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Abstract—Gaussian mixture probability hypothesis density 
(GM PHD) is a modern nonlinear algorithm for tracking 
multiple targets in a clutter environment. It is accompanied by 
known problems that are primarily related to the impossibility of 
associating the measurement of existing targets and determining 
the quality of the tracks. For this purpose the automatics track 
initialization by known ‘two point initialization’ was introduced. 
Difference of successive measurements from two radar antenna 
revolutions is compared with the threshold,  which depends on 
the velocity of the target. The paper proposes to improve the 
algorithm by introducing the probability of the existence of a 
target and to reject false tracks. The results of intensive 
simulations of tracking multiple radar targets have shown the 
justification for the application of the proposed algorithms.  

 
Index Terms—Target tracking, probability hypothesis density, 

track while scan (TWS) radars.  
 

I. INTRODUCTION 
 
Multi-target tracking in clutter, assuming linear target 

trajectory propagation and linear target measurement 
equation, naturally leads to a Gaussian mixture (GM) target 
tracking solution. As the origin of measurements is uncertain, 
both true tracks (which follow targets) and false tracks (which 
do not) exist [1].  

The random finite sets (RFS) are representations of multi-
target states and multi-target measurements. The modeling of 
multi-target dynamics using random sets leads to algorithms 
which incorporate track initiation and termination, a 
procedure that has mostly been performed separately in 
tracking algorithms. The first systematic treatment of multi-
sensor multi-target filtering, as part of a unified framework for 
data fusion using random set theory was finite set statistics 
(FISST). The alternative to optimal multi-target filtering is the 
Probability Hypothesis Density (PHD) filter [2], [3], [4]. It is 
a recursion propagating the 1st moment, called the intensity 
function or PHD, associated with the multi-target posterior.  

A Gaussian mixture, consisting of a weighted sum of 
Gaussian PDF, each with different means and covariance’s, is 
the natural form of the PDF of target state. Using such a 
structure, a mixture component is created for every possible 
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association, using every possible pairing of targets and 
measurements with the mean and covariance calculated 
assuming that the particular hypothesis is true, and the weight 
calculated to represent the probability that the particular 
hypothesis is true.  The serious problem in multi-target 
tracking is the unknown association of measurements with 
appropriate targets [5], [6]. Moreover, the data association 
problem makes up the growth of the computational load in 
multi target tracking algorithms. Recently, multi-target 
tracking formulations involve explicit associations between 
measurements and targets 

The Gaussian Mixture Probability Hypothesis Density 
Filter (GM-PHD Filter) provided a closed form solution to the 
PHD filter recursion for multiple target tracking [7]. The 
posterior intensity function is estimated by a sum of weighted 
Gaussian components whose means, weights and covariances 
can be propagated analytically in time. In particular, the 
means and covariances are propagated by the Kalman filter. 

The original Gaussian Mixture PHD filter algorithm 
provided a means of estimating the number of targets and 
their states at each point in time. The method for determining 
the targets simply used the weights of the Gaussian 
components and did not take into account tempo al continuity. 
We show that if a target is not detected for each iteration, the 
Gaussian components can still track the targets in the presence 
of some missed detections. The trajectory of the target in the 
past, before it has been detected, can also be determined by 
keeping the trajectories of each of the Gaussian components. 
The original formulation of the GM PHD filter allowed 
targets to be spawned from existing targets [8]. 

The paper proposes and tests the improved GMPHD 
algorithm with automatic track initialization (ATI) via 'two 
point methodology'. Each incoming measurement (from the 
previous scan) is paired with each incoming measurement 
from the current scan in order to examine the possibility of 
initializing a new trace based on the knowledge of the 
maximum speed of movement of the targets [9].  

 
Rest of papers is organized as follows. Second chapter is 

dedicated basic problem statements, which precedes Third 
chapter, which brief decrypted GM PHD algorithm. Results of 
experiments are given by Fourth chapter. Final conclusions 
are given by the Fifth chapter.  

II. PROBLEM STATEMENTS 
Consider the target tracking scenario with two dimensions. 

Also, consider the tracking algorithm with two parameters: 
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probability of detection (PD) and clutter density. The clutter 
density is depending on target dynamics and characteristic of 
sensor. Generally, clutter is defined by number of selection 
measurement from size of selection gate. At begin, consider 
the target state zn

k Rx  at time interval k. The dynamic 
target trajectory state models at the time k are given by the:  

 
kkk Fxx  1                           (1) 

where F is the propagation matrix, k is a zero mean and 
white Gaussian sequence with covariance R. At each scan the 
sensor returns a random number of random target and clutter 
measurements. At time k, one sensor delivers a set of 
measurements kM

jjkk zz 1, }{   track out of which a set of 

measurements are selected for track update. Converted target 
measurement y is given by [10] : 

 
kkk wHxy                                (2) 

where H is measurements matrix and the measurements 
noise kw  is zero mean and white Gaussian sequence. A 
measurements of target is present in each scan with a 
probability of detection PD . Clutter measurements follow the 
Poisson distribution characterized at location by clutter 
measurements density )(yk [ 11].  

At time k a set of )(km  measurements 

  )(
1)()(
km

ii kykY  are detected, where each measurement 
either originate from one of n known linear measurement 
models or is a false detection. The sequences )(k  are 
mutually independent and uncorrelated with the process noise.  

A. Finite Sets statistics 
 

Finite set statistics is the concept of belief-mass functions, 
which are non adaptive generalizations of probability mass 
functions and are equivalent to probability mass function on 
certain abstract topological spaces. The multi-target state and 
multi-target measurement at time k are represented as finite 
subsets kX  and kZ , respectively.  
The models of motion of the multi-target system using a 
randomly varying RFS is given by the [12]:  
 

][],[ 111   kkkkkk XBVX       (3) 
where ][ 1 kk X  represents the dynamics of the existing 

targets, 1kX is the random set of the state vectors of the 
random number of targets, and Vk-1 denotes the system 
process noise,  while ][ 1kk XB represents the process of target 
birth.  

III. THE GAUSSIAN MIXTURE PHD FILTER ALGORITHM 
In this section, we describe the linear-Gaussian multiple 

target model and the recently developed Gaussian Mixture 
PHD filter. The multiple target models for the PHD recursion 

is described here. Each target follows a linear Gaussian 
dynamical model [13], 

 
]),(;[)( 111   kkkk QFxNxf           (4) 

 
]),(;[)( kkk RxHyNxyg           (5) 

where N (.;m,P) denotes a Gaussian density with mean m 
and covariance P, Fk-1 is the state transition matrix, Qk-1 is the 
process noise covariance, Hk is the observation matrix and Rk 
is the observation noise covariance. The survival 

kSkS pxp ,)(   and detection kDkD pxp ,)(   probabilities 

are state independent. The intensities of the spontaneous birth 
and spawned targets are Gaussian mixtures, 
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where ,,,,
k

i
k

i
k

i
k

PmwJ  )(,...,1 kJi  are given 

model parameters that determine the shape of the birth 
intensity, similarly, 

11
,,,

 k
j

k
j

k
j

k
dFwJ   and 

1k
jQ  

)(,...,1 kJj   determine the shape of the spawning intensity 
of a target with previous state.  
 

A. Algorithm steps  

1 Prediction step 
 Under the assumptions that each target follows a linear 

Gaussian dynamical model, the survival and detection 
probabilities are constant, the intensities of the birth and 
spawned targets are Gaussian mixtures, and that the posterior 
intensity at time k-1 is a Gaussian mixture of the form [14] 


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 Then the predicted intensity to time k is also a Gaussian 

mixture, and is given by  
 

)()()()(
111 xxDxDxD kkkkkSkk  


    (12) 

 
where )(1 xD kkS   is the PHD of existing targets, 

)(
1

xD
kk  is the PHD for spawned targets, and )(xk  is 

the PHD of spontaneous birth targets.  
 
 The density for existing targets, )(1 xD kkS  , is 

determined from the linear Gaussian model using  the Kalman 
prediction equations,  
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where  
111   k

j
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j
S mFm           (14) 
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and similarly for the spawned target density,  
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2 Update step 
 

 Under the above assumptions, and that the predicted 
intensity to time t is a Gaussian mixture of the form [15] 
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Then the posterior intensity at time k is also a Gaussian 
mixture, and is given by  
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where the weights are calculated according to the closed form 
PHD update equation,  
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and the mean and covariance are updated with the Kalman 
filter update equations,  
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B. GMPHD practical implementation of algorithm  
 

At begin, we given weights, mean and covariance of the 
each track: 
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At each scan we given measurement set )(kZ , from the 

radar sensor . 
 
Step 1: Prediction for birth targets 
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end 
 
Step 2: Prediction for existing targets 
 
for  j=1,…, )1( kJ  
           i=i+1. 
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Step 3: Construction of PHD update components  
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end 
 
Step 3: (Update) 
for j=1,…, )1( kkJ   
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l=0. 
for each kYy  
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C. Output Calculation 
Finally, we can calculate the output state estimate and 

covariance (for output purpose only):  
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IV. RESULTS OF EXPERIMENT 
For the purpose of simulations, we propose a two-

dimensional scenario (Fig. 1) with an unknown crossing and 
time varying number of targets in clutter over the region 
[−500; 500] × [−500; 500]. The state xk = [ xk vxk yk vyk ]T , of 
each target consists of position (xk; yk) and velocity (vxk; vyk), 
while the measurement is a noisy version of the position [16]. 

Each target has survival probability pS;k = 0,9, detection 
probability pD;k=0,99 and follows the linear Gaussian 
dynamics. Each simulation experiment consists of a number 
of simulation runs. In each simulation run, targets will repeat 
their trajectories. The measurements are generated 
independently. Each algorithm uses the same set of 
measurements. False tracks may be initiated using target 
measurements, either in a conjunction with a clutter 
measurement, or by using measurements from different 
targets in different scans. The sampling period of radar sensor 
is T=1s. Duration of the scenario is 70 scans. The 
implemented GM-PHD is evaluated by Monte Carlo (MC) 
simulations over representative 2-dimensional test scenario. A 
target motion scenario (Fig.2) includes non-maneuvering 
flights modes. Dimension of terrain surveillance is x=500m 
and y=500m.  

 
Transition matrix and process noise matrix are given by: 
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respectively. Measurements matrix and measurements noise 
matrix is given by:   
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respectively.  
For the purpose of performance testing tracking targets, we 
propose Wasserstein distance diagram.   
 

A. Wasserstein distance: 
 

The Wasserstein distance from theoretical statistics was 
adopted as a means of defining a performance metric for multi 
target distances which penalizes when the estimate of the 
number of targets is incorrect. When the number of targets is 
estimated correctly, the Wasserstein distance is the same as 
the  Hausdor  distance but the Hausdor does not penalise for 
incorrectly estimating the number of targets. This metric has 
been used for assessing the performance of the PHD filter. 

 
Let Xt and Yt be the finite sets of target states and estimated 

target states at time interval k.. The LP Wasserstein distance 
between the two sets is defined as: 
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The L  Wasserstein distance is defined as: 
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Where 1~
ijC if 0ijC and 0~

ijC if 0ijC  
 

B. Two point differencing initializations  
Initialization with the difference of successive observations 

(Two point differentiation initializing) uses measurements 
located in the 'window' of the trace from two successive scans 
to initialize the trace. This procedure is repeated for all 
measurements from the scan k-1 . Consider such a 
measurement jkz ,1 . The new trace is initialized by 

measurement jkz ,1  and each selected measurement ikz , , 

forming a Gaussian probability density function with the 
mean value given as: 
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where kT one is the period of rotation of the radar 
antenna. Since there is no a priori knowledge of the target 
speed, it can be modeled through a uniform distribution of a 
priori pdf measurements. At the moment k, the Np particles of 

the mean value 
)2(ˆkx are initialized, as well as the symmetric 

and semi-finite covariance matrices P (2|2) which correspond to 
the normal distribution of several variables (Figure 1): 
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where the initial covariance error of the condition is 
calculated under the assumption that there is no process noise 
[24]: 
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Fig. 1.  Simulation scenario: targets and measurements . 

 
Fig. 2. Wasserstein  distance metric (OSPA diagram)  
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Simulation results (OSPA diagram- Fig. 2) show good 

performance for tracking two crossing targets with one 
spawned targets, from scan 50 (Fig. 1). Blue dots 
(measurements) and magenta circle (targets) show good 
initializing and tracking targets in heavy clutter environments.  

V. CONCLUSION 
An improved GM PHD algorithm for radar sensor 

approaches has been presented for tracking multiple targets in 
high clutter density which has the ability to estimate the 
number of targets, track the trajectories of the targets over 
time, operate with missed detections and   give the trajectories 
of the targets in the past once a target has been identified. It 
has been shown to outperform the ability to operate in clutter 
with fewer false tracks and can initiate and eliminate targets 
more accurately.  

Future research should better determine the association of 
radar received measurements with existing targets as well as 
automatic initialization of targets. The theoretical constraints 
of the proposed tracking algorithm have been discussed in the 
case of crossing targets. It is anticipated that the problem of 
retaining the correct target identity in this scenario can be 
resolved by considering the previous trajectories of targets.  

 Especially, the proposed algorithm will be tested in 
practice on the example of video tracking [17, 18].  
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