
  

Abstract—Denoising signals is used as a preprocessing step for 

all signal processing. Encoder-decoder neural networks are often 

proposed as a method of denoising 1D and 2D signals, because of 

their ability to extract essential features from the signal and then 

recreate it without noise. In this paper we propose a simple 

architecture of a convolutional neural network for denoising step 

responses of systems with different open-loop transfer function. 

The network is trained on synthetic data with added noise of 

different distributions, then tested on a portion of synthetic data 

and real-life step responses. 

 
Index Terms— denoising, encoder-decoder, convolutional 

neural network, step response 

 

I. INTRODUCTION 

Signal denoising is an important preprocessing step in every 

type of signal processing. Even though many observations can 

be made on generated pure signals, real-life signals always 

come with a certain amount of noise. For any signals measured 

on electrical circuits, noise cause can be the imperfect design 

or layout of the circuit itself, faulty components, close 

proximity to other electrical equipment, environmental causes 

etc. However, even if causes are known, the behavior of noise 

is unpredictable and rarely fits into a specific probability 

density function. Having a denoising method that would be 

applicable to different types of signals and noises would be of 

great importance for signal processing. 

In the paper [1], authors used deep recurrent denoising neural 

networks to denoise ECG signals and improve signal-to-noise 

ratio of signal from -8.82dB to 7.71dB. They used a synthetic 

dataset with added noise. Medical signals such as ECG are of 

great importance, which shows in the number of papers that 

deal with their denoising. Once again, a convolutional neural 

network proves efficient with ECG signals in [2]. Seismic data 

is one of the representatives of noisy real-life data, and effective 

use of deep convolutional neural networks for denoising of 

synthetic seismic data can be seen in [3]. Using a convolutional 

network for denoising images with Gaussian noise is also 

proposed in [4]. There is not a single specific architecture for 

denoising convolutional networks that is superior, and a useful 

comparison of different kinds is given in [5]. However, one 

structure seems to be mentioned for multiple purposes, and it is 

Natalija Đorđević is a teaching associate at the Signals and systems 
department at the School of Electrical Engineering, University of Belgrade, 73 

Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail: 

natalija.djordjevic@etf..bg.ac.rs) 
Nenad Džamić is with the School of Electrical Engineering, University of 

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail: 

dn213336m@student.etf.bg.ac.rs) 

the encoder-decoder structure. The authors in [6] suggest the 

use of an autoencoder for medical image denoising, which 

served as an initial inspiration to use encoder-decoder networks 

for 1D signals. Application of the encoder-decoder structure on 

denoising micro seismic signals is shown in [7]. 

In this paper we have trained an encoder-decoder neural 

network to denoise a step response of an open-loop system. 

This particular structure seemed promising and in various 

papers was proven to perform well in denoising for different 

purposes. Its great advantage is that it does not have strict 

limitations on the results it can produce. There are however 

many things that have an effect on its performance, such as the 

architecture, hyperparameters, the dataset etc. In this paper we 

attempted to make a structure that is not complicated, but 

performs well, as well as to generate a dataset that is 

informative enough for our neural network. The reason that the 

step response signal was chosen is its importance in observing 

how industrial processes react to a change in reference value. 

Without diving into the details of which processes each system 

represents, we will define their behavior only by their open-

loop transfer functions.  

II. DATASET SYNTHESIS 

Collecting data for neural networks can be expensive and 

time-consuming. In order for our dataset to be as diverse as 

possible and simultaneously to represent many industrial 

processes, we used equation (1) as a general form for our open-

loop transfer function. [8]. 

 𝐺(𝑠) =
𝑒−𝜃𝑑𝑠(1−𝛼𝑠)

(𝑠+1)𝑛
                      (1) 

Parameter 𝜃𝑑 represents transport delay which is the amount 

of time that our system needs to react to a change in reference 

value. The measure 1/𝛼 represents the position of a zero in the 

right half-plane. The system in which 𝛼 is not equal to zero is 

called the non-minimum phase system and in its step response 

we can see an initial dip in value before a rise towards the 

reference value. An example is shown in Fig.1. Finally, the 

parameter 𝑛 refers to the order of the system which, in general, 

dictates the dynamic of the system. 
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Fig. 1.  Step response for a non-minimum phase system with parameters: 

 𝜃𝑑 = 5, 𝑛 = 3, 𝛼 = 1. 

 Convolutional neural networks are known for needing a 

large training set to perform well. These parameters can 

drastically change the output of the system which means that, 

in order to get a diverse dataset, we should try as many 

combinations as possible. We generated pure step responses for 

transfer functions which include parameter values given in 

Table I. Each signal has a duration of 25s and is sampled with 

a step size of 0.1s, making it 251 samples long. 

 
TABLE I 

TRANSFER FUNCTION PARAMETER VALUES 

 
Minimum 

value 

Maximum 

value 
Step size 

𝜃𝑑 0 10 0.2 

𝛼 0 2 0.05 

n 1 8 1 

 

To every pure signal we generated, we added three types of 

noise. Given that real-life noise rarely fits into one specific 

probability density function, feeding different types of noise to 

our neural network seemed as a good way to have it generalize 

well after it is trained. The three types of noise added are 

Gaussian white noise, uniform noise and noise with Rayleigh 

distribution. All three types of noise have a standard deviation 

of 0.05. Probability density functions are given in equations (2), 

(3) and (4), respectively and shown in Fig.2. 

 

𝑝(𝑥) =
1

𝜎√2𝜋
𝑒−0.5(

𝑥

𝜎
)

2

;  𝜎 = 0.05                 (2) 

 

𝑝(𝑥) =  {
10/√3,   𝑥 ∈ {−0.05√3, 0.05√3}

0,   𝑥 ∉ {−0.05√3, 0.05√3}
                 (3) 

 

𝑝(𝑥) =  
𝑥

𝜎2 𝑒−𝑥2/(2𝜎2), 𝜎 = 0.05√
2

4−𝜋
                 (4) 

 

The expected value of the Rayleigh distribution given in 

equation (4) is a positive non-zero value, so to avoid having an 

offset in our noise we subtracted the expected value. 

 
Fig. 2.  Comparing three different noise probability density functions. 

 

Final dataset has 50184 samples and 25% percent of it is 

intended for testing, while the rest is used for training. The test 

set consists of all step responses for systems of order 4 and 5, 

while all other orders belong to the training set. This will allow 

us to test our network on system orders that it has not 

encountered during training.  

III. ARCHITECTURE AND TRAINING OF NEURAL NETWORK 

When the term ‘denoising’ is mentioned in the context of 

neural networks, the autoencoder neural networks are usually 

suggested as an appropriate architecture. The idea behind them 

is to have an encoder part of the network, whose role is to 

extract features from the given input, followed by the decoder 

part, which tries to recreate the input from the features. 

Autoencoder networks are a type of unsupervised learning, 

because the desired output is the same as the input, therefore 

the input/output pair is not explicitly given during training. 

These networks served as an inspiration for this paper and 

creating the encoder-decoder architecture. 

Encoder-decoder neural networks fall into the category of 

convolutional networks and the term ‘convolutional’ refers to 

the method of feature extraction. Let us consider that the input 

is a 2D matrix, such as a photograph. The dimensions of the 

photograph tend to be quite large and if we were to feed it to a 

regular fully-connected neural network, we would have too 

many trainable parameters. This would imply a huge amount of 

time to train and a lot of unnecessary computational resources. 

Also, each pixel itself might not carry as much information 

about the photograph as their relations do. So instead of treating 

individual pixels as separate entities, the idea behind 

convolutional neural networks is to have filters in the form of 

kernels (matrices with smaller dimensions) whose parameters 

are to be learned, which in convolution with the input would 

produce something more informational. Convolution is simply 

‘sliding’ the kernel across the photo and multiplying it with 

appropriate submatrix of the photo. This way, instead of trying 

to learn a million neurons, the network has to learn filters which 

would extract meaningful features. The general advantage of 

neural networks is that it is not necessary for us to have insight 

into exactly what these filters are and what features they 

extract, but only how well the output is decoded using those 

features.  
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Convolution can also be done with 1D inputs, such as 

various forms of signals. The principal of convolution stays the 

same and the kernel is now a vector instead of a matrix. As 

previously mentioned, the aim of this project is to use a 

convolutional encoder-decoder network to denoise a step 

response of an open-loop system.  

For this purpose we used python and the tensorflow library. 

It allows users to build a sequential neural network model by 

adding desired layers one-by-one.  

For the encoder part of the network, we followed a standard 

structure of convolutional networks which implies alternatively 

adding convolutional layers and pooling layers. Convolutional 

layers learn kernel parameters and produce a convolution of the 

input with the kernel. It is common practice to have kernels 

with small dimensions, so in every convolutional layer we used 

kernels of size 5 (vectors of length 5). Every convolutional 

layer we added is followed by a max-pooling layer, whose role 

is to cut down the dimensions. It takes subvectors (of the 

specified size) of the input and produces an output which is the 

maximum value of the subvector. If the size is properly defined, 

we get the effect of having less computation needed, without 

any crucial loss in information. 

The decoder part of the network has the inverse structure of 

the encoder part. Therefore, all convolutional layers are 

replaced with transposed convolutional layers. They perform 

deconvolution, which is an inverse operation to convolution. 

Opposite of max-pooling layers are upsampling layers. They 

once again make the dimensions larger by repeating the values 

of their input a specified amount of times. It is easy to notice 

that the output of the upsampling layers will not be exactly the 

same as the input of max-pooling layers. 

The final architecture we chose is the simplest one that 

performed well. Details of its structure are shown in Table II. 

and Fig. 3. 
TABLE II 

ARCHITECTURE OF NEURAL NETWORK 

 

Layer type 
Kernel 

size 
Output shape 

Convolutional 5 (1, 247, 128) 

Max-pooling 2 (1, 124, 128) 

Convolutional 5 (1, 120, 64) 

Max-pooling 2 (1, 60, 64) 

Transposed convolutional 5 (1, 64, 64) 

Upsampling 2 (1, 128, 64) 

Transposed convolution 5 (1, 132, 128) 

Upsampling 2 (1, 264, 128) 

Convolutional 5 (1, 264, 1) 

Cropping / (1, 251, 1) 

 

 The activation function for all layers is ReLU, except for the 

output layer whose activation function always depends on what 

the network is trying to predict. Since in our case we are doing 

regression, the adequate activation function is linear. The 

metric used to access the performance is mean-squared error, 

also suitable for regression.  

When training a neural network it is necessary to make sure 

not to overfit it to the training data. Overfitting is a term used 

to describe the behaviour of a network that performs very well 

on training data, but has problems with data that it has not 

encountered during training, i.e. it generalizes poorly. One 

method to prevent overfitting we already implicitly 

implemented by making a large training dataset. Having a 

diverse dataset with many samples decreases the chances of 

overfitting. We also added a kernel constraint with value 3 to 

every layer, which stops parameters from rising above the 

given value. Popular method to avoid overfitting is also adding 

dropout layers after convolutional layers. Their role is to 

remove certain neurons with a specified rate and have them not 

impact the output. Adding dropout layers did not make the 

network perform better, so they were left out. 20% of samples 

in the dataset were used for validation. Finally, the network was 

trained for 7 epochs in mini-batches of size 32. 

 

 
Fig. 3.  Neural network architecture 

 The optimizer used is Adam optimizer, which is a type of a 

stochastic gradient descent algorithm. It is known for keeping 

track of the first and second momentum to provide quicker and 

more stable convergence. Its primary hyperparameters are 

learning rate, β1 and β2. We used stochastic grid-search to find 

optimal hyperparameter values and they are: learning rate = 

0.0005, β1 = 0.9 and β2 = 0.99.  

IV. RESULTS 

The network was first tested on a generated test set 

mentioned in chapter II. Average mean-squared error (mse) on 

the entire test set and on separate noise types are shown in Table 

III. In Fig. 5 the average values and standard deviations of mse 

for each of the noises are shown. Gaussian noise has the highest 

error, however all three have values bellow 9e-5. One more 

metric to asses the denoising process is comparing the signal-

to-noise ratios (SNR) of signals before and after denoising. The 

average SNR for all types of noise was 53.5dB in the beginning. 

Signal-to-noise ratios after denoising are given in Table III. 
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TABLE III 

MEAN-SQUARED ERROR FOR DIFFERENT NOISE TYPES 

 MSE SNR (dB) 

Gaussian noise 8.84e-5 87.8 

Uniform noise 8.14e-5 88.6 

Rayleigh noise 7.21e-5 89.9 

Entire test set 8.06e-5 88.8 

 

 
Fig. 4.  Means and standard deviations of mean-squared errors for each noise 
 

In Fig 5A. there are three representative step responses: one 

for each of the three types of noises. Based on observing, the 

output of the network seems to follow the signal dynamic well. 

Judging by the mean-squared error and Fig. 5A, Gaussian noise 

is the most difficult to remove, while Rayleigh noise seems the 

easiest to remove.  

Next step was to test our network in a real-world 

environment to see how it handles a step response with noise 

which does not specifically match any distribution. The system 

we tested on was a handmade dryer that consists of a chamber 

on a metal surface and it has three platinum temperature sensors 

and one sensor which measures the airflow. The chamber is 1m 

long and has a heater of 400W and a ventilator on one side. 

Since airflow is not steady and turbulence occurs, the signal we 

captured is very noisy. In Fig 5B. there are three different 

original signals of airflow, as well as their denoised version. 

The results are satisfactory considering the amount of noise and 

the fact that the exact transfer function was not included in the 

training set. 
 

 

 

 
Fig. 5.  Step responses before and after denoising. A) synthetic data, B) airflow signal after neural network, C) airflow signal filtered with Butterworth filter

 

To compare our results with classical filtering methods, we 

give the same noisy inputs but filtered with a first order 

Butterworth filter with different normalized frequencies in Fig. 

5C. We see that in order to not compromise the dynamic of the 

signal, we have to settle for less noise removal. The neural 

network we trained gives better results in terms of removing 

noise, but still following the dynamic. The comparison we did 

gives us an insight into why using a neural network for 

denoising could be a justified option. Conventional filtering 

methods often have to make sacrifices in terms of degrading 
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some other signal characteristics. Even though the structure of 

the neural network is not necessarily simple for all purposes, it 

is very flexible, and if we feed it the right amount of input data 

to learn from, the results it yields can be satisfactory in many 

ways. 

V.  CONCLUSION 

The architecture of  neural network used in this paper shows 

great potential for signal denoising. The proposed general form 

of transfer function in equation (1) also proved to be enough for 

the network to be able to follow the step response dynamic 

well. The next step in improving performance and extending it 

to other signals can move in a couple of directions. Having a 

training set with more noise distributions would also help the 

network generalize even better. Next possible extension could 

be having step responses with added disturbances at different 

moments in time in our dataset, as well as creating open-loop 

transfer functions in a more generalized form. 
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