
A Gigabit Ethernet Media Access Controller for
TCP/UDP Radar Data Streaming and Visualization

Vukan D. Damnjanović, Student Member, IEEE, and Vladimir M. Milovanović, Senior Member, IEEE

Abstract—A design of a gigabit Ethernet media access con-
troller implemented using Verilog hardware description language
is depicted in this paper. The proposed digital hardware module
can be utilized for establishing client-server connections over a
computer network with a PC, an FPGA-based board or some
other separate piece of hardware. It allows users to perform
network data transfers using either TCP or UDP communication
protocols, in both directions. Data is transmitted to or received
from a predefined Internet Protocol address utilizing packets
of predefined size, in a format suitable for the corresponding
protocol, with a packet header providing the receiving end with
the information about the packet itself. The described design is
able to achieve network throughput rates that exceed 110 MB/s
making it suitable for systems and applications that require high-
speed data streaming, such as the system for radar data streaming
and PC visualization depicted in the latter part of the paper.
Besides that, it can be used in a wide range of applications
developed on systems containing boards and devices with the
Ethernet 8P8C port as an integral part. The implemented design
has been thoroughly tested using a combination of a commercial
FPGA development kit and the PC-run Python applications. It
was verified and confirmed that the design meets the expectations
regarding both the specified functionality and performance.

Index Terms—Gigabit Ethernet MAC, data streaming, UDP
and TCP protocols, PC data visualization, Verilog hardware
description language.

I. INTRODUCTION

During the last couple of decades, there is a growing trend
for the amount of different devices used in the systems and
applications in practically all the spheres of the IT industry.
The same also applies for the systems used for collecting data,
such as some sensor-based systems or radar systems. They
are becoming more complex, consisting of more devices with
more information needed to be carried. Whether it is because
of the insufficient available resources, some environmental
limitations, inappropriate system topology or something else,
the data-collecting devices are often unable to perform the
complete cycle of information extraction, processing and uti-
lization relying only on themselves. Therefore, at some point
of the cycle, it is necessary that the data is transferred to
another device (or devices) so the system can work properly
and fulfill its purpose. In most cases, those devices are PCs,
due to their abilities and versatility.

Vukan D. Damnjanović is with the School of Electrical Engineering, Uni-
versity of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia
and also with NOVELIC d.o.o., Veljka Dugoševića 54/B5, 11060 Belgrade,
Serbia (e-mail: vukan.damnjanovic@novelic.com).

Vladimir M. Milovanović is with the Department of Electrical Engineering,
Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000
Kragujevac, Serbia (e-mail: vlada@kg.ac.rs).

The need for these data transfers is especially emphasized
on the distinguished group of systems - real-time systems,
where the information acquirement, extraction and/or presen-
tation is performed constantly at relatively high rate [1]. That
implies that the data transfers from one platform to the other
needs to be performed in the same manner. The amount of data
that needs to be transferred and the transfer rate differ from
system to system and can vary significantly, which includes
some large numbers as well.

In order to achieve the ability of performing these transfers,
a vast number of mechanisms have been developed during the
years. They can rely on different technologies and all of them
have their advantages and disadvantages. Among the most
common and popular ones is definitely Ethernet [2].

Ethernet is, technically speaking, a family of wired com-
puter networking technologies, but it usually refers to the
most common type of Local Area Networks (LANs) - a
connected network of computers (or, to be more precise,
devices) in a small area1. Devices possessing the Ethernet port
and connected through it to the network are able to perform
data transfers with other connected devices by following the
series of standardized protocols and rules [3]. Ethernet has
been developing and improving during the years. It is currently
one of the fastest communication technologies.

Computer networks using Ethernet consists of several ab-
straction layers [4]. In order for the whole mechanism to
work correctly, rules for each one of them have to be applied.
Following those rules is often managed by some kind of the
processing unit, in devices that poses one, but in ones that do
not, such as an FPGA-based board, it might be challenging
to achieve the flawless operation of the system. The gigabit
Ethernet media access controller from this paper’s topic is
created so that the Ethernet ports can be utilized for preforming
data transfers without engaging any kind of processing unit.

This paper, in its first part, gives the quick overview of the
data streaming protocols used in the gigabit Ethernet media
access controller module, as well as the detailed description
of the module’s design, along with the description of its
implementation using Verilog Hardware Description Language
(HDL). In the second part of the paper, obtained testing results
and performances are provided with the example of one of the
systems which the module was tailored for in the first place.

1Computer networks is a large field in network sciences and a lot could be
written about it, but the information provided is sufficient for the comprehen-
sion of the content of this paper.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 1 of 6 ISBN 978-86-7466-930-3



II. A GIGABIT ETHERNET MEDIA ACCESS CONTROLLER
AND DATA TRANSFER PROTOCOLS

A gigabit Ethernet media access controller is a digital
component which allows the user to perform data transfers
between itself and some other module or device. Basically,
the implemented module allows the user to send and receive
the data to and from the specified address on the network
belonging to some other device. In order for it to work
properly, the module requires that the Ethernet port along with
the gigabit Ethernet transceiver exist on the device. It is used
to set up the transceiver for working in the appropriate mode at
the beginning of the application and then to send (or receive)
data through the Gigabit Media-independent interface (GMII)
to the transceiver [5] and through the port to the network and
the rest of the system. Data is fragmented and transferred in
packets, where every packet is of the same length and consists
of a header and data itself.

A. Ethernet Abstraction Layers

Currently, two different versions of this module exist: one
that supports transfers (receive and transmit) using Transmis-
sion Control Protocol (TCP) [6] and another that supports
transfers using User Datagram Protocol (UDP) [7]. Those
two protocols are parts of the Ethernet transport layer, one
of the abstraction layers mentioned in the previous section.
This layer provides the end-to-end communication services
for applications. This module also secures that the device is
working in accordance with two other abstraction layers: link
layer, which provides the link to a physical connection of the
host, and internet layer, which serves as a bridge between link
and transport layer [4]. The fourth and final layer - application
layer, can be implemented on the PC or on some other device.

The controller module implements the network link layer by
applying the Address Resolution Protocol (ARP) [8]. It sends
a message in the appropriate format that provides the physical
MAC address of the Ethernet port when another device on the
network asks for it.

The internet layer regulates that every message or packet in
the network end up at the appropriate destination. The primary
protocols for the internet layer are the Internet Protocol
(IP). This protocol assigns an IP address to every device on
the network, which allows a packet to find its way to the
destination. The implemented module utilizes the IP protocol
version 4 (IPv4).

The Ethernet transport layer, as mentioned before, is im-
plemented using either TCP or UDP protocol. This layer
provides services to the network, such as connection-oriented
communication, reliability, flow control etc.

B. TCP and UDP Protocols

TCP is a more complex protocol than UDP. It is connection-
oriented with built-in systems checking for errors and guaran-
teeing that data will be delivered in the order it was sent. The
connection firstly needs to be established, then maintained, and
finally terminated, making it a more reliable protocol. All of
this, however, requires larger overheads in data packets, which

Destination MAC Address Source-

MAC Address Type: IPV4 Version Header
Length

DSCP & ECN Total Length Identification

Identification Flags & Fragment
Offset Time to Live Protocol: TCP

Header Checksum Source IP Address

 
Source IP Address

 
Destination IP Address 

Destination IP Address Source Port

Destination Port Sequence Number

Sequence Number Acknowledgment Number

Acknowledgment Number Data Offset & Flags

Window Size Checksum

Urgent Pointer Data

Data

1680 24 32

Ethernet Frame IPV4 Header TCP Header Data

Fig. 1. A structure of data packets of the TCP protocol used in the design.

reduces its speed and efficiency. On the other hand, UDP is
a simpler, connectionless protocol, faster and more efficient,
but it does not provide any recovery options when a data error
occurs or when a packet is lost [1].

A structure of data packets of the TCP protocol used in the
design is shown in Fig. 1. This type of format allows three net-
work layers to be implemented: the link layer implementation
is marked in yellow, the IPv4 header representing the internet
layer is marked in red and the TCP header, as a part of the
transport layer is marked in green [9]. The link layer carries the
information about MAC addresses and the used IP protocol.
The IPv4 header has the fields for various information, such
as the IP addresses, packet identification number, packet
length, header length, used transport layer protocol, the IPv4
header checksum value etc. The TCP header, besides the port
numbers, holds the information necessary for establishing,
maintaining and terminating the TCP connections, detecting
and recovering from errors, flow controlling etc.

The main fields for enabling the TCP to have the
connection-oriented communication are sequence number, ac-
knowledgment number, flags and checksum. The sequence
number is a 32-bit wide field that carries the number that
identifies the first data octet in the packet. The acknowledg-
ment number is also a 32-bit wide field, and it represents
a response from the receiving end. It has the value of the
next expected sequence number. If the first packet that has

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 2 of 6 ISBN 978-86-7466-930-3



arrived had the sequence number of 1 and the N bytes of
data have arrived, then the acknowledgment number in the
response would be 1 + N . This mechanism ensures that the
order of the received packets is preserved and that there is
no packet or data missing. The flag fields have the purpose
to indicate that some functionality is being used. There are
six flags in total indicating different things: URG - the urgent
pointer field is significant, ACK - the acknowledgment number
field is significant, PSH - push functionality, RST - reset the
connection, SYN - synchronize sequence numbers, FIN - no
more data from sender. Basically, to run a TCP connection,
only three flags are needed: SYN flag for establishing it,
FIN flag for terminating it and ACK flag for acknowledging
every received data packet during the connection’s life. The
checksum field is used for detecting if there is an error in the
received data. It has a width of 16 bits, and it is the 16 bit
one’s complement of the one’s complement sum of all 16 bit
words in the header and text (only the TCP header and some
field of the IPv4 header are included).

In Fig. 2, a diagram that depicts establishing, maintaining
and terminating a TCP connection between a client and a
server is shown. A client is called a device that initiates the
connection and a server is a device that accepts it. Even though
it is more usual for the server to send data and for the client to
accepts it, it is the other way around in the example shown in
Fig. 2. The client initiates the connection by sending a packet
with the SYN flag active. The server responds with SYN and
ACK flag, which the client acknowledges. At that point, the
connection is established. The client then sends N bytes of
data in each one of X sent packets, and the server responds
for every packet received. Note that it is not necessary for
the server to respond to every packet individually. It could
also wait for all the packets to arrive and then to acknowledge
the reception of them by sending the final acknowledgment
number along with the ACK flag. After all the packets are
sent, the client expresses the wish to end the communication,
which the server accepts and the connection is then terminated.

The UDP data packet structure used in the design is similar
to the one used for the TCP protocol. In fact, the only
thing that differs is the transport layer protocol header. As
mentioned before, the UDP does not provide the possibility
of connection-oriented communication, flow control etc. so
the UDP header has fewer fields than the TCP header. It only
carries the information on the port numbers, packet length
and the checksum value. The UDP protocol does not support
or require the acknowledgement of the received packets. It
straight-forwardly goes to the formation of the following
packet, after the previous one has been sent.

III. THE IMPLEMENTATION OF THE CONTROLLER

Previously depicted gigabit Ethernet media access controller
have been implemented using Verilog HDL. Its design has
been thoroughly tested using standard verification and imple-
mentation paths for FPGA design flow. The design is made
available [10] by the authors for public use as a free and open-
source hardware library.

Client:
IP Address, Port 

Server:
IP Address, Port 

<CTL=SYN><SEQ=0>

<CTL=SYN,ACK><SEQ=0>
<ACK=1>

<CTL=ACK><ACK=1>
<SEQ=1>

<SEQ=1> <N bytes of data>

<CTL=ACK><ACK=1+N>

<SEQ=1+N> <N bytes of data>

<CTL=ACK><ACK=1+2N>

<SEQ=1+(X-1)*N> <N bytes of data>

<CTL=ACK><ACK=1+X*N>

Connection
Establishing

<SEQ=1+X*N> <CTL=FIN>

<CTL=ACK><ACK=2+X*N>

Data
Transfering

Connection
Terminating

Fig. 2. A diagram that depicts establishing, maintaining and terminating a
TCP connection between a client and a server.

The implemented design of the gigabit Ethernet media
access controller is relatively complex. It can be divided into
several mutually connected submodules, with some of them
communicating with the outer world as well, through one
of the module interfaces. A block diagram of the module
with its submodules and interfaces is depicted in Fig. 3.
In this section, descriptions of every individual submodule,
implemented interfaces to the outer world and the way the
module communicates with other devices will be provided.

A. Design Interfaces

As it can be seen from Fig. 3, the implemented gigabit
Ethernet media access controller has four interfaces. The
first one is the AXI Stream interface. The purpose of this
interface is to continuously collect data needed to be sent
between the devices on the network. The direction of the
interface can be both input and output, depending on the
fact whether the module is receiving data from some other
device, or sending it to the network. The second interface
of the implemented module is the AXI4 memory-mapped
interface. This interface is used to write values to the memory-
mapped configuration registers of the controller, as well as to
read status values from it. The next interface is the Reduced

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 3 of 6 ISBN 978-86-7466-930-3



AXI4

Memory-
mapped

configuration
registers

GMII to RGMII
Converter

OpenCores
TEMAC

GMII

RGMII

MDIO

MDC

FIFO
Packet

CreationAXI Stream AXI S

Clock
Generator

AXI S

Fig. 3. A block diagram of the implemented module with its submodules and
interfaces.

Gigabit Media-independent interface (RGMII), a version of the
already mentioned GMII interface. Its role is to communicate
with the Ethernet physical layer transceiver that controls the
Ethernet port. The last interface is the Serial Management
Interface (SMI), also known as Media-Independent Interface
Management (MIIM). It is a serial interface used for con-
figuration of the Ethernet physical layer transceivers. In the
following paragraphs, the functionality and implementation of
every submodule of the controller design will be described.

B. Design Clock Domains

The whole design can be divided into four clock domains.
The frequency of the input clock equals 100 MHz, and it
drives the clock generator block that creates all other clocks
in the module. These four clock domains are the user clock
domain, the RGMII physical layer clock domain, the MIIM
management interface clock domain and the AXI4 memory-
mapped clock domain. The RGMII physical layer clock do-
main operates at the frequency of 125 MHz, and it is the only
mandatory value for all the clock frequencies in the design.
The frequency of the MIIM clock domain clock is run-time
configurable. Its value depends on the value stored in one of
the memory-mapped registers, and it equals the value of the
AXI4 memory-mapped clock frequency divided by the register
value. The MIIM clock frequency must not exceed 2.5 MHz.
The AXI4 memory-mapped clock frequency is the frequency
on which the memory-mapped configuration registers and the
AXI4 bus operate. It has to be equal to the frequencies of the
other memory-mapped devices connected to the bus, and in
this version of the design it equals 10 MHz.

C. Design Submodules

The OpenCores Tri-mode Ethernet Media Access Controller
(TEMAC) is one of the most important submodules in the
design. It is a modified version of an open-source controller
downloaded from the OpenCores website [11]. The module
has a ”Tri-mode” phrase in its name because, apart from being
a gigabit controller, it can also operate as a 100-megabit or
10-megabit. However, in the proposed design, it is utilized
solely as a gigabit version. The TEMAC module has several
functionalities and five interfaces: an output and an input AXI
Stream interfaces, a GMII interface, a MIIM interface and
an input interface that provides the module with the memory-
mapped register data. Its main function is to convert streaming
data-to-be-sent from the input streaming native interface to
the output GMII interface and data-to-be-accepted from the
input GMII interface to the output streaming native interface.
These two native interfaces are converted to the AXI Stream
interfaces using the submodule wrapper. For these GMII-
to-Stream conversion processes, the module instantiates two
dual port block RAMs to serve as asynchronous FIFOs for
getting the data from both sides. The finite-state machines
(FSMs) control the flow for both directions, from 32-bit
streaming data synchronized on the user clock, to 8-bit GMII
data synchronized on the GMII clock (or vice versa). The
submodule and the exact way it will operate can be set
up by reading the input values from the memory-mapped
configuration registers. Depending on some of those values,
it also generates the MIIM signals for the Ethernet physical
layer transceiver configuration.

The GMII to RGMII converter adapts the GMII interface
signal to the needed RGMII interface signal. Basically, the
RGMII signals are used instead of the GMII signals in order to
reduce the number of the occupied output pins. Total number
of utilized output pins is halved (12 instead of 24). It is
achieved by running half as many data lines at a double speed,
time multiplexing the signals and by eliminating non-essential
signals. Output pins operate with double data rate (DDR)
instead of single data rate (SDR), with the same clocking
frequency of 125 MHz. Receiving pins are synchronized to
the external clock provided by the Ethernet physical layer
transceiver, while transmitting pins are synchronized to the
internally generated clock. The clock generating block creates
two different 125 MHz clocks with the 90 degrees phase
difference, one for the output clock pin itself and the other
for the synchronizing of the data and control lines, so that the
setup and hold times of the output DDR pins are as large as
possible.

The memory-mapped configuration registers module is a
submodule whose function is to be accessible from the AXI4
interconnect bus and the rest of the system through the AXI4
memory-mapped interface and to provide the rest of the
submodules inside the controller with the written values. It
also has a task to inform the OpenCores TEMAC submodule
to generate the signals in the MIIM interface. It has numerous
registers and here are the most important ones:

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 4 of 6 ISBN 978-86-7466-930-3



• Physical address - Value of the address of the
Ethernet physical layer transceiver.

• No preamble - Indicator whether the transmitting
packets will have the preamble to precede them.

• Clock divider - Value used to calculate the fre-
quency of the MIIM interface clock.

• Packet size - Number of bytes in one data packet,
can be up to 1500.

• PHY data - Data value to be written to one of the
Ethernet transceiver registers.

• PHY register address - Register address inside
the Ethernet transceiver to which data will be written.

• PHY write enable - Indicator that a write operation
should be performed through the MIIM interface.

The packet creation submodule is responsible for imple-
menting all the network abstraction layers and protocols in the
design. This submodule has several tasks in its jurisdiction. It
wraps the data arrived from the streaming interfaces with the
appropriate header and calculates all the values for the header
fields. It also accepts data packages arrived from the network
and checks if they are addressed to this module and creates and
sends the response if it is needed. IP addresses, MAC addresses
and port numbers for both the client and the server side in this
design are hard-coded. For both TCP and UDP versions of
the module, this submodule always checks if there is an ARP
request sent to the network. If the asked IP address is the one
belonging to this module and the ARP format of the message is
correct, an ARP response packet is created and sent providing
the information about this module’s MAC address. Creation of
the UDP packets is not too complicated, considering that every
field of the header except the identification field is a constant
value. The packet creation submodule receives the streaming
data and forwards it to the OpenCores TEMAC submodule,
except for the occasions when the previous packet has ended
and when the header fields are needed to be sent. The end of
packet is indicated by sending the active high value for the
AXI Stream data last signal.

The situation for the TCP version of the design is a bit more
complex. The creation of the header is not as straight-forward
as in the UDP version, and the communication between the
devices on the network is more complicated. The packet
creation submodule calculates the value for several fields for
every sent packet, such as the sequence and acknowledgment
number, checksum value, flags etc. When the application
starts, it sends the synchronization request packet, as depicted
in Fig. 2. Then it waits for the response and acknowledges it
if the response has the appropriate form and values, and starts
creating data packets and streaming data. At the end of the
application, it waits for the data acknowledgment message, and
then it terminates the connection as described in the previous
section.

IV. TESTING RESULTS AND STREAMING RADAR DATA
VISUALIZATION EXAMPLE

In this section, the design testing flow will be presented.
During these tests, the functionality of the design was verified,

AWR 2243
LVDS

LVDS RX AXI S FFT

AXI S

GbE MAC

JTAG2MM

AXI4

RTL8211E-VL
Transceiver

RGMII
GbE

MIIM

FPGA

Nexys Video

FT232H JTAG

Fig. 4. A simplified block diagram of the complete radar data PC visualization
system.

performances and resource utilization were measured, and the
design validity is shown as it is used in the example system
for radar data visualization. The first step in the design testing
flow were the software simulations in the form of the testbench
files written in Verilog and VHDL languages.

The next step is the implementation and verification of the
design on an FPGA-based development board. A Digilent’s
Nexys Video board with Xilinx Artix-7 FPGA family is
used for it. Nexys Video development board has the Realtek
RTL8211E-VL Gigabit Ethernet Transceiver [5] as an integral
part of it, making it suitable for the depicted design. For
the design testing, some additional features were needed. An
open-source JTAG-to-memory-mapped bus master bridge [12]
for accessing the memory-mapped register space was used.
An alternative for it can be Xilinx’s JTAG-to-AXI4 Master
module [13]. Write data transactions through AXI4 memory-
mapped interface are initiated from the PC using the Python
PyFTDI library and the FTDI’s cable containing the FT232H
chip [14]. Also, a server was run on the PC in order to generate
responses for the arrived packets and to send data to the board.
For running the server, Socket Python library was used. The
arrived packets can be verified by utilizing software for the
network packet monitoring, such as Wireshark [15]. Moreover,
packets with previously defined data were sent from the board
and checked on the PC using Pyhton scripts, therefore proving
the correctness of the proposed design. All the examples and
testing systems presented in this paper use 1066-byte long
packets (52 bytes for the header and 1024 data bytes).

During the hardware implementation testing, data through-
put measurements were done. It was proven that the design
meets the performance expectations with the maximal data
throughput of around 110 MB/s for both TCP and UDP design
versions, making it around 90% of theoretically ideal value of
125 MB/s or 1 Gb/s. The resource utilization is moderate, but
with less than 10% utilization for all the resource types and
with the possibility to reduce it even more.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 5 of 6 ISBN 978-86-7466-930-3



Fig. 5. An example of the radar data plot using Python libraries.

A. Streaming Radar Data Visualization Example

The implemented design of the gigabit Ethernet media
access controller, due to the extensive usage of computer
networks and its functionality, could find its way into a wide
range of different systems. In this subsection, a system for
the TCP radar data streaming and PC visualization, one of the
mentioned example systems, will be presented.

A simplified block diagram of the radar data visualization
system is given in Fig. 4. The system is used to continu-
ously collect data from the radar board, have the incoming
streaming data processed (fast Fourier transformation) on the
FPGA-based development board, and send it using the gigabit
Ethernet to the PC, where the arrived data is plotted. The
PC is showing the live display of the distance between the
radar board and the detected targets. An example of such a
display can be seen in Fig. 5. It should be emphasized that all
the processing and data transferring is realized completely in
hardware, without involving any kind of processing unit.

For the radar board, Texas Instruments’ AWR2243 BOOST
[16], along with the MMWAVE-DEVPACK and FMC-ADC-
ADAPTER, is chosen. The output is in the form of the Low-
Voltage Differential Signaling (LVDS) lines [17] containing
radar data, clock and frame clock. Those LVDS lines are
connected to the FPGA pins on the Nexys Video board, and
they are received and converted to the 32-bit AXI Stream
interface. The logic behind this conversion is not relevant for
the matter and therefore not elaborated. The AXI Stream data
is then driven to the input of the open-source fast Fourier
Transformation processor module [18] available to simultane-
ously perform the processing and stream the output data to the
gigabit Ethernet media access controller from the topic of this
paper. The TCP packets are created there and sent to the PC
through the gigabit Ethernet, where there is a Python script
running the server and receiving and plotting data acquired
from the Ethernet port using the Python’s Matplotlib library.
The radar board is previously configured using the MMWAVE
Studio software [17] for the PC and the USB interface, as is
the gigabit Ethernet MAC module using the JTAG-to-memory-
mapped bus master bridge, depicted in the previous section.

V. CONCLUSION

In this paper, a design of the gigabit Ethernet media access
controller for the UDP and TCP data streaming implemented
using Verilog HDL is proposed. This module can be used in a
wide range of different systems, due to the nowadays’ constant

presence of the computer networks in many industrial spheres.
One of those systems, or the system for the processed radar
data PC visualization to be more precise, is depicted in this
paper as well.

The generated instances of the JTAG to memory-mapped
bus master bridge were tested and verified by both using
software simulations and mapping onto a commercial FPGA
development board, proving the correct functionality of the
design. The hardware implementation also proved the com-
petitiveness of the design in terms of performances, having
the data throughput of over 110 MB/s.

It should be noted that this is only the first version of
the design, and there is still a lot of space for improvement
and for broadening the functionality of the module. Making
it more parameterizable, completely run-time configurable,
having better mechanisms to recover from data loss or error
etc. are just some of the things that could be and hopefully
will be improved in some future versions.

ACKNOWLEDGEMENTS

The authors would like to thank NOVELIC d.o.o. for
financially and logistically supporting the work on this project.

REFERENCES

[1] S. Tibor, P. Dukán, B. Odadžı́c, and O. Péter, “Realization of reliable
high speed data transfer over udp with continuous storage,” in 2010 11th
International Symposium on Computational Intelligence and Informatics
(CINTI), 2010, pp. 307–310.

[2] The Ethernet. Digital Equipment Corporation, Intel Corporation, Xerox
Corporation, 1982, a Local Area Network, Data Link Layer and Physical
Layer Specifications.

[3] V. Cerf and R. Kahn, “A protocol for packet network intercommunica-
tion,” IEEE Transactions on Communications, vol. 22, no. 5, pp. 637–
648, 1974.

[4] I. E. T. Force, “Requirements for internet hosts – communication layers,”
in RFC, October 1989.

[5] Integrated 10/100/1000M Ethernet Transceiver, version 1.6 ed., Realtek,
April 2016, track ID: JATR-3375-16.

[6] “Transmission control protocol,” in RFC. Information Sciences Insti-
tute, University of Southern California, 1981, no. 793.

[7] J. Postel, “User datagram protocol,” in RFC, 1980, no. 768.
[8] D. C. Plummer, “An ethernet adress resolution protocol,” in RFC, 1982,

no. 826.
[9] W. Zhang, Z. Wei, X. He, P. Qiao, and G. Liang, “The design of high

speed image acquisition system over gigabit ethernet,” in 2010 IEEE
International Conference on Wireless Communications, Networking and
Information Security, 2010, pp. 111–115.

[10] V. D. Damnjanović and V. M. Milovanović, “Gigabit ethernet mac,”
www.github.com/milovanovic/gbemac, accessed: 2022/04/15.

[11] OpenCores, “Tri-mode ethernet mac,”
www.opencores.org/projects/ethernet tri mode/, accessed: 2022/04/15.

[12] V. D. Damnjanović and V. M. Milovanović, “A chisel generator of
jtag to memory-mapped bus master bridge for agile slave peripherals
configuration, testing and validation,” in 2021 IcETRAN Proceedings.
ETRAN Society, Belgrade, 2021, pp. 239–244.

[13] JTAG to AXI Master v1.2, Pg174 ed., Xilinx, February 2021.
[14] FT232H, version 2.0 ed., FTDI, document No.: FT000288 Clearance

No.: FTDI 199.
[15] U. L. R. Sharpe, E. Warnicke, Wireshark User’s Guide, (version 3.7) ed.
[16] AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver, Texas Instru-

ments, February 2020.
[17] DCA1000EVM Data Capture Card, Texas Instruments, May 2018.
[18] V. M. Milovanović and M. L. Petrović, “A highly parametrizable chisel

hcl generator of single-path delay feedback fft processors,” in 2019 IEEE
31st International Conference on Microelectronics (MIEL), 2019, pp.
247–250.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 ELI1.1 - Page 6 of 6 ISBN 978-86-7466-930-3




