

Abstract—Denoising signals is used as a preprocessing step for

all signal processing. Encoder-decoder neural networks are often

proposed as a method of denoising 1D and 2D signals, because of

their ability to extract essential features from the signal and then

recreate it without noise. In this paper we propose a simple

architecture of a convolutional neural network for denoising step

responses of systems with different open-loop transfer function.

The network is trained on synthetic data with added noise of

different distributions, then tested on a portion of synthetic data

and real-life step responses.

Index Terms— denoising, encoder-decoder, convolutional

neural network, step response

I. INTRODUCTION

Signal denoising is an important preprocessing step in every

type of signal processing. Even though many observations can

be made on generated pure signals, real-life signals always

come with a certain amount of noise. For any signals measured

on electrical circuits, noise cause can be the imperfect design

or layout of the circuit itself, faulty components, close

proximity to other electrical equipment, environmental causes

etc. However, even if causes are known, the behavior of noise

is unpredictable and rarely fits into a specific probability

density function. Having a denoising method that would be

applicable to different types of signals and noises would be of

great importance for signal processing.

In the paper [1], authors used deep recurrent denoising neural

networks to denoise ECG signals and improve signal-to-noise

ratio of signal from -8.82dB to 7.71dB. They used a synthetic

dataset with added noise. Medical signals such as ECG are of

great importance, which shows in the number of papers that

deal with their denoising. Once again, a convolutional neural

network proves efficient with ECG signals in [2]. Seismic data

is one of the representatives of noisy real-life data, and effective

use of deep convolutional neural networks for denoising of

synthetic seismic data can be seen in [3]. Using a convolutional

network for denoising images with Gaussian noise is also

proposed in [4]. There is not a single specific architecture for

denoising convolutional networks that is superior, and a useful

comparison of different kinds is given in [5]. However, one

structure seems to be mentioned for multiple purposes, and it is

Natalija Đorđević is a teaching associate at the Signals and systems
department at the School of Electrical Engineering, University of Belgrade, 73

Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

natalija.djordjevic@etf..bg.ac.rs)
Nenad Džamić is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

dn213336m@student.etf.bg.ac.rs)

the encoder-decoder structure. The authors in [6] suggest the

use of an autoencoder for medical image denoising, which

served as an initial inspiration to use encoder-decoder networks

for 1D signals. Application of the encoder-decoder structure on

denoising micro seismic signals is shown in [7].

In this paper we have trained an encoder-decoder neural

network to denoise a step response of an open-loop system.

This particular structure seemed promising and in various

papers was proven to perform well in denoising for different

purposes. Its great advantage is that it does not have strict

limitations on the results it can produce. There are however

many things that have an effect on its performance, such as the

architecture, hyperparameters, the dataset etc. In this paper we

attempted to make a structure that is not complicated, but

performs well, as well as to generate a dataset that is

informative enough for our neural network. The reason that the

step response signal was chosen is its importance in observing

how industrial processes react to a change in reference value.

Without diving into the details of which processes each system

represents, we will define their behavior only by their open-

loop transfer functions.

II. DATASET SYNTHESIS

Collecting data for neural networks can be expensive and

time-consuming. In order for our dataset to be as diverse as

possible and simultaneously to represent many industrial

processes, we used equation (1) as a general form for our open-

loop transfer function. [8].

 𝐺(𝑠) =
𝑒−𝜃𝑑𝑠(1−𝛼𝑠)

(𝑠+1)𝑛
 (1)

Parameter 𝜃𝑑 represents transport delay which is the amount

of time that our system needs to react to a change in reference

value. The measure 1/𝛼 represents the position of a zero in the

right half-plane. The system in which 𝛼 is not equal to zero is

called the non-minimum phase system and in its step response

we can see an initial dip in value before a rise towards the

reference value. An example is shown in Fig.1. Finally, the

parameter 𝑛 refers to the order of the system which, in general,

dictates the dynamic of the system.

Aleksa Stojić is a teaching associate at the Signals and systems department
at the School of Electrical Engineering, University of Belgrade, 73 Bulevar

kralja Aleksandra, 11020 Belgrade, Serbia (e-mail: aleksa.stojic@etf..bg.ac.rs)

Goran Kvaščev is a associate professor at the Signals and systems
department at the School of Electrical Engineering, University of Belgrade, 73

Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

kvascev@etf..bg.ac.rs)

Denoising the open-loop step response using an

encoder-decoder convolutional neural network

Natalija Đorđević, Nenad Džamić, Aleksa Stojić, Goran Kvaščev

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 AUI2.2 - Page 1 of 5 ISBN 978-86-7466-930-3

mailto:dn213336m@student.etf.bg.ac.rs

Fig. 1. Step response for a non-minimum phase system with parameters:

 𝜃𝑑 = 5, 𝑛 = 3, 𝛼 = 1.

 Convolutional neural networks are known for needing a

large training set to perform well. These parameters can

drastically change the output of the system which means that,

in order to get a diverse dataset, we should try as many

combinations as possible. We generated pure step responses for

transfer functions which include parameter values given in

Table I. Each signal has a duration of 25s and is sampled with

a step size of 0.1s, making it 251 samples long.

TABLE I

TRANSFER FUNCTION PARAMETER VALUES

Minimum

value

Maximum

value
Step size

𝜃𝑑 0 10 0.2

𝛼 0 2 0.05

n 1 8 1

To every pure signal we generated, we added three types of

noise. Given that real-life noise rarely fits into one specific

probability density function, feeding different types of noise to

our neural network seemed as a good way to have it generalize

well after it is trained. The three types of noise added are

Gaussian white noise, uniform noise and noise with Rayleigh

distribution. All three types of noise have a standard deviation

of 0.05. Probability density functions are given in equations (2),

(3) and (4), respectively and shown in Fig.2.

𝑝(𝑥) =
1

𝜎√2𝜋
𝑒−0.5(

𝑥

𝜎
)

2

; 𝜎 = 0.05 (2)

𝑝(𝑥) = {
10/√3, 𝑥 ∈ {−0.05√3, 0.05√3}

0, 𝑥 ∉ {−0.05√3, 0.05√3}
 (3)

𝑝(𝑥) =
𝑥

𝜎2 𝑒−𝑥2/(2𝜎2), 𝜎 = 0.05√
2

4−𝜋
 (4)

The expected value of the Rayleigh distribution given in

equation (4) is a positive non-zero value, so to avoid having an

offset in our noise we subtracted the expected value.

Fig. 2. Comparing three different noise probability density functions.

Final dataset has 50184 samples and 25% percent of it is

intended for testing, while the rest is used for training. The test

set consists of all step responses for systems of order 4 and 5,

while all other orders belong to the training set. This will allow

us to test our network on system orders that it has not

encountered during training.

III. ARCHITECTURE AND TRAINING OF NEURAL NETWORK

When the term ‘denoising’ is mentioned in the context of

neural networks, the autoencoder neural networks are usually

suggested as an appropriate architecture. The idea behind them

is to have an encoder part of the network, whose role is to

extract features from the given input, followed by the decoder

part, which tries to recreate the input from the features.

Autoencoder networks are a type of unsupervised learning,

because the desired output is the same as the input, therefore

the input/output pair is not explicitly given during training.

These networks served as an inspiration for this paper and

creating the encoder-decoder architecture.

Encoder-decoder neural networks fall into the category of

convolutional networks and the term ‘convolutional’ refers to

the method of feature extraction. Let us consider that the input

is a 2D matrix, such as a photograph. The dimensions of the

photograph tend to be quite large and if we were to feed it to a

regular fully-connected neural network, we would have too

many trainable parameters. This would imply a huge amount of

time to train and a lot of unnecessary computational resources.

Also, each pixel itself might not carry as much information

about the photograph as their relations do. So instead of treating

individual pixels as separate entities, the idea behind

convolutional neural networks is to have filters in the form of

kernels (matrices with smaller dimensions) whose parameters

are to be learned, which in convolution with the input would

produce something more informational. Convolution is simply

‘sliding’ the kernel across the photo and multiplying it with

appropriate submatrix of the photo. This way, instead of trying

to learn a million neurons, the network has to learn filters which

would extract meaningful features. The general advantage of

neural networks is that it is not necessary for us to have insight

into exactly what these filters are and what features they

extract, but only how well the output is decoded using those

features.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 AUI2.2 - Page 2 of 5 ISBN 978-86-7466-930-3

Convolution can also be done with 1D inputs, such as

various forms of signals. The principal of convolution stays the

same and the kernel is now a vector instead of a matrix. As

previously mentioned, the aim of this project is to use a

convolutional encoder-decoder network to denoise a step

response of an open-loop system.

For this purpose we used python and the tensorflow library.

It allows users to build a sequential neural network model by

adding desired layers one-by-one.

For the encoder part of the network, we followed a standard

structure of convolutional networks which implies alternatively

adding convolutional layers and pooling layers. Convolutional

layers learn kernel parameters and produce a convolution of the

input with the kernel. It is common practice to have kernels

with small dimensions, so in every convolutional layer we used

kernels of size 5 (vectors of length 5). Every convolutional

layer we added is followed by a max-pooling layer, whose role

is to cut down the dimensions. It takes subvectors (of the

specified size) of the input and produces an output which is the

maximum value of the subvector. If the size is properly defined,

we get the effect of having less computation needed, without

any crucial loss in information.

The decoder part of the network has the inverse structure of

the encoder part. Therefore, all convolutional layers are

replaced with transposed convolutional layers. They perform

deconvolution, which is an inverse operation to convolution.

Opposite of max-pooling layers are upsampling layers. They

once again make the dimensions larger by repeating the values

of their input a specified amount of times. It is easy to notice

that the output of the upsampling layers will not be exactly the

same as the input of max-pooling layers.

The final architecture we chose is the simplest one that

performed well. Details of its structure are shown in Table II.

and Fig. 3.
TABLE II

ARCHITECTURE OF NEURAL NETWORK

Layer type
Kernel

size
Output shape

Convolutional 5 (1, 247, 128)

Max-pooling 2 (1, 124, 128)

Convolutional 5 (1, 120, 64)

Max-pooling 2 (1, 60, 64)

Transposed convolutional 5 (1, 64, 64)

Upsampling 2 (1, 128, 64)

Transposed convolution 5 (1, 132, 128)

Upsampling 2 (1, 264, 128)

Convolutional 5 (1, 264, 1)

Cropping / (1, 251, 1)

 The activation function for all layers is ReLU, except for the

output layer whose activation function always depends on what

the network is trying to predict. Since in our case we are doing

regression, the adequate activation function is linear. The

metric used to access the performance is mean-squared error,

also suitable for regression.

When training a neural network it is necessary to make sure

not to overfit it to the training data. Overfitting is a term used

to describe the behaviour of a network that performs very well

on training data, but has problems with data that it has not

encountered during training, i.e. it generalizes poorly. One

method to prevent overfitting we already implicitly

implemented by making a large training dataset. Having a

diverse dataset with many samples decreases the chances of

overfitting. We also added a kernel constraint with value 3 to

every layer, which stops parameters from rising above the

given value. Popular method to avoid overfitting is also adding

dropout layers after convolutional layers. Their role is to

remove certain neurons with a specified rate and have them not

impact the output. Adding dropout layers did not make the

network perform better, so they were left out. 20% of samples

in the dataset were used for validation. Finally, the network was

trained for 7 epochs in mini-batches of size 32.

Fig. 3. Neural network architecture

 The optimizer used is Adam optimizer, which is a type of a

stochastic gradient descent algorithm. It is known for keeping

track of the first and second momentum to provide quicker and

more stable convergence. Its primary hyperparameters are

learning rate, β1 and β2. We used stochastic grid-search to find

optimal hyperparameter values and they are: learning rate =

0.0005, β1 = 0.9 and β2 = 0.99.

IV. RESULTS

The network was first tested on a generated test set

mentioned in chapter II. Average mean-squared error (mse) on

the entire test set and on separate noise types are shown in Table

III. In Fig. 5 the average values and standard deviations of mse

for each of the noises are shown. Gaussian noise has the highest

error, however all three have values bellow 9e-5. One more

metric to asses the denoising process is comparing the signal-

to-noise ratios (SNR) of signals before and after denoising. The

average SNR for all types of noise was 53.5dB in the beginning.

Signal-to-noise ratios after denoising are given in Table III.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 AUI2.2 - Page 3 of 5 ISBN 978-86-7466-930-3

TABLE III

MEAN-SQUARED ERROR FOR DIFFERENT NOISE TYPES

 MSE SNR (dB)

Gaussian noise 8.84e-5 87.8

Uniform noise 8.14e-5 88.6

Rayleigh noise 7.21e-5 89.9

Entire test set 8.06e-5 88.8

Fig. 4. Means and standard deviations of mean-squared errors for each noise

In Fig 5A. there are three representative step responses: one

for each of the three types of noises. Based on observing, the

output of the network seems to follow the signal dynamic well.

Judging by the mean-squared error and Fig. 5A, Gaussian noise

is the most difficult to remove, while Rayleigh noise seems the

easiest to remove.

Next step was to test our network in a real-world

environment to see how it handles a step response with noise

which does not specifically match any distribution. The system

we tested on was a handmade dryer that consists of a chamber

on a metal surface and it has three platinum temperature sensors

and one sensor which measures the airflow. The chamber is 1m

long and has a heater of 400W and a ventilator on one side.

Since airflow is not steady and turbulence occurs, the signal we

captured is very noisy. In Fig 5B. there are three different

original signals of airflow, as well as their denoised version.

The results are satisfactory considering the amount of noise and

the fact that the exact transfer function was not included in the

training set.

Fig. 5. Step responses before and after denoising. A) synthetic data, B) airflow signal after neural network, C) airflow signal filtered with Butterworth filter

To compare our results with classical filtering methods, we

give the same noisy inputs but filtered with a first order

Butterworth filter with different normalized frequencies in Fig.

5C. We see that in order to not compromise the dynamic of the

signal, we have to settle for less noise removal. The neural

network we trained gives better results in terms of removing

noise, but still following the dynamic. The comparison we did

gives us an insight into why using a neural network for

denoising could be a justified option. Conventional filtering

methods often have to make sacrifices in terms of degrading

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 AUI2.2 - Page 4 of 5 ISBN 978-86-7466-930-3

some other signal characteristics. Even though the structure of

the neural network is not necessarily simple for all purposes, it

is very flexible, and if we feed it the right amount of input data

to learn from, the results it yields can be satisfactory in many

ways.

V. CONCLUSION

The architecture of neural network used in this paper shows

great potential for signal denoising. The proposed general form

of transfer function in equation (1) also proved to be enough for

the network to be able to follow the step response dynamic

well. The next step in improving performance and extending it

to other signals can move in a couple of directions. Having a

training set with more noise distributions would also help the

network generalize even better. Next possible extension could

be having step responses with added disturbances at different

moments in time in our dataset, as well as creating open-loop

transfer functions in a more generalized form.

ACKNOWLEDGMENT

The paper was co-funded by the Ministry of Education,

Science, and Technological Development of the Republic of

Serbia. This year’s contract number is 451-03-68/2022-

14/200103.

REFERENCES

[1] Antczak, Karol. "Deep recurrent neural networks for ECG signal
denoising." arXiv preprint arXiv:1807.11551 (2018).

[2] Arsene, Corneliu TC, Richard Hankins, and Hujun Yin. "Deep learning

models for denoising ECG signals." 2019 27th European Signal
Processing Conference (EUSIPCO). IEEE, 2019.

[3] Zhu, Weiqiang, S. Mostafa Mousavi, and Gregory C. Beroza. "Seismic

signal denoising and decomposition using deep neural networks." IEEE
Transactions on Geoscience and Remote Sensing 57.11 (2019): 9476-

9488.
[4] Murali, Vineeth, and P. V. Sudeep. "Image denoising using DnCNN: an

exploration study." Advances in Communication Systems and Networks.

Springer, Singapore, 2020. 847-859.
[5] Thakur, R. S., Yadav, R. N., & Gupta, L. (2019). State‐of‐art analysis of

image denoising methods using convolutional neural networks. IET

Image Processing, 13(13), 2367-2380.

[6] Gondara, Lovedeep. "Medical image denoising using convolutional

denoising autoencoders." 2016 IEEE 16th international conference on

data mining workshops (ICDMW). IEEE, 2016
[7] Zhang, Hang, et al. "Microseismic signal denoising and separation based

on fully convolutional encoder–decoder network." Applied

Sciences 10.18 (2020): 6621.
[8] Goran Kvaščev. “Dalji razvoj i uporedna analiza procedura za

eksperimentalno projektovanje i podešavanje industrijskih regulatora”

Magister’s thesis, 2005.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 AUI2.2 - Page 5 of 5 ISBN 978-86-7466-930-3

