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Consensus on the Auxiliary Variables in Distributed
Gradient-Based Temporal Difference Algorithms

Miloš S. Stanković, Marko Beko, Nemanja Ilić and Srdjan S. Stanković

Abstract—In this paper we discuss important properties of
two novel distributed algorithms for iterative multi-agent off-
policy learning of linear value function approximation in Markov
Decision Processes (MDP). The algorithms are derived using the
off-policy Gradient Reinforcement Learning (GRL) methodology,
together with linear dynamic consensus iterations over an under-
lying inter-agent communication network represented by directed
graphs. The proposed algorithms are entirely decentralized, offer-
ing new possibilities for choosing different behavior policies while
evaluating one single target policy. The presented algorithms
formally differ only in the way of applying consensus iterations
to the so-called auxiliary variables. The presented proof of
weak convergence of both algorithms represents a firm basis for
deriving relevant conclusions concerning the role of the consensus
iterations. It is shown that the algorithm utilizing consensus
on the auxiliary variables shows slightly inferior asymptotic
properties, but can provide a higher convergence rate. The figure
of merit of each of the algorithms is presented and discussed using
the theoretical results obtained under generally nonrestrictive
assumptions.

I. INTRODUCTION

Decentralized multi-agent decision making algorithms have
recently gained much popularity due to their high effectiveness
in dealing with uncertain and dynamic environments typical
for the emerging areas of Cyber-Physical Systems (CPS) and
Internet of Things (IoT). Numerous distributed estimation,
optimization and adaptation methods have been successfully
developed using recursive collaborations aimed at achieving a
consensus on variables of interest (e.g. [1]–[15] and references
therein).

Reinforcement learning (RL) is a general methodology for
decision making in uncertain environments based on models
in the form of Markov Decision Process (MDP) based on
utilization of approximate dynamic programming [16], [17].
A very important issue in this domain is the problem of ap-
proximation of the value function under very large state space
and the presence of a discrepancy between the behavior policy
of an agent and a policy that is currently targeted for evaluation
(off-policy learning, e.g. [18]). Recently, in [19]–[22] several
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fast gradient-based algorithms for temporal-difference (TD)
learning have been proposed. Distributed and multi-agent RL
methods have become very popular very recently (see, e.g. [1],
[23]–[25] and references therein). Different setups have been
adopted in a number of recent works [26]–[32].

In this paper we shall present and discuss two distributed
algorithms for iterative multi-agent off-policy learning of
linear approximation of the value function in MDPs [1]. The
algorithms represent generalizations of the recently proposed
single agent off-policy gradient algorithm GTD2(λ) [1], [19]–
[21], incorporating a distributed consensus scheme operating
over a network of typically sparsely connected agents. Another
important property of the algorithms is that the local recursions
of each agent can be based on eligibility traces [20], [21],
where each agent may choose different λ parameters. We
provide a firm theoretical background in the form of a proof
that the parameter estimates weakly converge to consensus
points [1], [19], [28], [29], [31], [33], under nonrestrictive
connectivity assumption on the topology of the underlying
digraph and on the state-visiting distributions of the agents
(their behavior policies). The main focus of this paper is
placed on the dilemma whether or not to apply consensus
to the auxiliary variables in the DGTD2(λ)-type algorithms
with one-time-scale (see [19], [28], [31]). Notice that the
paper [33] deals with the basically two-time-scale algorithms
of DGTDC(λ)-type. The given analysis will be exclusively
concerned with the limit points of the mean asymptotic ODEs:
in this sense the behavior of the estimates for large, but
finite t, including the derivation of the corresponding ODEs,
can be found in [1], [33]. The limit sets are analyzed by
formulating appropriate Lyapunov functions, following the line
of thought of [21]. A discussion on role of convexification of
the auxiliary variables is provided apart, showing that the two
algorithms converge to the same limit points only in special
cases. Application of consensus to the auxiliary variables
causes, in principle, inferior asymptotic performance, having
in mind that the implicitly imposed constraint increases the
achievable estimation error. On the other hand, introduction
of consensus can contribute to the overall convergence rate at
the global level; however, the global convergence rate depends
largely on the network connectivity.

The paper is organized as follows. In Section II we formu-
late the problem and define the algorithms. In Section III a
rigorous weak convergence analysis is presented focused on
the limit points, while Section IV is devoted to a general
discussion on the application of consensus to the auxiliary
variables in the DGTD2(λ) algorithms.
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II. DISTRIBUTED GRADIENT TEMPORAL DIFFERENCE
ALGORITHMS

A. Problem Formulation. Definition of the Algorithm

Consider N autonomous agents learning linear approxima-
tion to the state value function for a given policy in an MDP
(denoted as MDP(0)), using observations of sample transitions
in additional N independent MDPs, denoted as MDP(i),
i = 1, . . . , N . Assume a finite state space S = {1, . . . ,M},
and that MDP(0) has the transition matrix P , and MDP(i)

the transition matrices P (i), i = 1, . . . , N ; these chains are
induced by π and π(i), and referred to as the target policy and
behavior policies, respectively. We are, therefore, dealing with
a cooperative off-policy learning problem [1], [16], [18], [31].

We introduce the one-stage reward function rπ : S → R,
specifying the expected reward at each state s ∈ S , where
R is the set of real numbers [16], [21]. The associated
discounted total reward criterion (value function), with the
state dependent discount factors γ(s) ∈ [0, 1], s ∈ S, is given
by

vπ(s) = Eπ
s {rπ(S0) +

∞∑
n=1

γ(S1)γ(S2) · · · γ(Sn) · rπ(Sn)},

(1)
where Eπ

s {·} indicates the expectation w.r.t. to the Markov
chain {Sn}n>0 induced by π, with the initial state S0 = s.
Denote by Γ the M×M diagonal matrix with γ(s) as diagonal
entries and vπ = [vπ(s1) · · · vπ(sM )]T .

We assume the following [21]:
(A1) a) P is such that I − PΓ is nonsingular; b) P (i) is

irreducible and for all s, s′ ∈ S P
(i)
ss′ = 0 ⇒ Pss′ = 0, i =

1, . . . , N .
By the MDP theory [1], [16], [21], [34], vπ uniquely

satisfies the Bellman equation vπ = rπ + PΓvπ (see e.g.
[21], [34]). Within the framework of the temporal-difference
(TD) algorithms, it is usual to consider the Bellman equa-
tion depending on the so-called λ-parameters, procedurally
introduced by the so-called eligibility traces. In this sense,
vπ = T (λ)vπ is considered as a generalized Bellman equation,
where T (λ)v = rλπ + P (λ)v, ∀v ∈ R|S|, is the generalized
Bellman operator for a vector r(λ)π and a substochastic matrix
P (λ) [16], [21].

Let ϕ : S → Rp be a function that maps each state to a p-
dimensional feature vector ϕ = [ϕ1 · · ·ϕp]T ; let the subspace
spanned by feature vectors ϕ be Lϕ. In general, TD algorithms
look for some function v ∈ Lϕ that satisfies v ≈ T (λ)v. We
assume that the approximation functions are parameterized as
v(s) = ϕ(s)T θ, s ∈ S using parameters θ ∈ Rp, so that the
algorithms learn the vector θ. If we define the M × p matrix
Φ as a matrix composed of p-vectors ϕ(s) as row vectors, we
have vθ = Φθ.

In order to construct a distributed algorithm for finding
an approximation function vθ ∈ Lϕ by using observations
from MDP(i), i = 1, . . . , N , we define the following global
objective function

J(θ) =
N∑
i=1

qiJi(θ) =
1

2

N∑
i=1

qi∥Πξi(T
(λi)vθ − vθ)∥2ξi , (2)

where Ji(θ) are the local objective functions, qi > 0 the
a priori defined weighting coefficients, λi is the local λ-
parameter and Πξi denotes the projection onto the subspace Lϕ

w.r.t. the weighted Euclidean norm ∥v∥2ξi =
∑

s∈S ξi;sv(s)
2

for a positive M -dimensional vector ξi with components ξi;s
(see [21], [31]). In accordance with [21], [34], we take ξi to
be the invariant probability distribution for the local Markov
chain MDP(i), with the transition matrix P (i) induced by π(i)

(ξTi P
(i) = ξTi ). It follows that

∇J(θ) =
N∑
i=1

qi(Φ
TΞi(P

(λi) − I)Φ)Twi(θ), (3)

where Ξi is an M ×M diagonal matrix with the components
of ξi on the diagonal, and wi(θ) the unique solution (in wi)
of the equation

Φwi = Πξi(T
(λi)vθ − vθ), (4)

assuming that wi ∈ span{ϕ(S)}.
In the off-policy scenario, we introduce the local impor-

tance sampling ratios ρi(s, s
′) = P i

ss′/Pss′ for s, s′ ∈ S ,
i = 1, . . . , N ; denote ρi(n) = ρi(Sn, Sn+1), as well as
γ(n) = γ(Sn) [21], [34]. The local temporal-difference term
is defined by

δi(vθ;n) = ρi(n)(R(n+ 1) + γ(n+ 1)vθ(Sn+1)− vθ(Sn)).
(5)

The local eligibility trace vectors {ei(n)} are generated by

ei(n) = λi(n)γ(n)ρi(n− 1)ei(n− 1) + ϕ(Sn), (6)

where λi(n) ∈ [0, 1] are the local λ-parameters, i = 1, . . . , N
[21], [34].

The distributed algorithms for learning linear approximation
to the state value function for a given policy π we are going to
analyze consist of two main parts: 1) local parameter updates
based on the gradient descent methodology using local state
transition observations from MDP(i), and 2) interchange of
the current parameter estimates aimed at achieving consensus
between the agents. The local parameter updates are defined
by

θ′i(n) =θi(n) + αi(n)qiρi(n)(ϕ(Sn)

− γ(n+ 1)ϕ(Sn+1))ei(n)
Twi(n) (7)

w′
i(n) =wi(n) + βi(n)(ei(n)δi(vθi(n);n)

− ϕ(Sn)ϕ(Sn)
Twi(n)) (8)

where vθi(n) = Φθi(n); θi(0) is chosen arbitrarily, while for
wi(0) and ei(0) we have wi(0), ei(0) ∈ span{ϕ(S)} [21].
Notice that the algorithm incorporates the auxiliary variables
wi(n) and w′

i(n); their role is essential for this paper [19],
[21].

The second, communication part of the algorithm performs
the following convexification w.r.t. the approximation param-
eter θ, leaving local auxiliary parameters unchanged, i.e.,

θi(n+ 1) =
N∑
j=1

aij(n)θ
′
j(n), wi(n+ 1) = w′

i(n), (9)

where aij(n) are random variables, elements of a random
matrix A(n) = [aij(n)] [11], [31], [35]. If one adopts that the
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available N MDP’s are connected by communication links in
accordance with a directed graph G = (N , E), where N is the
set of nodes and E the set of arcs, then matrix A(n) has zeros
at the same places as the graph adjacency matrix AG and is
row-stochastic, i.e.,

∑N
j=1 aij(n) = 1, i = 1, . . . , N , ∀n ≥ 0.

The algorithm (7), (8) incorporating consensus only w.r.t. θ
according to (9) will be denoted as AlgA.

We also consider a modification of AlgA, denoted as AlgB,
obtained by applying convexification to both θi and wi, i =
1, . . . , N , in such a way that the second relation in (9) becomes

wi(n+ 1) =
N∑
j=1

aij(n)w
′
j(n). (10)

A comparative analysis of AlgA and AlgB is in the main focus
of this paper.

III. CONVERGENCE ANALYSIS

A. Prerequisites

1) Choice of λ-parameters: The results given below are
applicable to both state-dependent and history-dependent λi.
In the first case, we have simply λi(n) = λi(Sn) for a given
function λi : S → [0, 1], while in the second case λi(n) =
λ(yi(n), ei(n − 1)), yi(n) = f(yi(n − 1), Sn), where y(n),
n ≥ 0, is a memory state summarizing the history of the past
states up to time n (see [21], [34]).

Different choices of λi lead to different generalized Bellman
operators. For example, in the case of state-dependent λi, we
have:

T (λi)v = (I−PΓΛi)
−1rπ+(I−PΓΛi)

−1PΓ(I−Λi)v, (11)

where Λi is an M ×M diagonal matrix with entries λi(s);
therefore, we have P (λi) = (I − PΓΛi)

−1PΓ(I − Λi). For
the history-dependent λi-parameters, the formulation is more
complex [21], [34] (the details are out of the scope of this
paper).

2) Properties of the State-Trace Processes: Under the be-
havior policies π(i), the state-trace processes are defined as
{Sn, ei(n)}. These state-trace processes are Markov chains
with the weak Feller property [21], [34]. Let Zi(n) =
(Sn, ei(n), Sn+1). We have the following important result
[21], [34]: a) the state-trace weak Feller-Markov chain process
Zi(n) has a unique invariant probability measure ζi; for each
initial condition the occupation probability measure converges
weakly to ζi [21, Theorem 2.1(i)]; b) if Eζi denotes the
expectation of the stationary state-trace process with initial dis-
tribution ζi, then Eζi{∥f(Z0)∥} < ∞ and 1

n

∑n−1
j=0 f(Zi(j))

converges to Eζi{f(Zi(0))} in mean and a.s., where f(z) is
a Lipschitz continuous function in the trace variable e [21,
Theorem 2.1(ii)].

The results a) and b) are used to prove the following:
1) Eζi{ϕ(S0)ϕ(S0)

T } = ΦTΞiΦ;
2) Eζi{ei(0) δi(v; 0)} = ΦTΞi(T

(λi)v − v), ∀v ∈ RM

3) Eζi{ei(0)ρi(0)(ϕj(S0) − γ(1)ϕj(S1))} = ΦTΞi(I −
P (λi))Φj , 1 ≤ j ≤ p;
4) Eζi{ei(0)ρi(0)(1 − λi(1))γ(1)ϕ

j(S1)} = ΦTΞiP
(λi)Φj ,

1 ≤ j ≤ p;

where ϕj(·) is the j-th component of ϕ(·) and Φj the j-th
column vector of Φ [21, Proposition 2.1].

Under (A1), the results from [21, Proposition 2.2] also
show that the sequences of traces {ei(n)} satisfy the con-
dition E{∥ei(n) − êi(n)∥} ≤ c(n), where c(n) → 0 when
n → ∞, while {ei(n)} and {êi(n)} are obtained using the
same trajectory of states, but with different initial conditions
ei(0) and êi(0). Also, {ei(n)} is uniformly integrable, and,
consequently, the random variables {Zi(n)}, n ≥ 0, are tight
[36].

Let

gi(θi, wi, Zi) = ρi(s, s
′)(ϕ(s)− γ(s′)ϕ(s′))eTi wi (12)

and

ki(θi, wi, Zi) = eiδ̄i(s, s
′, vθi)− ϕ(s)ϕ(s)Twi, (13)

where δ̄i(s, s′, vθi) = ρi(s, s
′)(r(s, s′)+γ(s′)vθi(s

′)−vθi(s)).
We also have:

ḡi(θi, wi) = Eζi{gi(θi, wi, Zi(0))}
= (ΦTΞi(I − P (λi))Φ)Twi, (14)

k̄i(θi, wi) = Eζi{ki(θi, wi, Zi(0))}
= ΦTΞi(T

(λi)vθi − vθi)− ΦTΞiΦwi, (15)

and

ḡi(θi, wi(θi)) = (ΦTΞi(I − P (λi))Φ)Twi(θi). (16)

Comparison with (3) shows that ḡi(θi, wi(θi) = −∇Ji(θi).
Based on the above definitions and the results from [21],

we have the following important ergodic properties:
Lemma 1 ( [21]): Under (A1), the following holds for each

θi and wi and each compact set Di ⊂ Zi:
a) limm,n→∞

1
m

∑n+m−1
s=n En{ki(θi, wi, Zi(s + 1)) −

k̄i(θi, wi)}I(Zi(n) ∈ Di) = 0 in mean,
b) limm,n→∞

1
m

∑n+m−1
s=n En{gi(θi, wi, Zi(s + 1)) −

ḡi(θi, wi)}I(Zi(n) ∈ Di) = 0 in mean,
c) limm,n→∞

1
m

∑n+m−1
s=n En{gi(θi, wi(θi), Zi(s + 1)) −

ḡi(θi, wi(θi))}I(Zi(n) ∈ Di) = 0 in mean,
where En{·} denotes the conditional expectation given the
history (Zi(0), · · · , Zi(n)) and I(·) denotes the indicator
function.

B. Global Model

Let X(n) = [Θ(n)T
...W (n)T ]T , Θ(n) =

[θ1(n)
T · · · θN (n)T ]T , W (n) = [w1(n)

T · · ·wN (n)T ]T ;

similarly, X ′(n) = [Θ′(n)T
...W ′(n)T ]T , together with the

corresponding vector components. Then, we have for AlgA
the following global model at the network level

X ′(n) = X(n) + Γ(n)F (X(n), n),

X(n+ 1) = diag{(A(n)⊗ Ip), INp}X ′(n), (17)

where ⊗ denotes the Kronecker’s product, while
Γ(n) = diag{α1(n), . . . , αN (n), β1(n), . . . , βN (n)} ⊗Ip,

F (X(n), n) = [F θ(X(n), n)T
... Fw(X(n), n)T ]T ,

F θ(X(n), n) = [q1g1(θ1(n), w1(n), Z1(n))
T · · ·

qNgN (θN (n), wN (n), ZN (n))T ]T ,
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Fw(X(n), n) = [k1(θ1(n), w1(n), Z1(n))
T

+ e1(n)
Tω1(n+ 1) · · ·

kN (θN (n), wN (n), ZN (n))

+ eN (n)TωN (n+ 1)]T

with gi(·) defined by (12).

Introduce dummy variables X = [ΘT
...WT ]T , together

with F̄ (X) = [F̄ θ(Θ,W )T
...F̄w(Θ,W )T ]T , F θ(Θ, W ) =

[q1ḡ1(θ1, w1)
T · · · qN ḡN (θN , wN )T ]T , with ḡi(·, ·) defined by

(14), Fw(Θ,W ) = [k̄1(θ1, w1)
T · · · k̄N (θN , wN )T ]T , with

k̄i(·, ·) defined by (15).
In the case of AlgB, we have a slightly modified model

(17): instead of diag{(A(n)⊗Ip), INp} in the second relation
in (17), we have diag{(A(n) ⊗ Ip), (A(n) ⊗ Ip)}, as a
consequence of consensus w.r.t. wi.

C. Communication Part of the Algorithm

The result of this subsection is a slight generalization of the
results in [5], based on [11].

Define Ψ(n|k) = A(n) · · ·A(k) for n ≥ k, Ψ(n|n + 1) =
IN . Let Fn be an increasing sequence of σ-algebras such that
Fn measures {X(k), k ≤ n,A(k), k < n}.

(A2) There is a scalar α0 > 0 such that aii(n) ≥ α0, and,
for i ̸= j, either aij(n) = 0 or aij(n) ≥ α0.

(A3) There are a scalar p0 > 0 and an integer n0 such
that PFn{agent j communicates to agent i on the interval
[n, n+ n0]} ≥ p0, for all n and i = 1, . . . N , j ∈ Ni.

(A4) The digraph G is strongly connected.
According to [5], [11], it is possible to show that (A2)-

(A4) imply that Ψ(k) = limn Ψ(n|k) exists w.p.1; moreover,
its rows are equal and E{|Ψ(n|k)−Ψ(k)|}, EFn{|Ψ(n|k)−
Ψ(k)|} → 0 geometrically as n − k → ∞, uniformly in k
and ω (w.p.1). In addition, EFn

{Ψ(n|k)} converges to Ψ(k)
geometrically, uniformly in ω and k, as n→ ∞.

D. Convergence Proofs

(A5) Sequence {A(n)} is independent of the processes in
MDPi, i = 1, . . . , N .

(A6) There is a N×N matrix Ψ̄ such that E{|Ek{Ψ(n)}−
Ψ̄|} → 0 as n − k → ∞, which, under the conditions of
Lemma 1, has the form

Ψ̄ =

 ψ̄1 · · · ψ̄N

· · ·
ψ̄1 · · · ψ̄N

 =

 Ψ̂
...
Ψ̂

 ,
where

∑
i ψ̄i = 1 (| · | denotes the infinity norm).

(A7) Sequence {X(n)} is tight.
1) AlgA):
Theorem 1: Let (A1)–(A7) hold. Let Xα(n) be generated by

AlgA, (7), (8), (9), with βi(n) = αi(n) = α and define for t ≥
0, t ∈ R, Xα(t) = X(n) for t ∈ [(n−nα)α, (n−nα+1)α).
Let wα

i (0) = wα
i,0, ei(0) = ei,0 ∈ span{ϕ(S)}. Then, for

any integers n′α such that αn′α → ∞ as α → 0, there exist

positive numbers {Tα} with Tα → ∞ as α→ 0 such that for
any ϵ > 0

lim sup
α→0

P{(Xα(n′α + k)) /∈ Nϵ(Σ̄)

for some k ∈ [0, Tα/α]} = 0, (18)

i = 1, . . . , N , where Nϵ(·) denotes the ϵ-neighborhood, while
Σ̄ = Σ̄θ × · · · Σ̄θ × Σ̄w1 × · · · Σ̄wN

is the set of points
θ̄, . . . , θ̄, w̄1, . . . , w̄N satisfying

N∑
i=1

ψ̄iqiG
T
i w̄i =0, (19)

G1θ̄ + b1 −H1w̄1 =0,

...
GN θ̄ + bN −HN w̄N =0,

where Gi = ΦTΞi(P
(λi) − I)Φ, bi = ΦTΞir

(λi)
π , r(λi)

π is a
constant M -vector in the affine function T (λi)(·), while Hi =
ΦTΞiΦ, i = 1, . . . , N .

Proof: The proof is based on [1], [33] and the general
results from [5], [11], [36]. In order to apply the proof of
Theorem 3.1 in [5], it is essential to verify whether the
basic assumptions from [5] concerning F (X(n), n) hold in
our case. We can easily conclude that Lemma 1 implies
that the assumptions (C3.2) and C(3.3’) from Section 3 in
[5] hold. Following further [5], it follows that the Sko-
rokhod embedding implies that we have the limit process
Xα(·) → X(·), where Ẋ = diag{Ψ̄ ⊗ Ip, INp}F̄ (X) [5].
By Lemma 1 and (A6), all the rows of Ψ̄ are equal. Conse-
quently, Θ(·) = [θ(·)T · · · θ(·)T ], ∀θ(·) ∈ Rp, implying that
θ̇ = ψ̄1q1ḡ1(θ, w1) + · · · + ψ̄NqN ḡN (θ, wN ); we also have
ẇ1 = k̄1(θ, w1), . . . ẇN = k̄N (θ, wN ), having in mind that
consensus is not applied to the auxiliary variables.

In order to prove (18), we study the limit set

E = ∩τ≥0cl{θ(t), w1(t), . . . , wN (t)|θ(0), w1(0), . . . , wN (0)

∈ R(N+1)p, t ≥ τ}.
(20)

where cl{·} denotes the closure of a given set. Following [21]
( Proposition 4.1), we introduce the Lyapunov function

V (θ, w1, . . . wN ) =
1

2
∥θ− θ̄∥2+ 1

2

N∑
i=1

qiψ̄i∥wi−w̄i∥2, (21)

where θ̄ and w̄i are given by (19). We have directly

V̇ (θ, w1, . . . wN ) =⟨θ − θ̄,−
N∑
i=1

qiψ̄iG
T
i wi⟩

+
N∑
i=1

qiψ̄i⟨wi − w̄i, Giθ + ḡi − H̄iwi⟩

=−
N∑
i=1

qiψ̄i⟨wi − w̄i, Hi(wi − w̄i)⟩.

(22)

Therefore, V̇ (θ, w1, . . . wN ) < 0 for wi ∈ span{ϕ(S)} and
wi ̸= w̄i, implying that ŵi = w̄i if [θ̂T ŵT

1 . . . ŵ
T
N ]T ∈
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E and ŵi ∈ span{ϕ(S)}, i = 1, . . . , N . Similarly, if
[θ̂T w̄T

1 . . . w̄
T
N ]T ∈ E, then θ̂ = θ̄. In such a way we conclude

that for initial conditions wi(0) ∈ span{ϕ(S)} the limit set E
is indeed the set Σ̄ of points satisfying (19).

The steps remaining to prove (18) are standard for the
stochastic approximation theory (see [1], [21], [36]).

2) AlgB):
Theorem 2: Let (A1)–(A7) hold. Let Xα(n) be generated

by AlgB (7), (8), (9) and (10), with βi(n) = αi(n) = α, and
let both wα

i (0) = wα
i,0 and ei(0) = ei,0 ∈ span{ϕ(S)}. Then,

for any integers n′α such that αn′α → ∞ as α→ 0, there exist
positive numbers {Tα} with Tα → ∞ as α→ 0 such that for
any ϵ > 0

lim sup
α→0

P{

[
θαi (n

′
α + k)

wα
i (n

′
α + k)

]
/∈ Nϵ(Σ̄)

for some k ∈ [0, Tα/α]} = 0, (23)

i = 1, . . . , N , where Nϵ(·) denotes the ϵ-neighborhood, while
Σ̄ = Σ̄θ × Σ̄w is the set of points x̄ = [θ̄T w̄T ]T ∈ R2p

satisfying

Ḡθ̄ + ḡ − H̄w̄ = 0, ḠT w̄ = 0, (24)

where Ḡ =
∑N

i=1 ψ̄iqiΦ
TΞi(P

(λi) − I)Φ,
b̄ = ΦT

∑N
i=1 ψ̄iqiΞir

(λi)
π , r(λi)

π is a constant M -vector
in the affine function T (λi)(·), while H̄ =

∑N
i=1 ψ̄iqiΦ

TΞiΦ.
Proof: AlgA differs from AlgB only in the commu-

nication part of the algorithm. Formally, the procedure of
the proof remains the same as in Theorem 1, after replac-
ing diag{(A(n) ⊗ Ip), INp} by diag{(A(n) ⊗ Ip), (A(n) ⊗
Ip)}. This implies that, asymptotically, instead of diag{(Ψ̂⊗
Ip), INp} we have now diag{(Ψ̂⊗Ip), (Ψ̂⊗Ip)}. In this sense,
we obtain X(·) = [θ(·)T · · · θ(·)Tw(·)T · · ·w(·)T ]T , where
θ(·) and w(·) satisfy the following ODE:[

θ̇
ẇ

]
= ψ̄1q1

[
ḡ1(θ, w)

k̄1(θ, w)

]
+ · · ·+ ψ̄NqN

[
ḡN (θ, w)

k̄N (θ, w)

]
(25)

The limit points (24) follow from (25), according to Theo-
rem 1. Namely, we define the Lyapunov function

V (θ, w1, . . . wN ) =
1

2
∥θ − θ̄∥2 + 1

2
∥w − w̄∥2, (26)

where θ̄ and w̄ are given by (24) and obtain for the derivative
that

V̇ (θ, w) = ⟨θ − θ̄, ḠTw⟩+ ⟨w − w̄, Ḡθ + b̄− H̄w⟩
= −⟨w − w̄, H̄(w−w̄)⟩. (27)

Therefore, V̇ (θ, w) < 0 for wi ∈ span{ϕ(S)} and w ̸= w̄,
implying that ŵ = w̄ if [θ̂T ŵT ]T ∈ E and ŵ ∈ span{ϕ(S)}.
In the same way, if [θ̂T w̄T ]T ∈ E, then θ̂ = θ̄. Consequently,
for the initial conditions wi(0) ∈ span{ϕ(S)}, the limit set of
ODE (25) is the set Σ̄ satisfying (24).

IV. DISCUSSION

The preceding section has been devoted to the weak conver-
gence of the proposed distributed temporal difference learning
algorithms. The role of convexification of wi remains to be

clarified. It is clear, from the definition of the criterion function
(2) and the algorithm construction, that AlgA follows from the
basic local relations (4), providing for all i unique solutions
wi(θ) for all θ. However, AlgB is based on the introduction of
an additional constraint that w1(θ) = · · · = wN (θ) = w(θ),
where w(θ) is the unique solution of

ΦT (
N∑
i=1

ψ̄iqiΞi)Φw(θ) =
N∑
i=1

ψ̄iqiΠξi(T
(λi)vθ − vθ). (28)

It is straightforward to observe from (28) that we have for any
given θ

ΦT (
N∑
i=1

ψ̄iqiΞi)Φw(θ) =
N∑
i=1

ψ̄iqiΦΞiΦwi(θ). (29)

This property is verified by the above theorems.
Consequently, convergence points of θ are different for

these two cases. In order to get a clearer insight, assume that
detHi ̸= 0. Then, for AlgA we have

N∑
i=1

ψ̄iqiG
T
i wi(θ) =

N∑
i=1

ψ̄iqiG
T
i [H

−1
i (Giθ + bi)] = 0, (30)

resulting in

N∑
i=1

ψ̄iqiG
T
i H

−1
i Giθ =

N∑
i=1

ψ̄iqiG
T
i H

−1
i bi = 0, (31)

while for AlgB we obtain

ḠT H̄−1Ḡθ = ḠT H̄−1b̄. (32)

Notice that in the case of equal λ-parameters and equal
behavior policies for all the agents, both algorithms provide
the same solution.

It is difficult to make any general conclusion about the
relative advantage of one of the two presented algorithms. It
is to be noticed that this issue has not been directly treated in
the literature; all the examples of distributed TD algorithms
subsume that the consensus operator is applied to both θ
and w, without mentioning any alternative (e.g., [28] with
the references therein). As far as the limit points of the
corresponding ODEs are concerned, it should be noticed that
a better approximation could be, in general, expected when
consensus is not applied to w. Our experience confirms this
statement; however it does not show any significant difference
from this point of view. In some cases it could be expected
that the application of consensus to w may improve the con-
vergence rate of the algorithm. It is hard to draw any definite
conclusion, in general, having in mind that connectedness of
the underlying network can play an essential role from this
point of view. A comprehensive Monte Carlo analysis could
practically resolve the remaining dilemmas. It would be also
interesting to analyze the discussed problem in the two-time-
scale cases (see [1]).
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V. CONCLUSION

In this paper we have presented and discussed two novel
algorithms for distributed off-policy gradient-based value func-
tion approximation within a collaborative multi-agent rein-
forcement learning setting. The algorithms are based on an
integration of linear dynamic consensus schemes into local
gradient-based recursions, involving the so called auxiliary
variables. We presented rigorous proofs that, under nonrestric-
tive assumptions, the parameter estimates weakly converge to
consensus. Based on these proofs, a discussion is provided of
the incorporation of consensus w.r.t. auxiliary variables, defin-
ing clearly the figure of merit of the alternative approaches.
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[13] M. S. Stanković, S. S. Stanković, K. H. Johansson, M. Beko, and L. M.
Camarinha-Matos, “On consensus-based distributed blind calibration of
sensor networks,” Sensors, vol. 18, no. 11, 2018.
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