value of 𝛽 by ±30 % in respect to 

the unit value, we make a great impact on the expected value 

of clustering radius, as well as its variance.  

 
Fig. 4.  Probability density function of random variable 𝑊 = 𝑅𝑎

𝛽
 depending on 

dimensionality of samples 𝑛 and parameter value 𝛽. 𝑊 represents maximum 

of Euclidian norm between two samples to the power of 𝛽. 

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 AU1.2 - Page 3 of 5 ISBN 978-86-7466-930-3



C. Classification accuracy 

Performance of clustering algorithm is tested on two-

dimensional samples from 5 classes, distributed normally with 

different covariance matrices.  

The main goal of clustering is to find centers of all classes 

and then test how accurate the classification is. Since the 

dataset is synthetically generated and all classes and covariance 

matrices are known, we decided to determine which class a 

sample belongs to by calculating the statistical distance 

according to equation (20), 

 𝑑𝑖
2 = (𝑋 − 𝑋𝑐𝑖

)
𝑇

Σ𝑐𝑖
−1(𝑋 − 𝑋𝑐𝑖

) (20) 

where 𝑑𝑖 is the statistical distance of sample 𝑋 to 𝑖th class, 

whose center is in 𝑋𝑐𝑖
, and covariance matrix is Σ𝑐𝑖

. For each 

sample the statistical distance to all found centers is calculated, 

and then the sample gets placed in the class for which the 

distance is minimal. Classification accuracy is finally measured 

as a percentage of accurately classified samples. 

III. RESULTS AND DISCUSSION 

We generated 300 samples for each of the 5 classes. As 

previously mentioned, each class is normally distributed. 

Clustering radius 𝑟𝑎 is determined according to (6), and 

parameter 𝛽 = 0.5 [3]. As suggested in [2], the new clustering 

radius 𝑟𝑏 is 𝑟𝑏 = 1.5𝑟𝑎. Clustering threshold 𝛿 is manually 

tuned for the algorithm to detect the right number of clusters. 

Figure 6. shows all classes and centers which were detected 

by subtractive clustering. 

 
Fig. 5.  Sample distribution among classes and corresponding cluster centers 

found. 

 

To test the sensitivity of the algorithm (with said parameter 

values) the experiment was repeated 500 times. For each 

experiment the clustering radius 𝑟𝑎 is determined separately. 

The histogram of the number of detected cluster centers in 500 

experiments is given in Fig. 6.  

 
Fig. 6.  Histogram of the number of detected cluster centers. 

 

For experiments in which the detected number of centers is 

correct, i.e. 5, we calculated the classification accuracy as 

mentioned earlier. Figure 7. shows the histogram of 

classification accuracy. 

 
Fig. 7.  Histogram of classification accuracy. 

 

In 134 out of 500 experiments the algorithm has managed 

to detect all cluster centers. The average accuracy in these 

experiments is 88 %. 

Finally, it is also interesting to see how the new cluster radius 

𝑟𝑏 affects the success of finding cluster centers. We choose o 𝑟𝑏 

according to: 

 𝑟𝑏 = 휀𝑟𝑎 (21) 

where 휀 is a positive constant called the squash factor. Various 

papers give different suggestions regarding the value of 휀, 

depending on the practical use of the algorithm. Based on [7] 

and [8] 휀 should be in an interval of 휀 ∈ [1, 1.5]. 
 We generated the same number of samples with the same 

distribution as before, and for each of the experiments we tested 

the success of the algorithm by changing 휀 from 1 to 1.5 with 

the step Δ휀 = 0.05. The experiment was repeated one hundered 

times. Histogram of the number of centers found depending on 

휀 is shown in Fig. 8. 
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Fig. 8.  Histogram of the number of cluster centers found depending on 휀. 

IV. CONCLUSION 

In this paper we analyzed both theoretically and 

experimentally the technique of subtractive clustering, as well 

as suggestions for tuning its parameters. Values of parameters 

𝑟𝑎, 𝑟𝑏 and 𝛿 significantly affect the success of clustering. We 

observed that even with various suggestions on how to choose 

the values, the algorithm does not always perform well on 

different sets with the same distribution.  

However, even if we assume that parameters 𝑟𝑎 and 𝑟𝑏 are 

tuned correctly, there are no theoretical propositions on 

choosing the threshold value 𝛿, which has a great impact on the 

number of clusters found. In case of samples with dimensions 

𝑛 = 1, 2, 3 we can visualize the dataset and assess whether the 

cluster centers have been found correctly. Nevertheless, in most 

cases the dimensions will be significantly bigger and there 

would be no unique way to rate the success of the algorithm.  

One of the methods to further enhance the algorithm and 

propose a uniform way for choosing parameter values would 

be to separately consider the maximum scattering along each of 

the axis. For example, if we have two-dimensional samples 

where the variance along one axis is much larger than the other 

and classes are near to each other, determining the density in 

the radius as the maximum quadratic norm of two samples, 

would lead to poor results. 

Though the simplicity of subtractive clustering is its big 

advantage, the results are not ideal. That being said, it can be 

used as a preprocessing technique for other more sophisticated 

methods. 
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