
 

  

Abstract—Electrocardiography is a non-invasive technique for 

monitoring the electrical activity of the heart, and its analysis can 

detect and then prevent many health problems. Alterations that 

are not related to cardiac electrical activity represent artifacts in 

signal and should be minimized in order to correctly interpretate 

the signal. This is of great importance in wearable systems for 

electrophysiological monitoring that have numerous applications 

in healthcare and fitness. This paper presents how to build a 

classification model to detect artifacts in electrocardiogram 

(ECG) signal using deep neural network.   The Long Short-Term 

Memory (LSTM) network was proposed for classifying 10-s 

single-channel ECG segments as Valid and Artifact. Data set 

consists of 10,231 raw ECG samples. The results show that the 

proposed method can classify the data with the accuracy of 

90.1%, i.e., efficiently deal with acceptance of good (93.8%) and 

rejection of poor (80.1%) ECG quality.  

 
Index Terms—ECG; Deep Neural Network; LSTM, 

Classification Model  

 

I. INTRODUCTION 

ELECTROCARDIOGRAPHIC (ECG) artifacts are 

alterations that are not related to cardiac electrical activity. 

The artifacts could be caused by the unexpected motion 

intensity, loss of electrode-skin contact or movements of 

different part of the system such as cables. Additionally, some 

of the common noises that appear in the ECG signal are 

electromyogram (EMG) noise and baseline drift due to 

breathing or sudden movement, and such noises can be easily 

removed using various filtering approaches. The problem 

occurs if the artifacts last too long, and completely 

compromise the shape of the signal. Then, the current 

physical state of the subject could be misinterpreted. That is 

why it is of great importance to identify these types of 

artifacts and ignore the parts of the signal in which they 

appear. This is especially referring to the wearable systems for 

electrophysiological monitoring that are used for healthcare or 

fitness where health condition of the subjects is further 

decided based on the parameters extracted from the ECG 

signal. Since the subjects perform various physical activity, 

the quality of the ECG signal even more decreases. As 

predictions of the physical state are given in the real time, the 

artifacts detection as well as the other algorithms should be 
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performed automatically.  

Lui et al. [1] developed a wearable system for early 

detection of cardiovascular diseases and used machine 

learning algorithm for classifying ECG segments as 

acceptable and unacceptable for further analysis. Using 

Support Vector Machine (SVM), they could exclude 

unacceptable segments with an accuracy of 96.4%.  

 Neural networks are widely used for classification of 

different types of artifacts or arrhythmias in ECG signal [2-7]. 

Saadatnejad at al. [2] proposed a method consisting of wavelet 

transform and multiple recurrent neural networks for 

classifying arrhythmias in continuous cardiac monitoring on 

wearable devices. Deep network with wavelet sequences as 

input was used for classification of five heartbeat signals, 

resulting in high recognition performance [3]. Six common 

types of urgent arrhythmias are classified using deep neural 

network with an overall accuracy of 81% [4]. Deep learning 

algorithms were also used to classify shockable versus non-

shockable rhythms in the presence and absence of 

cardiopulmonary resuscitation (CPR) artifact for automated 

external defibrillators [5]. Chauhan and Vig used deep 

recurrent neural network architecture with Long Short Term 

Memory (LSTM) units to detect abnormal and normal signals 

in ECG data [6]. The data included four different types of 

abnormal beats and the proposed detection system provided 

96.5% performance.     

The aim of the presented work is to develop a system that 

can automatically identify artifacts in ECG signals. We 

propose deep learning method for classification of unwanted 

artifacts and ECG signal that could be further processed, as 

we believe that these differences in signal could be reliably 

detected by a properly trained neural network.  

Section II contains the method, including data preparation, 

and an explanation of used algorithm with the configuration 

of its parameters. The results are presented and discussed in 

section III, while the conclusion is attached in the final 

section.  

II. THE METHOD 

The proposed algorithm is implemented in the Matlab 

R2019b software installed in a Windows 10 Pro platform, 

using the Signal Processing and Deep Learning toolboxes. 

The computer that was used is equipped with NVIDIA 

GeForce RTX 3060 graphics processing unit.  

A. Dataset and Implementation 

Dataset that was used in this study was collected by 

Tecnalia Serbia during the field trials within SIXTHSENSE 

Deep Neural Network Approach for Artifact 

Detection in Raw ECG  

Tanja Boljanić, Jovana Malešević, Goran Kvaščev 

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 BTI1.3 - Page 1 of 4 ISBN 978-86-7466-930-3

mailto:tanja.boljanic@gmail.com


 

project [8] in Bormio, Italy. The sensing module based on a 

multi-electrode array (MEA) for ECG recording was placed 

below the left major pectoralis. The MEA contains two 

recording and one referent electrode. The module provides 

conditioning and A/D conversion of the signal, and it is 

connected to the sensor for data acquisition via the flat cable. 

Described prototype was developed for research purposes 

within the project. This dataset comprises one-lead ECG 

recordings from 12 mountain rescuers that were performing 

the rescue task (male/female, 11/1, age (mean ± std), 31.7 ± 

6.0 year). The length of the ECG signals ranges from 90 to 

200 min with the average of 150 min, and the sampling rate is 

1000 Hz. The signal contains motion artifacts due to the 

unexpected motion intensity and motion state, and the noises 

due to the change of relative displacement between electrode 

and skin, as well as the artifacts due to the cable movements. 

These noises have typical characteristics as transient high 

amplitude impulse and signal saturation. In order to utilize the 

automatic identification of the artifacts in signal, the ECG was 

visually inspected and we manually selected segments that are 

extremely noisy.  

All signals were divided into 10-s segments, with total of 

7,517 valid ECG and 2,714 segments labeled as signal with 

artifacts (7,517 + 2,714 = 10,231). Artifact segments are 

selected so that more than a half of the segment contain pure 

noise resulting in visually undetectable QRS complexes. An 

example of signal’s both classes is presented in Fig. 1.    

 
 

Fig. 1.  The example of 10-s ECG segments: a segment without artifacts 
(Valid, top) and a segment with artifacts (Artifact, bottom) 

 

The raw data segments were divided into two sets: 90% and 

10% for the training and testing, respectively. Both classes 

were randomly divided into these two sets. Since 73.5% of the 

dataset are valid segments, a classifier would learn that it can 

achieve a high accuracy simply by classifying all signals as 

Valid. To avoid this bias, the Artifact signal was augmented so 

that there is the same number of Valid and Artifact signals. 

This is one form of data augmentation used in deep learning, 

known as oversampling [9]. Artifact signals were augmented 

after splitting data into two sets, hence the data from the test 

set are not included in the training set. At the end, the 

distribution between Valid and Artifact signals was evenly 

balanced, as showed in Table I. 

  

B. Proposed Deep Neural Network 

Deep Neural Networks (DNN) are one type of model for 

machine learning that is subfield of artificial inteligence (AI) 

[10]. The appropriate deep learning algorythm depends on the 

task and the available data. Long short-term memory (LSTM) 

networks are the most commonly used variation of recurrent 

neural networks (RNN) that are well situated to study 

sequence and time-series data [11]. 

 
TABLE I 

THE DIVISION OF THE ENTIRE DATASET INTO TRAINING AND TESTING SETS 

 

Classes 

The original 

number of 10-

s segments 

Number of 10-s 

segments after 

leveling 

Training Test 

Valid 7,517 6,765 752 

Artifact 2,714 6,765 271 

 

The LSTM network can effectively learn long-term 

relationships between time steps of a sequence. It consists of 

an input gate, forget gate, output gate and cell unit. The cell 

remembers values over arbitrary time intervals, and the gates 

regulate the flow of information into and out of the cell. Input 

gate protects the unit from irrelevant input events, while the 

forget gate controls when to forget previous memory contents. 

The output gates controls the output flow. Graphical 

representation of an LSTM unit is presented in Fig. 2. The 

LSTM network can look at the time sequence in the forward 

direction and in both forward and backward directions, which 

is than called bidirectional LSTM (BiLSTM). This is useful 

when there is need to learn from the complete time series at 

each time step.   
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Fig. 2.  LSTM block diagram. The variables are: xt – input vector to the 

LSTM unit, it – input gate’s activation vector, ft – forget gate’s activation 

vector, ot – output gate’s activation vector, ct – cell state vector, ht – output 

vector of the LSTM unit.  

 

C. Network Parameter Configuration 

LSTM network was proposed for ECG classification. The 

network parameters were selected experimentally or following 

the other studies [9,12,13]. The bidirectional LSTM 

(BiLSTM) with 200 hidden units was used, as it looks at the 

sequence in both directions – backwards and forward, which 

is important when network should learn from full-time series 

at each time step. Sequence input was set to one dimension, 

because the input signal is only the amplitude of raw ECG. 

Two classes were specified by including a fully connected 

layer of size 2. The last two layers were softmax and 

classification layer with cross-entropy loss function. The 

adaptive moment estimation algorithm (ADAM) was used as 

the optimization method. Architecture of a network is 

summarized in Table II. The layer information from the table 

includes the layer type, the size and format of the layer 

activations, and the size of learnable parameters. 
 

TABLE II 

THE DETAILED INFORMATION FOR EACH LAYER OF THE PROPOSED NETWORK 

MODEL 
 

Name Type Activations Learnables 

input 
Sequence 

input 
1 - 

BiLSTM BiLSTM 400 

InputWeights         1600x1 

RecurrentWeights  1600x200     

Bias                        1600x1 

fc 
Fully 

Connected 
2 

Weights          2x400 

Bias                2x1 

softmax Softmax 2 - 

output 
Classification 

Output 
- - 

 

The BiLSTM layer has the following parameters: initial 

learning rate = 0.01, mini-batch size = 150, epoch = 10, 

gradient threshold = 1, sequence length = 1000, dropout = 0. 

Number of epochs in the number of passes through the 

training data, and increasing this number wasn’t resulting in 

better classification accuracy. Mini-batch size is the number 

of signals that neural network looks at a time, while the signal 

is broken into smaller sequences (sequence length) so that the 

computer does not run out of the memory. Dropout layer was 

not used as the previous studies showed that it did not 

increase the network generalization ability [9,12].    

III. RESULTS AND DISCUSSION  

The ECG data were classified using the LSTM network and 

performance measures of the model were evaluated using a 

confusion matrix. Confusion matrixes that are obtained after 

the training and testing process are presented in Fig. 4-5.  

A row-normalized row summary represents the percentages 

of correctly and incorrectly classified observations for each 

true class, while a column-normalized column summary 

represents the same thing but for each predicted class. In order 

to report performance results for binary classification of Valid 

and Artifact ECG, five statistical metrics are extracted from 

the confusion matrix and presented in Table III: accuracy, 

sensitivity, specificity, precision and F1-score. 

 

 
 

Fig. 4.  Confusion matrix for the training set of the LSTM with a raw ECG. 
The axes labels represent the class labels, Valid - “v” and Artifact - “a”. 

 

   
 

Fig. 5.  Confusion matrix for the test set of the LSTM with a raw ECG. The 
axes labels represent the class labels, Valid - “v” and Artifact - “a”. 

 

The LSTM accuracy for the training set was 88.2%, while 

for the testing set it was 90.1%. The accuracy is the 

proportion of correctly classified ECG segments of all ECG 

segments. Sensitivity calculates the number of correctly 

classified valid ECG segments out of the total samples in the 

class, while the specificity calculates the number of correctly 

classified artifact ECG segments out of the total samples in 

the mentioned class. The precision calculates the number of 

true positives out of the positive classified classes. Finally, 

F1-score is the harmonic mean of both the precision and 

sensitivity measures and it is used as an overall score on how 

well the model is performing.        
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TABLE III 

EVALUATION METRICS FOR A CLASSIFICATION TEST 

 

Accuracy 90.1% 

Sensitivity 93.8% 

Specificity 80.1% 

Precision 92.9% 

F1-score 93.3% 

 

The time consumption for training was 53 min, which is 

acceptable, considering the large database that included more 

than 10,000 ECG segments (a 10-s duration for each 

segment). Segments of 10 seconds was used, because most of 

the ECG monitors display and analyze such signal duration, 

and Hajeb-M et al. [5] reported that 8 s segments is the best 

choice for classification accuracy. As mentioned in the 

method section, we selected the segments of ECG signal that 

are extremely noisy as Artifact signals. In practical 

applications, it would be of interest to observe not only the 

signals that are incredibly noisy, but rather signals with 

various degrees of noise, and it will be considered in the 

future work. Network parameters that are used are the optimal 

one for this type of dataset. Other options did not help the 

network to improve the classification accuracy. Some of the 

changes that were performed are decreasing the learning rate 

and the mini-batch size, and increasing the number of epochs.  

The overall accuracy of 90.1% indicates that the proposed 

model could provide accurate prediction on a raw ECG data. 

By observing the sensitivity and specificity values, it can be 

seen that performed model recognizes valid ECG segments 

better than artifacts.   

 Similar study [9] that was also using LSTM network on 

raw ECG data showed the accuracy of 70.8%. Chen et al. [4] 

developed a classification model for six types of urgent 

arrhythmias combining CNN (Convolutional Neural Network) 

and LSTM with accuracy of 81.0%, sensitivity of 82.0% and 

specificity of 97.0%. Combination of CNN and LSTM was 

also used by Liang et al. [14], who verified the classification 

accuracy on three different datasets of raw ECG signals and 

obtained F1-scores of 85.0%, 80% and 82.6%. For detection 

of shockable rhythms in the presence and absence of 

cardiopulmonary resuscitation (CPR) artifact, Hajeb-M et al. 

applied deep-learning algorithm using convolutional layers, 

residual networks and BiLSTM [5]. The sensitivity, 

specificity, accuracy and F1-score were 95.2%, 86.0%, 88.1% 

and 83.5%, respectively.   

IV. CONCLUSION 

Automatic detection of artifacts in ECG signal is important 

goal in wearable monitoring systems in order to accurate 

determine subject’s physical state. This work proposes to use 

deep learning technique for classifying ECG signal. LSTM 

network was used on a raw ECG signal that was divided into 

10-s segments. The classification accuracy of 90.1% indicate 

that the proposed model shows promising results. The future 

work will include more data to improve the training of the 

neural network. Also, ECG signals with various degrees of 

noise will be considered. One of the possible applications of 

this research could be within the SIXTHSENSE project, to 

improve the existing algorithm for determining the heart rate 

signal from the ECG of the first responders (mountain 

rescuers and firefighters).  
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